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In this paper, we investigate the Lorentzian generalized Sasakian-space-form. We give the necessary and sufficient conditions for
the Lorentzian generalized Sasakian-space-form to be projectively flat, conformally flat, conharmonically flat, and Ricci
semisymmetric and their relationship between each other. As the application of our theorems, we study the Ricci almost soliton
on conformally flat Lorentzian generalized Sasakian-space-form.

1. Introduction

Gauge theory, as we all know, has a lot of profound intension
and it has permeated all aspects of theoretical physics. It will
surely guide future developments in theoretical physics.
Gauge theory and principal fiber bundle theory are inextrica-
bly linked with each other (see [1]). For instance, the field
strength f κμν of gauge theory is exactly the curvature of a
manifold (see [2]). So if we know the curvature properties
of a manifold, we can get the distribution of field strength
f κμν. The purpose of our paper is to clarify the unsteady field
around Lorentzian generalized Sasakian-space-forms in view
of principal fiber bundle theory.

In differential geometry, the curvature tensor R is very
significant to the nature of a manifold. Many other curvature
tensor fields defining on the manifold are related with curva-
ture tensor, for instance, Ricci tensor S, scalar curvature r,
and conharmonic curvature tensor K . It has been proven that
the curvature depends on sectional curvatures entirely. If a
manifold is of constant sectional curvature, then we call it a
space-form.

For a Sasakian manifold, we have the definition of
ϕ-sectional curvature and it plays the same role as a sectional
curvature. If the ϕ-sectional curvature of a Sasakian manifold
is constant, then the manifold is a Sasakian-space-form
(see [3]). As a generalization of Sasakian-space-form,-

generalized Sasakian-space-form was introduced and investi-
gated in [4] and the authors also gave some examples. In
short, a generalized Sasakian-space-form is an almost contact
metric manifold that the curvature tensor R is related with
three smooth functions f1, f2, and f3 defined on the manifold.

In [5], the authors defined the generalized indefinite
Sasakian-space-form. It is the generalized Sasakian-space-
form with a semi-Riemannian metric. In this paper, we are
most interested in the Lorentzian manifold because it is very
useful in Einstein’s general relativity. We call it Lorentzian
generalized Sasakian-space-form, and to make our paper
more concise, we will write it as LGSSF for short. We give
the necessary and sufficient condition of the LGSSF with
the dimension equal to or greater than five to be some certain
curvature tensor conditions. We also clarify the necessary
and sufficient condition that LGSSF is Ricci semisymmetric.
It is meaningful to dig into LGSSF satisfying these conditions
because we can understand the relationship between the
functions f1, f2, and f3 and the curvature properties of
the manifold.

Ricci flow is a powerful tool to investigate manifolds. It
was first introduced by Hamilton in [6], and he used it to
investigate Riemannian manifolds with positive curvature.
There are many solutions to Ricci flow, and the Ricci soliton
is the self-similar solution of it. Physicists are also interested
in the Ricci soliton because in physics, it is regarded as a
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quasi-Einstein metric. In our paper, we give the Ricci soliton
equation as follows:

LWg + 2S = 2λg: ð1Þ

In the equation, LW denotes the Lie derivative, S denotes
the Ricci tensor, g denotes the Riemannian metric, and λ
is a real scalar. We call it the triple (g, W, and λ) Ricci
soliton on the manifold. People can also use the Ricci soliton
to study semi-Riemannian manifolds and refer to [7–9] for
more details.

In [10], Pigola et al. introduced and studied the Ricci
almost soliton. They replaced the real scalar λ by a
smooth function defining the manifold and called it the triple
(g, W, and λ) Ricci almost soliton. In our paper, we apply
the Ricci almost soliton to LGSSF, and in consideration of
the curvature properties of the manifolds, we get some
interesting results.

We organize our paper as follows. In Section 2, readers
can get several basic definitions about LGSSF. Sections 3, 4,
5, and 6 are dedicated to showing how a LGSSF can be pro-
jectively flat, conformally flat, conharmonically flat, and Ricci
semisymmetric. In Section 7, we apply what we get from
Sections 3, 4, 5, and 6 to a Ricci almost soliton on LGSSF
and give two examples.

We use U , W, V , X, Y , and Z to denote the smooth tan-
gent vector fields on the manifold, and all manifolds and
functions mentioned in our paper are smooth.

2. Preliminaries

If a semi-Riemannian manifold M admits a vector field ζ
(we call it a Reeb vector field or characteristic vector field),
a 1-form η, and a (1,1) tensor field ϕ satisfying

ϕζ = 0,

η ∘ ϕ = 0,

ϕ2 = −id + η ⊗ ζ,

η ζð Þ = 1,

η Uð Þ = εg ζ,Uð Þ,
g U ,Wð Þ = g ϕU , ϕWð Þ + εη Uð Þη Wð Þ,

ð2Þ

where ε = gðζ, ζÞ = ±1, then we call such a manifold an
ε-almost contact metric manifold [11] or almost contact
pseudometric manifold [12], and we call it the triple
(ϕ, ζ, and η) almost contact structure on the manifold.

If the 2-form dη and the metric g satisfy

dη U ,Wð Þ = g U , ϕWð Þ, ð3Þ

then the manifoldM is a contact pseudometric manifold and
the triple (ϕ, ζ, and η) is a contact structure on the manifold.

We define a vector field on the product ℝ ×M2n+1 by
ðhðd/dxÞ,UÞ; x is the coordinate on ℝ and h is a C∞

function on ℝ ×M2n+1. We define an almost complex
structure J on ℝ ×M2n+1 by

J h
d
dx

,U
� �

= η Uð Þ d
dx

, ϕU − hζ
� �

, ð4Þ

and it is easy to check J2 = −id. Moreover, if J is integrable,
then we will say the almost contact structure (ϕ, ζ, and η) is
normal (see [3]). We call an ε-normal contact metric
manifold an indefinite Sasakian manifold or an ε-Sasakian
manifold.

Now we give the definition of the ϕ-sectional curvature.
The plane spanned by U and ϕU is called ϕ-section if U is
orthogonal to ζ. The ϕ-sectional curvature is the sectional
curvature KðU , ϕUÞ. The curvature of an indefinite Sasakian
manifold is determined by ϕ-sectional curvatures entirely.

If the ϕ-sectional curvature of an ε-Sasakian manifold is a
constant c, then the curvature tensor of the manifold has the
following form [13]:

R U ,Wð ÞX =
c + 3ε
4

g W, Xð ÞU − g U , Xð ÞWf g

+
c − ε

4
g U , ϕXð ÞϕW − g W, ϕXð ÞϕUf

+ 2g U , ϕWð ÞϕXg + c − ε

4
η Uð Þη Xð ÞWf

− η Wð Þη Xð ÞU + εg U , Xð Þη Wð Þζ
− εg W, Xð Þη Uð Þζg:

ð5Þ

In [5], the author replaced the constants with three
smooth functions defining the manifold. For an ε-almost
contact metric manifoldM, if the curvature tensor is given by

R U ,Wð ÞX = f1 g W, Xð ÞU − g U , Xð ÞWf g
+ f2 g U , ϕXð ÞϕW − g W, ϕXð ÞϕUf
+ 2g U , ϕWð ÞϕXg + f3 η Uð Þη Xð ÞWf
− η Wð Þη Xð ÞU + εg U , Xð Þη Wð Þζ
− εg W, Xð Þη Uð Þζg,

ð6Þ

where f1, f2, f3 ∈ C∞ðMÞ, then we call M the generalized
indefinite Sasakian-space-form.

In our paper, we only focus on the Lorentzian situation:
ε = −1 and the index of the metric is one. We call such man-
ifold the Lorentzian generalized Sasakian-space-form, and in
our paper, we denote it by M2n+1

1 ð f1, f2, f3Þ. Because some of
the curvature tensor fields we studied are not suitable for
three manifolds, in the following, the dimension of LGSSF
M2n+1

1 ð f1, f2, f3Þ is greater than three, that is, n > 1.
For a LGSSF M2n+1

1 ð f1, f2, f3Þ, we have two useful equa-
tions from (6):

R U ,Wð Þζ = f1 + f3ð Þ η Uð ÞW − η Wð ÞUð Þ, ð7Þ

R ζ,Uð ÞW = f1 + f3ð Þ g U ,Wð Þζ + η Wð ÞUð Þ: ð8Þ
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Lemma 1. For a LGSSF M2n+1
1 ð f1, f2, f3Þ, the Ricci tensor S is

S U ,Wð Þ = 2nf 1 + 3f2 + f3ð Þg U ,Wð Þ
+ 3f2 − 2n − 1ð Þf3ð Þη Uð Þη Wð Þ, ð9Þ

so the Ricci operator Q and scalar curvature r are

QU = 2nf 1 + 3f2 + f3ð ÞU + 2n − 1ð Þf3 − 3f2ð Þη Uð Þζ, ð10Þ

r = 2n 2n + 1ð Þf1 + 6nf 2 + 4nf 3: ð11Þ

Proof. As we all know for a semi-Riemannian manifold of
dimension n, the Ricci tensor S and the scalar curvature r are

S U ,Wð Þ = 〠
n

i=1
εig R U , Eið ÞEi,Wð Þ,

r = 〠
n

i=1
εiS Ei, Eið Þ,

ð12Þ

where fEi,⋯, Eng is a local orthonormal frame field on the
manifold and εi is the signature of Ei. The curvature tensor
of M2n+1

1 ð f1, f2, f3Þ is given by (6) and we know gðU ,WÞ =
∑εigðU , EiÞgðX, EiÞ, so we can easily get (9), (10), and (11).

We can use warped product to construct LGSSF (see [5]).
Let h > 0 be a function onℝ and (N2n, J , and G) be an almost
complex manifold. Then, the warped product M =ℝ × hN is
a LGSSF with the Lorentzian metric given by

gh = −π∗ gℝð Þ + h ∘ πð Þ2σ∗ Gð Þ, ð13Þ

where π is the projection from ℝ ×N to ℝ and σ is the
projection to N . The almost contact structure is

ζ =
∂
∂x

,

η Uð Þ = −gh U , ζð Þ,
ϕ Uð Þ = Jσ∗Uð Þ∗:

ð14Þ

Theorem 2 (see [5]). Given a generalized complex space-form
N2nðF1, F2Þ. Then, M2n+1

1 ð f1, f2, f3Þ =ℝ × hN is LGSSF, with
functions

f1 =
F1 ∘ πð Þ + h′2

h2
,

f2 =
F2 ∘ π
h2

,

f3 = −
F1 ∘ πð Þ + h′2

h2
+
h″
h
:

ð15Þ

3. Projectively Flat Lorentzian
Generalized Sasakian-Space-Form

For a (2n + 1)-dimensional (n > 1) smooth manifold M, the
projective curvature tensorP is defined by

P U ,Wð ÞX =
1
2n

S U , Xð ÞW − S W, Xð ÞUf g + R U ,Wð ÞX:
ð16Þ

It is a way to measure whether a manifold is a space-form
because if M is projectively flat (P = 0), then it must be of
constant curvature and the converse is also true. For more
details, readers can refer to [14].

Theorem 3. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is projectively

flat if and only if f2 = f3 = 0.

Proof. Firstly, we suppose that PðU ,WÞX = 0. Put U = ζ and
replace X by ϕX, then equation (16) will be

P ζ,Wð ÞϕX =
1
2n

2n − 1ð Þf3 − 3f2ð Þg W, ϕXð Þζ = 0: ð17Þ

In consideration of gðW, ϕXÞ ≠ 0, we have

2n − 1ð Þf3 − 3f2 = 0: ð18Þ

Then, equation (9) will be

S W,Uð Þ = 2nf 1 + 3f2 + f3ð Þg W,Uð Þ = 2n f1 + f3ð Þg W,Uð Þ:
ð19Þ

By the above equation, we can write (16) as

g P U ,Wð ÞX, Zð Þ = f2 g U , ϕXð Þg ϕW , Zð Þf
− g W, ϕXð Þg ϕU , Zð Þ
+ 2g U , ϕWð Þg ϕX, Zð Þg
− f3 η Wð Þη Xð Þg U , Zð Þf
− η Uð Þη Xð Þg W , Zð Þ + η Wð Þη Zð Þg U , Xð Þ
− η Uð Þη Zð Þg W, Xð Þ + g W, Xð Þg U , Zð Þ
− g U , Xð Þg W, Zð Þg = 0:

ð20Þ

Setting U = ϕU and W = ϕW, we have

g P ϕU , ϕWð ÞX, Zð Þ = f2 g ϕU , ϕXð Þg ϕ2W, Z
� ��

+ 2g ϕU , ϕ2W
� �

g ϕX, Zð Þ
− g ϕW, ϕXð Þg ϕ2U , Z

� �g
+ f3 g ϕU , Xð Þg ϕW, Zð Þf
− g ϕW, Xð Þg ϕU , Zð Þg = 0:

ð21Þ

Let us denote the orthonormal local basis of TM by
fe1,⋯, e2n, e2n+1 = ζg. Obviously, the signature of the local
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basis is f+, ⋯ , + , − g and we denote it by fε1,⋯,
ε2n, ε2n+1g. Putting W = ei and Z = εiei in the above
equation and summing over i, we will have the follow-
ing equation:

f3 − 2n + 1ð Þf2ð Þg ϕU , ϕXð Þ = 0, ð22Þ

since gðϕU , ϕXÞ =∑2n+1
i=1 εigðϕU , eiÞgðϕX, eiÞ. Because of

gðϕU , ϕXÞ ≠ 0, we get

f3 − 2n + 1ð Þf2 = 0: ð23Þ

Taking consideration of ð2n − 1Þf3 − 3f2 = 0 and n > 1,
we get

f2 = f3 = 0: ð24Þ

Conversely, we suppose that f2 = f3 = 0 then use (6)
and (9), then (16) will be

P U ,Wð ÞX = f1 g U , Xð ÞW − g W, Xð ÞUf g
− f1 g U , Xð ÞW − g W, Xð ÞUf g = 0:

ð25Þ

In order to get the next theorem of our paper, we
first introduce the following famous theorem.

Schur.Theorem (see [15]). If Mnðn ≥ 3Þ is a connected
semi-Riemannian manifold, and for each m ∈M, the sec-
tional curvature KðmÞ is a constant function on the nonde-
generate planes in TmM, then KðmÞ is a constant function
on the manifold.

From Theorem 3, we can get if a LGSSF M2n+1
1 ð f1, f2, f3Þ

is projectively flat, then KðmÞ = f1. Using Schur.Theorem, we
have the following theorem.

Theorem 4. If a LGSSFM2n+1
1 ð f1, f2, f3Þðn > 1Þ is projectively

flat, then f1 is a constant function.

4. Conformally Flat Lorentzian
Generalized Sasakian-Space-Form

The conformal curvature tensor C is an important curvature
tensor for a manifold, apart from the projective curvature
tensor. For a (2n + 1)-dimensional (n > 1) smooth manifold,
it is given by

C U ,Wð ÞX =
1

2n − 1
S U , Xð ÞW − S W, Xð ÞUf

+ g U , Xð ÞQW − g W, Xð ÞQUg
+

r
2n 2n − 1ð Þ g W, Xð ÞU − g U , Xð ÞWf g

+ R U ,Wð ÞX:
ð26Þ

Conformal curvature tensor C is the invariant of
conformal transformation. In gauge field theory, it is
used to classify the regular form of a curvature tensor when

Sðei, ejÞ ≠ 0. If the metric of a manifold is conformally related
with a flat metric, then we will say the manifold is confor-
mally flat (C = 0).

Theorem 5. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conformally

flat if and only if f2 = 0.

Proof. From (6), (9), (10), and (11), equation (26) becomes

C U ,Wð ÞX = f2 g X, ϕWð ÞϕU − g X, ϕUð ÞϕWf
+ 2g U , ϕWð ÞϕXg
−

3
2n − 1

f2 g W, Xð ÞU − g U , Xð ÞWf
+ η Wð Þη Xð ÞU − η Uð Þη Xð ÞW
+ g U , Xð Þη Wð Þζ − g W, Xð Þη Uð Þζg:

ð27Þ

So if f2 = 0, then C is zero.
Conversely, we suppose that CðU ,WÞX = 0; first, we put

U = ϕW in the above equation, then we will have

C U ,Wð ÞX = 3f2 g ϕW, Xð ÞW − g W, Xð ÞϕWf
− η Wð Þη Xð ÞϕW − g ϕW, Xð Þη Wð Þζg
+ 2n − 1ð Þf2 g X, ϕWð Þ −W + η Wð Þζð Þf
+ g W, Xð ÞϕW + η Uð Þη Wð ÞϕW
+ 2g W,Wð ÞϕX + 2η Wð Þη Wð ÞϕXg

= 3f2g ϕW, Xð ÞW − 3f2η Wð Þη Xð ÞϕW
− 3f2g W, Xð ÞϕW
− 3f2g ϕW, Xð Þη Wð Þζ 2n − 1ð Þf2
� g X, ϕWð Þη Wð Þζ − g X, ϕWð ÞWf
+ g W, Xð ÞϕW + η Xð Þη Wð ÞϕW + 2g W,Wð Þ
+ 2η Wð Þη Wð ÞϕXg = 0:

ð28Þ

Then, we have

n − 2ð Þf2 g ϕW, Xð ÞW − g W, Xð ÞϕW − g X, ϕWð Þη Wð Þζf
− η Wð Þη Xð ÞϕWg − 2n − 1ð Þf2 η Wð Þη Wð ÞϕXf
+ g W,Wð ÞϕXg = 0:

ð29Þ

Again we use the local orthonormal basis fe1,⋯, e2n,
e2n+1 = ζg with signature fε1,⋯, ε2n, ε2n+1 = εg; we choose
X =W = ekð1 ≤ k ≤ 2nÞ, so gðW, ζÞ = gðX, ζÞ = 0 and the
above equation becomes

n − 2ð Þf2εkϕek + 2n − 1ð Þf2εkϕek = 0, ð30Þ

thus, we have

n − 1ð Þf2ϕek = 0: ð31Þ

Because n is greater than one, we get f2 = 0.
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From Theorem 3, we can get the following theorem.

Theorem 6. If a LGSSFM2n+1
1 ð f1, f2, f3Þðn > 1Þ is projectively

flat, then it is conformally flat.

5. Conharmonically Flat Lorentzian
Generalized Sasakian-Space-Form

The conharmonic transformation is a kind of special confor-
mal transformation. In general, a conformal transformation
does not preserve the harmonic function defined on the man-
ifold. In [16], Ishii introduced and studied the conharmonic
transformation, which preserved a special kind of harmonic
function. He also proved that a manifold could be reduced
to a flat space by a conharmonic transformation if and only
if the conharmonic curvature tensor K vanished everywhere
on the manifold. In other words, the manifold is conhar-
monically flat (K = 0). For a (2n + 1)-dimensional (n > 1)
smooth manifold, the conharmonic curvature tensorK is
given by

K U ,Wð ÞX = 1
2n − 1

g U , Xð ÞQW − g W, Xð ÞQUf
+ S U , Xð ÞW − S W, Xð ÞUg + R U ,Wð ÞX:

ð32Þ

Definition 7. A (2n + 1)-dimensional (n > 1) LGSSF is said
to be ζ-conharmonically flat if it satisfies

K U ,Wð Þζ = 0: ð33Þ

Lemma 8. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is ζ-conhar-

monically flat if and only if ð2n + 1Þf1 + 3f2 + 2f3 = 0.

Proof. From (7) and (10), equation (33) becomes

K U ,Wð Þζ = 1
2n − 1

2n f1 + f3ð Þη Wð ÞUf
− 2n f1 + f3ð Þη Uð ÞW
+ 2nf 1 + 3f2 + f3ð Þη Wð ÞU
− 2nf 1 + 3f2 + f3ð Þη Uð ÞWg
+ f1 + f3ð Þ η Uð ÞW − η Wð ÞUf g

=
1

2n − 1
2n − 1ð Þf1 + 3f2 + 2f3ð Þ η Wð ÞU − η Uð ÞWf g:

ð34Þ

So M2n+1
1 ð f1, f2, f3Þ is ζ-conharmonically flat if and only

if ð2n + 1Þf1 + 3f2 + 2f3 = 0.

From equation (11) and Lemma 8, we have the following
theorem.

Theorem 9. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is ζ-conhar-

monically flat if and only if its scalar curvature r = 0.

By Theorem 3 and Lemma 8, we have the following
theorem.

Theorem 10. If a LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is ζ-conhar-

monically flat and projectively flat, then it is a flat manifold.

We know that being conharmonically flat is the sufficient
condition of ζ-conharmonically flat. So we have the following
theorem.

Theorem 11. If a LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conhar-

monically flat and projectively flat, then it is a flat manifold.

It is very important for us to know how a LGSSF can be
conharmonically flat.

Theorem 12. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conharmo-

nically flat if and only if f2 = 0 and ð2n + 1Þf1 + 2f3 = 0.

Proof. Comparing (26) with (32), we can get

C U ,Wð ÞX = 2n − 1ð Þf1 + 3f2 + 2f3
2n − 1

� g W, Xð ÞU − g U , Xð ÞWf g + K U ,Wð ÞX:
ð35Þ

If f2 = 0 and ð2n + 1Þf1 + 2f3 = 0, then from Theorem 4

K U ,Wð ÞX = C U ,Wð ÞX −
2n + 1ð Þf1 + 3f2 + 2f3

2n − 1
� g W, Xð ÞU − g U , Xð ÞWf g = 0:

ð36Þ

Conversely, if KðU ,WÞX = 0, we know that the conhar-
monic transformation is a kind of conformal transformation,
so if a manifold is conharmonically flat, then it must be con-
formally flat. In other words, we can get CðU ,WÞX = 0
(equals to f2 = 0) from KðU ,WÞX = 0, that is

K U ,Wð ÞX = C U ,Wð ÞX −
2n + 1ð Þf1 + 3f2 + 2f3

2n − 1
� g W, Xð ÞU − g U , Xð ÞWf g

= −
2n + 1ð Þf1 + 2f3

2n − 1
g W , Xð ÞU − g U , Xð ÞWf g = 0:

ð37Þ

We can get ð2n + 1Þf1 + 2f3 = 0.

Theorem 13. A LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conharmo-

nically flat if and only if f2 = 0 and scalar curvature r = 0.

6. Ricci Semisymmetric Lorentzian
Generalized Sasakian-Space-Form

There are many classes of smooth manifolds such as locally
symmetric and Ricci symmetric. A smooth manifold is Ricci
semisymmetric when the curvature operator RðU ,WÞ acting
on S vanishes identically, that is

R U ,Wð Þ ⋅ S = 0: ð38Þ
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Theorem 14. A (2n + 1)-dimensional (n > 1) LGSSF M2n+1
1

ð f1, f2, f3Þ is Ricci semisymmetric if and only if f1 + f3 = 0 or
3f2 = ð2n − 1Þf3.

Proof. First, we suppose that M2n+1
1 ð f1, f2, f3Þ is Ricci semi-

symmetric, that is

R U ,Wð Þ ⋅ Sð Þ Y , Zð Þ = −S Y , R U ,Wð ÞZð Þ − S R U ,Wð ÞY , Zð Þ = 0:
ð39Þ

Put U = ζ in the above equation, then we will have

S R ζ,Wð ÞY , Zð Þ + S Y , R ζ,Wð ÞZð Þ = 0: ð40Þ

Then, using (8), we can get

f1 + f3ð Þ g W, Yð ÞS ζ, Zð Þ + η Yð ÞS W, Zð Þf
+ g W, Zð ÞS ζ, Yð Þ + η Zð ÞS W, Yð Þg

= f1 + f3ð Þ 2n − 1ð Þf3 − 3f2ð Þ −2η Yð Þη Wð Þη Zð Þf
− η Zð Þg W, Yð Þ − η Yð Þg W, Zð Þg = 0:

ð41Þ

Again we use the orthonormal basis fe1,⋯, e2n+1 = ζg
with signature fε1,⋯, ε2n, ε2n+1 = εg, and this time,
in the above equation, we suppose W = ei and Z =
εieið1 ≤ i ≤ 2n + 1Þ, and taking summation over i, we can get

2n f1 + f3ð Þ 2n − 1ð Þf3 − 3f2ð Þη Yð Þ = 0: ð42Þ

Hence, we get f1 + f3 = 0 or ð2n − 1Þf3 − 3f2 = 0.
Conversely, if ð2n − 1Þf3 − 3f2 = 0, then by direct

calculation,

R U ,Wð Þ ⋅ Sð Þ Y , Zð Þ = −S Y , R U ,Wð ÞZð Þ − S R U ,Wð ÞY , Zð Þ
= − 2nf 1 + 3f2 + f3ð Þ g R U ,Wð ÞZ, Yð Þf

+ g R U ,Wð ÞY , Zð Þg = 0:
ð43Þ

If f1 + f3 = 0, we notice that ηðRðU ,WÞXÞ = 0, then we
will have

R U ,Wð Þ ⋅ Sð Þ Y , Zð Þ = −S Y , R U ,Wð ÞZð Þ − S R U ,Wð ÞY , Zð Þ
= 2n − 1ð Þf3 − 3f2ð Þ g R U ,Wð ÞZ, Yð Þf

+ g R U ,Wð ÞY , Zð Þg = 0:
ð44Þ

Theorem 15. If a LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is conhar-

monically flat and Ricci semisymmetric, then it is a flat
manifold.

Proof. From Theorem 12 and Theorem 14, we know that if a
LGSSF is conharmonically flat and Ricci semisymmetric,
then we will have f2 = 0, ð2n + 1Þf1 + 2f3 = 0, and 3f2 =
ð2n − 1Þf3 or f1 + f3 = 0. In any case, we get f1 = f2 = f3 = 0.

Notice that f2 = f3 = 0 satisfies ð2n − 1Þf3 − 3f2 = 0, so we
can get the following theorem.

Theorem 16. If a LGSSF M2n+1
1 ð f1, f2, f3Þðn > 1Þ is projec-

tively flat, then it is Ricci semisymmetric.

7. Ricci Almost Soliton on Lorentzian
Generalized Sasakian-Space-Form

According to [10], we give the definition of the Ricci almost
soliton. For a manifoldM, if the metric g, along with a vector
field W and a function λ defining on M satisfies

LWg + 2S = 2λg, ð45Þ

where LW denotes the Lie derivative, then we call it the triple
(g,W, and λ) Ricci almost soliton on the manifold. IfW = ∇f
where f : M⟶ R, then we call it the (g, ∇f , and λ) gradient
Ricci almost soliton. In this case, we call f the potential func-
tion and equation (45) will be

S +Hess fð Þ = λg: ð46Þ

According to [17], we have the following definition.

Definition 17. A vector field W on a LGSSF M2n+1
1 ð f1, f2, f3Þ

is said to be a conformal vector field on the manifold
if it satisfies

LWgð Þ V , Xð Þ = −2ρg V , Xð Þ: ð47Þ

ρ is a smooth function on M2n+1
1 ð f1, f2, f3Þ.

We apply some of our theorems to the Ricci almost soli-
ton and then give two examples to illustrate the application of
the following theorem.

Theorem 18. Let (g,W, and λ) be a Ricci almost soliton on a
conformally flat LGSSF M2n+1

1 ð f1, f2, f3Þðn > 1Þ. If W is a
conformal vector field, then the manifold is projectively flat,
so it is Ricci semisymmetric and Einstein.

Proof. ifW is a conformal vector field, we have equation (47).
From (45), we get

S = ρ + λð Þg: ð48Þ

Comparing the above equation with (9), we will have the
following equations:

ρ + λ = 2nf 1 + 3f2 + f3,

3f2 − 2n − 1ð Þf3 = 0:
ð49Þ

Because M2n+1
1 ð f1, f2, f3Þ is conformally flat, we have

f2 = 0 (Theorem 5). Then,

f2 = f3 = 0: ð50Þ
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So M2n+1
1 ð f1, f2, f3Þ is projectively flat using Theorem 3,

and then it is Ricci semisymmetric using Theorem 16.
From Theorem 4, f1 is a constant function. So

S = ρ + λð Þg = 2nf 1g: ð51Þ

M2n+1
1 ð f1, f2, f3Þ is Einstein.

Example 19. Let N2nð−2, 0Þðn > 1Þ be a generalized complex
space-form, then M2n+1

1 = ð−π/4, π/4Þ × hN is LGSSF, where

h tð Þ = sin t + cos t, ð52Þ

and it is conformally flat. The function f ðt, xÞ = f ðtÞ = a
Ð t
0h

ðsÞds + b, a, b ∈ℝ is a potential function. Set W = −∇f and
λðtÞ = −ah′ðtÞ − 2n, then we have (gh, W, and λ) a gradient
Ricci almost soliton on the manifold. M is projectively flat,
Einstein and Ricci semisymmetric.

Example 20. In this instance, we consider the generalized
complex space-form N2nð3, 0Þðn > 1Þ, and the warped prod-
uct function h is

h tð Þ = sinh t + 2 cosh t: ð53Þ

The warped product M2n+1
1 =ℝ × hN is LGSSF and it is

conformally flat.

We have (gh, W, and λ) a gradient Ricci almost soliton
on the manifold thatW = −∇f and λðtÞ = −ah′ðtÞ + 2n, with
f ðt, xÞ = f ðtÞ = a

Ð t
0hðsÞds + b, a, b ∈ℝ. The manifold is

projectively flat, Einstein and Ricci semisymmetric.

8. Conclusion

We present the necessary and sufficient conditions for LGSSF
to be projectively flat, conformally flat, conharmonically flat,
and Ricci semisymmetric. We also study the Ricci almost
soliton on LGSSF. As a result, we know how to construct
a Lorentzian manifold with certain curvature tensor con-
ditions, which is useful in gauge theories because of the
correspondence between curvature and field strength.
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