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Using a resonance nonlinear Schrödinger equation as a bridge, we explore a direct connection of cold plasma physics to two-
dimensional black holes. Namely, we compute and diagonalize a metric attached to the propagation of magnetoacoustic waves
in a cold plasma subject to a transverse magnetic field, and we construct an explicit change of variables by which this metric is
transformed exactly to a Jackiw-Teitelboim black hole metric.

1. Introduction

In the closing remarks in [1] we indicated briefly a con-
nection of black holes in the Jackiw-Teitelboim model of
two-dimensional dilaton gravity to the dynamics of two-
component cold collisionless plasma in the presence of
an external transverse magnetic field. The purpose of the
present paper is to greatly expand those brief remarks in
various directions. For example, we explore this connection
for plasma metrics derived more generally from Gurevich-
Krylov solutions of the associated magnetoacoustic system
(MAS) [2]

𝜌1𝑡 + (𝜌1𝑢1)𝑥 = 0
𝑢1𝑡 + 𝑢1𝑢1𝑥 + 𝜌1𝑥 + (𝛿 − 1) [𝜌1𝑥𝑥𝜌1 −

12 (𝜌1𝑥𝜌1 )
2]
𝑥

= 0, (1)

for 𝛿 > 1, which describes the uniaxial propagation of long
magnetoacoustic waves in a cold plasma of density 𝜌1(𝑥, 𝑡) >0 with velocity 𝑢1(𝑥, 𝑡) across a magnetic field. Moreover, we
present a concrete description of this connection.

We start with a resonance nonlinear Schrödinger (RNLS)
equation [3–5]

𝑖Ψ𝑡 + Ψ𝑥𝑥 + 𝛾 |Ψ|2Ψ = 𝛿|Ψ|𝑥𝑥|Ψ| Ψ. (2)

Here |Ψ|𝑥𝑥/|Ψ| is a de Broglie quantum potential, and 𝛾, 𝛿
are real numbers with 𝛿 > 1. Wewill take this 𝛿 to be the same
as that in system (1); 𝑖2 = −1.

Solutions of the form Ψ = 𝑒𝑅−𝑖𝑆 for real-valued functions𝑅(𝑥, 𝑡), 𝑆(𝑥, 𝑡) are considered. Since 𝑅, 𝑆 are real, it follows
directly that (2) is equivalent to the system of equations (=
Madelung fluid equations)

𝑅𝑡 − 𝑆𝑥𝑥 − 2𝑅𝑥𝑆𝑥 = 0
𝑆𝑡 + (1 − 𝛿) 𝑅𝑥𝑥 + (1 − 𝛿) 𝑅2𝑥 − 𝑆2𝑥 + 𝛾𝑒2𝑅 = 0. (3)

In Section 2, we review (or slightly generalize, for the sake of
completeness) a result in [4, 5] that such solutions 𝑅, 𝑆 (or
therefore Ψ in (2)) are in correspondence with solutions 𝜌1 >
0, 𝑢1 of system (1), in case 𝛾 < 0. An approach to the latter
system by way of a shallow wave approximation also appears
in [4, 5]. In those references 𝛾 = −1/2, and the parameter 𝐵
there corresponds to our √𝛿 − 1. From (3) it follows that for

𝑟 (𝑥, 𝑡) 𝑑𝑒𝑓= exp(𝑅(𝑥, 𝑡√𝛿 − 1) +
𝑆 (𝑥, 𝑡/√𝛿 − 1)

√𝛿 − 1 )

𝑠 (𝑥, 𝑡) 𝑑𝑒𝑓= −exp(𝑅(𝑥, 𝑡√𝛿 − 1) −
𝑆 (𝑥, 𝑡/√𝛿 − 1)

√𝛿 − 1 )
(4)

the reaction diffusion system (RDS)

𝑟𝑡 − 𝑟𝑥𝑥 + 𝐵𝑟2𝑠 = 0
𝑠𝑡 + 𝑠𝑥𝑥 − 𝐵𝑟𝑠2 = 0 (5)
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is solved for the value 𝐵 = −𝛾/(𝛿 − 1). 𝑟, 𝑠 here correspond to𝑒(+), 𝑒(−) respectively in the preceding references where again𝛾 = −1/2 there. Also see [6]. For 𝛿 > 1, the RNLS equation is
not reducible to a nonlinear Schrödinger equation but instead
to a RDS.

Now given the RDS in (5), the point for us is that one can
construct from its solutions 𝑟, 𝑠 a pseudo-Riemannian metric

𝑔: 𝑑𝑠2 = 𝑔11𝑑𝑡2 + 2𝑔12𝑑𝑡𝑑𝑥 + 𝑔22𝑑𝑥2,
𝑔11 𝑑𝑒𝑓= −𝑟𝑥𝑠𝑥,
𝑔12 𝑑𝑒𝑓= 12 (𝑠𝑟𝑥 − 𝑟𝑠𝑥) ,
𝑔22 𝑑𝑒𝑓= 𝑟𝑠

(6)

of constant Ricci scalar curvature 𝑅(𝑔) = 4𝐵(= −4𝛾/(𝛿 −1) in our case); see [3, 7, 8]. Constant curvature is a required
ingredient for the J-T (Jackiw-Teitelboim) theory of 2d gravity
[9–12]. Since 𝑟, 𝑠 are defined in terms of the solutions 𝑅, 𝑆,
which are in correspondence with solutions 𝜌1, 𝑢1 of (1) (as
we have noted) 𝑔 also will correspond to solutions 𝜌1, 𝑢1 of
the MAS (1). Thus we will also denote 𝑔 by 𝑔𝑝𝑙𝑎𝑠𝑚𝑎. Details
of solutions 𝜌1, 𝑢1 (as traveling waves expressed in terms of
the Jacobi elliptic function 𝑑𝑛(𝑥, 𝜅)) and a computation of the
metric 𝑔 = 𝑔𝑝𝑙𝑎𝑠𝑚𝑎 in terms of them are provided in Section 2.
In general of course 𝑔 is nondiagonal: 𝑔12(= 𝑔21) ̸= 0 in (6).
In Section 3 we establish integrability conditions involving 𝛿
and parameters defined in the solutions 𝜌1, 𝑢1 that suffice for
the existence of a change of variables by which 𝑔 assumes a
simpler diagonal form.

The main results are presented in Section 4. There we
provide another explicit change of variables that transforms𝑔𝑝𝑙𝑎𝑠𝑚𝑎 precisely into a (Lorentzian) J-T black hole metric𝑔𝑏ℎ, which therefore explicates the proposed cold plasma-
black hole connection. Using this same transformation, we
construct an explicit dilaton Φ𝑝𝑙𝑎𝑠𝑚𝑎 such that the pair(𝑔𝑝𝑙𝑎𝑠𝑚𝑎, Φ𝑝𝑙𝑎𝑠𝑚𝑎) solves the J-T gravitational field equa-
tions, equations that involve a cosmological constant Λ,
which is shown to have the value 2𝛾/(𝛿 − 1) for the 𝛾
and 𝛿 in (2), this 𝛿 being the same 𝛿 in (1). Another
plasma-black hole connection revealed in Section 4 is the
observation that the Hawking black hole temperature and
entropy can be expressed in terms of parameters involved
in the description of solutions 𝜌1, 𝑢1 of the plasma system
(1).

2. Formulas for the Cold Plasma Metric

As mentioned in Section 1, a correspondence between solu-
tions of system (1) and system (3) (or, equivalently, of the
RNLS equation (2)) will be reviewed in this section, under the
assumption that 𝛾 < 0.We also find an initial, general formula
for the plasma metric; see (12). A concrete formula then
follows as concrete solutions of system (1) are considered.The
end result is given in (23).

For the correspondence, one direction is quite straight-
forward: Given solutions 𝑅, 𝑆 of (3), define

𝜌1 = −2𝛾𝑒2𝑅 > 0,
𝑢1 = −2𝑆𝑥 (7)

for 𝛾 < 0.Then one can check that the equations in (1) follow.
Conversely, suppose 𝜌1 > 0, 𝑢1 are solutions of system (1).
One should clearly define

𝑅 = 12 log( 𝜌1−2𝛾) (8)

so that 𝜌1 = −2𝛾𝑒2𝑅 > 0 as in (7). For the next step, first
choose any 𝑆0 such that −2𝑆0𝑥 = 𝑢1.Then the first equation
in (1) leads to the first equation in (3) for the pair 𝑅, 𝑆0, and
the second equation in (1) implies that the partial derivative
of

−𝑆0𝑡 + 𝑆20𝑥 − 𝛾𝑒2𝑅 + (𝛿 − 1) (𝑅𝑥𝑥 + 𝑅2𝑥) (9)

with respect to 𝑥 vanishes. Thus this quantity is a function𝜙(𝑡) of 𝑡 only. Choose ℎ(𝑡) such that ℎ󸀠(𝑡) = 𝜙(𝑡) and define

𝑆 (𝑥, 𝑡) = 𝑆0 (𝑥, 𝑡) + ℎ (𝑡) . (10)

Then the pair 𝑅, 𝑆 in (8), (10) satisfies both equations in (3),
and the proposed correspondence (𝜌1 > 0, 𝑢1) ←→ (𝑅, 𝑆) is
established for 𝛾 < 0.

Given the definition of 𝑟, 𝑠 in (4), and the prescription for𝑔 in (6), we arrive at the following formulas, where we set

𝛽 𝑑𝑒𝑓= +√𝛿 − 1 :
𝑔22 (𝑥, 𝑡) = −𝑒2𝑅(𝑥,𝑡/𝛽),
𝑔12 (𝑥, 𝑡) = −1𝛽 𝑒2𝑅(𝑥,𝑡/𝛽)𝑆𝑥 (𝑥, 𝑡𝛽)
𝑔11 (𝑥, 𝑡) = 𝑒2𝑅(𝑥,𝑡/𝛽) [𝑅2𝑥 − 1𝛽2 𝑆2𝑥](𝑥, 𝑡𝛽)
= 𝑒2𝑅(𝑥,𝑡/𝛽) [ 𝑆𝑡−𝛽2 + 𝑅𝑥𝑥 + 2𝑅2𝑥 + 𝛾−𝛽2 𝑒2𝑅](𝑥, 𝑡𝛽) .

(11)

The second expression for 𝑔11(𝑥, 𝑡) here follows from the
second equation in (3). By way of the correspondence (𝜌1 >0, 𝑢1) ←→ (𝑅, 𝑆) just established, we can also write (for 𝛾 < 0,
which we now assume throughout)

𝑔22 (𝑥, 𝑡) = 𝜌1 (𝑥, 𝑡/𝛽)2𝛾
𝑔12 (𝑥, 𝑡) = 𝜌1 (𝑥, 𝑡/𝛽) 𝑢1 (𝑥, 𝑡/𝛽)(−4𝛾𝛽)
𝑔11 (𝑥, 𝑡) = 𝜌1 (𝑥, 𝑡/𝛽)−2𝛾 [14 (

𝜌1,𝑥𝜌1 )
2 (𝑥, 𝑡𝛽)

− 14𝛽2 𝑢21 (𝑥, 𝑡𝛽)] .

(12)
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𝑅 is given uniquely in terms of 𝜌1 by definition (8).
However, there could be many other choices for 𝑆 in (10) for
which the pair (𝑅, 𝑆) solves system (3) and for which 𝑢1 =−2𝑆𝑥 (as in (7)). We assert that the metric 𝑔 is not affected by
another such choice 𝑆󸀠, in place of 𝑆. Indeed,

−2𝑆󸀠𝑥 = 𝑢1 = −2𝑆𝑥 󳨐⇒ 𝑆󸀠𝑥 = 𝑆𝑥, (13)

so the assertion follows by (11). Note also that

(𝑆󸀠 − 𝑆)
𝑥
= 0 󳨐⇒ 𝑆󸀠 (𝑥, 𝑡) = 𝑆 (𝑥, 𝑡) + 𝑐 (𝑡) (14)

for some function of integration 𝑐(𝑡). 𝑆󸀠𝑥𝑥 = 𝑆𝑥𝑥 (since
already 𝑆󸀠𝑥 = 𝑆𝑥), and 𝑆󸀠𝑡 = 𝑆𝑡 + 𝑐󸀠(𝑡). But by the second
equation in (3) for (𝑅, 𝑆󸀠), and then also for (𝑅, 𝑆)

0 = 𝑆𝑡 + 𝑐󸀠 (𝑡) + (1 − 𝛿) [𝑅𝑥𝑥 + 𝑅2𝑥] − 𝑆2𝑥 + 𝛾𝑒2𝑅
= 𝑐󸀠 (𝑡) 󳨐⇒

𝑐 (𝑡) = 𝑐,
(15)

for some constant “c”. Thus in fact we see also that 𝑆󸀠𝑡 = 𝑆𝑡,
and 𝑆󸀠 = 𝑆 + 𝑐.

The goal now is to express the plasma metric 𝑔 more
concretely in terms of concrete solutions 𝜌1 > 0, 𝑢1 of the
MAS (1). From [2], traveling wave solutions are given by
choosing 𝛼3 > 𝛼2 ≥ 𝛼1 ≥ 0, 𝑢0 > 0, and setting

𝜌1 (𝑥, 𝑡)
𝑑𝑒𝑓= 𝛼1

+ (𝛼3 − 𝛼1) 𝑑𝑛2((𝛼3 − 𝛼1)
1/2

2
(𝑥 − 𝑢0𝑡)𝛽 , 𝜅)

𝑢1 (𝑥, 𝑡) 𝑑𝑒𝑓= 𝑢0 + 𝐶𝜌1 (𝑥, 𝑡) ;
𝐶 = + (𝛼1𝛼2𝛼3)1/2 ,
𝜅 = (𝛼3 − 𝛼2𝛼3 − 𝛼1)

1/2 .

(16)

We could also replace 𝑢0 + 𝐶/𝜌1 here by 𝑢0 − 𝐶/𝜌1.𝑑𝑛(𝑥, 𝜅) denotes a standard Jacobi elliptic function with
elliptic modulus 𝜅 [13], and 𝛽 𝑑𝑒𝑓= +√𝛿 − 1 > 0 by (11). For
our purpose it is convenient to set

𝑎0 𝑑𝑒𝑓= +(𝛼3 − 𝛼1)
1/2

2𝛽 > 0,
V
𝑑𝑒𝑓= 𝑢0𝛽 > 0

(17)

and therefore write

𝜌1 (𝑥, 𝑡) = 𝛼1 + 4𝑎20𝛽2𝑑𝑛2 (𝑎0 (𝑥 − 𝛽V𝑡) , 𝜅) . (18)

It is also important to note that we can write

𝐶 = 𝛼1/21 [4𝑎20𝛽2 (1 − 𝜅2) + 𝛼1]1/2 [4𝑎20𝛽2 + 𝛼1]1/2 . (19)

Namely,

1 − 𝜅2 𝑑𝑒𝑓= 1 − (𝛼3 − 𝛼2)(𝛼3 − 𝛼1) =
(𝛼2 − 𝛼1)(𝛼3 − 𝛼1) (20)

and (again)

4𝑎20𝛽2 𝑑𝑒𝑓= 𝛼3 − 𝛼14𝑎20𝛽2 (1 − 𝜅2) + 𝛼1 = 𝛼2,
4𝑎20𝛽2 + 𝛼1 = 𝛼3

(21)

implies the right hand side in (19) is 𝛼1/21 𝛼1/22 𝛼1/23 𝑑𝑒𝑓= 𝐶.
Some basic facts regarding the standard Jacobi elliptic

functions 𝑠𝑛(𝑥, 𝜅), 𝑐𝑛(𝑥, 𝜅), 𝑑𝑛(𝑥, 𝜅) (for any elliptic modulus𝜅) are summed up as follows [13]:

𝑠𝑛2 (𝑥, 𝜅) + 𝑐𝑛2 (𝑥, 𝜅) = 1,
𝑑𝑛2 (𝑥, 𝜅) + 𝜅2𝑠𝑛2 (𝑥, 𝜅) = 1,

𝑑𝑑𝑥𝑠𝑛 (𝑥, 𝜅) = 𝑐𝑛 (𝑥, 𝜅) 𝑑𝑛 (𝑥, 𝜅) ,
𝑑𝑑𝑥𝑐𝑛 (𝑥, 𝜅) = −𝑠𝑛 (𝑥, 𝜅) 𝑑𝑛 (𝑥, 𝜅) ,
𝑑𝑑𝑥𝑑𝑛 (𝑥, 𝜅) = −𝜅2𝑠𝑛 (𝑥, 𝜅) 𝑐𝑛 (𝑥, 𝜅) ,
𝑠𝑛 (𝑥, 1) = tanh (𝑥) ,
𝑐𝑛 (𝑥, 1) = 𝑑𝑛 (𝑥, 1) = sech (𝑥) .

(22)

Applying the formulas in (12) to 𝑢1, 𝜌1 given in (16), (18) (𝑔11
obviously being the main thing to compute) one arrives at the
following concrete formulas for the plasma metric:

𝑔22 (𝑥, 𝑡) = [𝛼1 + 4𝑎
2
0𝛽2𝑑𝑛2 (𝑎0 (𝑥 − V𝑡) , 𝜅)]2𝛾

𝑔12 (𝑥, 𝑡) = −V𝛾 𝑎20𝛽2𝑑𝑛2 (𝑎0 (𝑥 − V𝑡) , 𝜅) − V𝛼14𝛾 − 𝐶4𝛾𝛽
𝑔11 (𝑥, 𝑡) = 4𝑎20𝛽2 [−𝑎

2
0𝜅42𝛾 (𝑠𝑛2𝑐𝑛2) (𝑎0 (𝑥 − V𝑡) , 𝜅)

+ V28𝛾𝑑𝑛2 (𝑎0 (𝑥 − V𝑡) , 𝜅)]

+ 16𝛼1𝜅4𝑎40𝛽2 (𝑠𝑛2 𝑐𝑛2) (𝑎0 (𝑥 − V𝑡) , 𝜅) + 𝐶2/𝛽28𝛾 [𝛼1 + 4𝑎20𝛽2𝑑𝑛2 (𝑎0 (𝑥 − V𝑡) , 𝜅)]
+ V2𝛼18𝛾 + V𝐶4𝛾𝛽,

(23)
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where we use (22) to get that 𝜌21𝑥(𝑥, 𝑡) =64𝜅4𝑎60𝛽4(𝑠𝑛 𝑐𝑛 𝑑𝑛)2 (𝑎0(𝑥 − 𝛽V𝑡), 𝜅), or
𝜌21𝑥 (𝑥, 𝑡𝛽) = 64𝜅4𝑎60𝛽4 (𝑠𝑛 𝑐𝑛 𝑑𝑛)2 (𝑎0 (𝑥 − V𝑡) , 𝜅) , (24)

and where V
𝑑𝑒𝑓= 𝑢0/𝛽 (by (17)), and 𝐶 is given by the formula

(19). From Section 1 we know that this metric has constant
Ricci scalar curvature

𝑅 (𝑔) = −4𝛾𝛽2
𝑑𝑒𝑓= −4𝛾(𝛿 − 1) . (25)

Our convention for scalar curvature is spelled out on
page 182 of [12], for example. For other authors, see [9];
for example, there is a sign difference: Our 𝑅(𝑔) would
correspond to their −𝑅(𝑔).

For plasma physics a relevant choice for 𝛼1, 𝛼2 is the value1, so that the plasma density 𝜌1 achieves the convenient value1 as |𝑥| 󳨀→ ∞ : 𝜅 = 1 by (16) implies

𝜌1 (𝑥, 𝑡) = 1 + 4𝑎20𝛽2sech2 (𝑎0 (𝑥 − 𝛽V𝑡)) (26)

by (18), (22). Similarly, the elliptic functions 𝑠𝑛, 𝑐𝑛 in the
formulas (23) simplify as hyperbolic functions for 𝜅 = 1. For𝛼1 = 𝜅 = 1, 𝐶 = (4𝑎20𝛽2 + 1)1/2, for example, by (19).

3. Diagonalization of the Plasma Metric

In this section we focus on the existence of a change of
variables that diagonalizes 𝑔 = 𝑔𝑝𝑙𝑎𝑠𝑚𝑎 in (23). Such a
simplified version of 𝑔 would be of quite an advantage as a
goal is to eventually map 𝑔 to a black hole metric. It will be
shown that the two conditions spelled out in (52) below (that
simply requires V2 to be sufficiently large) suffice to insure
such a diagonalization. These conditions are prototypical in
the sense that similar ones will be set up in Section 4 to insure
that 𝑔 indeed is mapped to a black hole metric.

Consider the initial change of variables (𝑥, 𝑡) 󳨀→ (𝜌, 𝑡)
for 𝜌 𝑑𝑒𝑓= 𝑎0(𝑥 − V𝑡).

𝑥 = 𝜌𝑎0 + V𝑡 󳨐⇒ 𝑑𝑥 = 𝑑𝜌𝑎0 + V𝑑𝑡,
𝑑𝑥2 = 𝑑𝜌2𝑎20 +

2V𝑎0 𝑑𝜌𝑑𝑡 + V2𝑑𝑡2,
𝑑𝑥𝑑𝑡 = 𝑑𝜌𝑑𝑡𝑎0 + V𝑑𝑡2.

(27)

Then by (6),

𝑔 = (𝑔11 + 2V𝑔12 + V2𝑔22) 𝑑𝑡2
+ 2𝑎0 (𝑔12 + V𝑔22) 𝑑𝜌𝑑𝑡 +

𝑔22𝑎20 𝑑𝜌
2, (28)

the point being that

𝑔𝑖𝑗 (𝑥, 𝑡) = 𝑔𝑖𝑗 ( 𝜌𝑎0 + V𝑡, 𝑡) (29)

here depends only on 𝜌 (not on 𝑡) by the formulas in (23): We
can therefore write

𝑔 = 𝐴 (𝜌) 𝑑𝑡2 + 𝐶1 (𝜌) 𝑑𝜌𝑑𝑡 + 𝐶2 (𝜌) 𝑑𝜌2 :
𝐴 (𝜌) 𝑑𝑒𝑓= (𝑔11 + 2V𝑔12 + V2𝑔22) (𝜌) ,
𝐶1 (𝜌) 𝑑𝑒𝑓= 2𝑎0 (𝑔12 + V𝑔22) (𝜌) ,
𝐶2 (𝜌) 𝑑𝑒𝑓= 𝑔22 (𝜌)𝑎20 .

(30)

It follows by Section 2 of [1] (or by a direct, independent
argument) that if there exists a function 𝜙(𝜌) such that

𝜙󸀠 (𝜌) = 𝐶1 (𝜌)2𝐴 (𝜌) (31)

(an integrability condition, as was referenced in the introduc-
tion), then the change of variables 𝜏 = 𝑡 + 𝜙(𝜌) reduces 𝑔 to
the diagonal form

𝑔 = 𝐴 (𝜌) 𝑑𝜏2 + [𝐶2 (𝜌) − 𝐶21 (𝜌)4𝐴 (𝜌)] 𝑑𝜌2. (32)

By (30),

𝐶21 (𝜌)4 − 𝐴 (𝜌)𝐶2 (𝜌) = (𝑔
2
12 − 𝑔11𝑔22) (𝜌)𝑎20

= − (det𝑔) (𝜌)𝑎20
(33)

and since

𝐶2 − 𝐶214𝐴 = −
[𝐶21/4 − 𝐴𝐶2]𝐴 , (34)

(32) can be written as

𝑔 = 𝐴 (𝜌) 𝑑𝜏2 − [− (det𝑔) (𝜌) /𝑎20]𝐴 (𝜌) 𝑑𝜌2. (35)

Now𝐶1(𝜌), 𝐴(𝜌) in particular are continuous functions (they
are actually 𝐶∞ functions) so that if𝐴(𝜌) is nonvanishing the
integrability condition 𝜙󸀠(𝜌) = 𝐶1(𝜌)/2𝐴(𝜌) can be satisfied.
We have assumed that 𝐴(𝜌) ̸= 0 of course in deriving (35), an
assumption that we shall explore presently.

From (23), (2V𝑔12 + V2𝑔22)(𝜌) reduces to the single term−2V𝐶/4𝛾𝛽.Therefore by (30) and (23) again

𝐴 (𝜌) = 𝑔11 (𝜌) − 2V𝐶4𝛾𝛽
= 4𝑎20𝛽2 [−𝑎

2
0𝜅42𝛾 𝑠𝑛2 (𝜌, 𝜅) 𝑐𝑛2 (𝜌, 𝜅)
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+ V28𝛾𝑑𝑛2 (𝜌, 𝜅)]
+ 16𝛼1𝛽2𝜅4𝑎40𝑠𝑛2 (𝜌, 𝜅) 𝑐𝑛2 (𝜌, 𝜅) + 𝐶2/𝛽28𝛾 [𝛼1 + 4𝑎20𝛽2𝑑𝑛2 (𝜌, 𝜅)] + V2𝛼18𝛾
− V𝐶4𝛾𝛽.

(36)

One could use (23) a third time, or more simply use (12)
to compute

(𝑔11𝑔22 − 𝑔212) (𝜌) = −𝜌
2
1𝑥 (𝑥, 𝑡/𝛽)16𝛾2 (37)

and hence conclude by (24) that

(det𝑔) (𝜌) = −4𝜅4𝑎60𝛽4𝛾2 (𝑠𝑛2𝑐𝑛2𝑑𝑛2) (𝜌, 𝜅) . (38)

Equation (35) then assumes the concrete form

𝑔 = 𝐴 (𝜌) 𝑑𝜏2
− [ 1𝐴 (𝜌)

4𝜅4𝑎40𝛽4𝛾2 (𝑠𝑛2𝑐𝑛2𝑑𝑛2) (𝜌, 𝜅)] 𝑑𝜌2 (39)

for 𝐴(𝜌) given by (36). In the special case when 𝛼1 is chosen
to be 0, we get 𝐶 = 0

(by definition (16)) so that 𝐴(𝜌) simplifies greatly to

𝐴 (𝜌)
= 4𝑎20𝛽2𝑑𝑛2 (𝜌, 𝜅) [𝑎20𝜅4 (𝑠𝑛2𝑐𝑛2𝑑𝑛2 ) (𝜌, 𝜅) − V24 ] ,

(40)

say for 𝛾 = −1/2, again as in [4, 5]. Also by (39)

𝑔 = 𝐴 (𝜌) 𝑑𝜏2 − 4𝑎20𝛽2𝜅4 (𝑠𝑛2𝑐𝑛2) (𝜌, 𝜅)
⋅ [𝑎20𝜅4 (𝑠𝑛2𝑐𝑛2𝑑𝑛2 ) (𝜌, 𝜅)

− V24 ]
−1 𝑑𝜌2 = 4𝑎20𝛽2𝑑𝑛2 (𝜌, 𝜅)

⋅ [(𝑎20𝜅4 (𝑠𝑛2𝑐𝑛2𝑑𝑛2 ) (𝜌, 𝜅) − V24 )𝑑𝜏2

− 𝜅4 (𝑠𝑛2𝑐𝑛2𝑑𝑛2 ) (𝜌, 𝜅)

⋅ [𝑎20𝜅4 (𝑠𝑛2𝑐𝑛2𝑑𝑛2 ) (𝜌, 𝜅) − V24 ]
−1 𝑑𝜌2] ,

(41)

which is exactly the diagonal metric that we focused on in
the paper [1]. See definition (6) there, where the notation 𝑎, 𝑏

corresponds to 𝑎0, 2𝛽 here, respectively, with V there the same
as V here, a soliton velocity parameter. We see, as indicated in
the introduction, that indeed the consideration of the plasma
metric here with 𝛼1 in (16) allowed to be nonzero can lead to
a vast generalization of some of the work in [1].

We turn now to the lingering question of conditions that
will imply that 𝐴(𝜌) ̸= 0, and thus validate formula (39). In
the special case just considered, for 𝐴(𝜌) in (41), the single
condition

V24𝑎20𝜅4 > 1 (42)

suffices, as shown in [1], an argument there being based on
the inequality

𝑠𝑛2 (𝑥, 𝜅) 𝑐𝑛2 (𝑥, 𝜅)𝑑𝑛2 (𝑥, 𝜅) ≤ 1, (43)

which we shall use again here. For simplicity of notation we
shall write 𝑠𝑛, 𝑐𝑛, 𝑑𝑛, suppressing the variables 𝜌, 𝜅.

By (36),

−2𝛾𝐴 (𝜌)
𝑑𝑛2
= 4𝑎20𝛽2 [𝑎20𝜅4 (𝑠𝑛 𝑐𝑛𝑑𝑛 )2 − V24 ] − V2𝛼14𝑑𝑛2 + V𝐶2𝛽𝑑𝑛2
− [16𝛼1𝜅4𝑎40𝛽2 (𝑠𝑛 𝑐𝑛/𝑑𝑛)2 + 𝐶2/𝛽2𝑑𝑛2]4 [𝛼1 + 4𝑎20𝛽2𝑑𝑛2] .

(44)

Multiplication by 4𝑎20𝛽2 and division by 𝐷 𝑑𝑒𝑓= 4[𝛼1 +4𝑎20𝛽2𝑑𝑛2] > 0 lead to 6 terms here. The first and fifth term
(in order) combined simplify to

4𝑎40𝛽2𝜅4 𝑠𝑛2𝑐𝑛2𝑑𝑛2
4𝑎20𝛽2𝑑𝑛2𝐷/4 , (45)

which means that we can write (44) as

−2𝛾𝐴 (𝜌)
𝑑𝑛2 = 4𝑎20𝛽2𝜅4 (𝑠𝑛2𝑐𝑛2𝑑𝑛2 ⋅ 4𝑎40𝛽2𝑑𝑛2𝐷/4 )

− 𝑎20𝛽2V2 − V2𝛼14𝑑𝑛2 + V𝐶2𝛽𝑑𝑛2 − 𝐶2𝐷𝛽2𝑑𝑛2 .
(46)

In particular if 𝐴(𝜌) = 0 for some 𝜌, then
V2 (𝑎20𝛽2 + 𝛼14𝑑𝑛2) − V𝐶2𝛽𝑑𝑛2 + 𝐶2𝐷𝛽2𝑑𝑛2
= 4𝑎40𝛽2𝜅4 (𝑠𝑛2𝑐𝑛2𝑑𝑛2 ⋅ 4𝑎20𝛽2𝑑𝑛2𝐷/4 )
≤ (4𝑎40𝛽2𝜅4) ⋅ (16𝑎40𝛽2 𝑑𝑛2𝐷 ) ≤ 4𝑎40𝛽2𝜅4

(47)
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by (43) and the fact that 𝛼1 ≥ 0 󳨐⇒ 𝐷 ≥ 16𝑎20𝛽2𝑑𝑛2.That is,
(47) says that

V2𝑎20𝛽2 ≤ −(V2𝛼14 − V𝐶2𝛽) 1𝑑𝑛2 + 4𝑎40𝛽2𝜅4

− 𝐶2𝐷𝛽2𝑑𝑛2
≤ −(V2𝛼14 − V𝐶2𝛽) 1𝑑𝑛2 + 4𝑎40𝛽2𝜅4

(48)

if 𝐴(𝜌) vanishes at some point 𝜌. Now assume that

V2𝛼14 − V𝐶2𝛽 ≥ 0. (49)

Then V2𝑎20𝛽2 ≤ 4𝑎40𝛽2𝜅4 by (48): V2 ≤ 4𝑎20𝜅4. In other words,
if both conditions

V2 > 4𝑎20𝜅4,
𝛼1V ≥ 2𝐶𝛽

(50)

hold (the first one being the single condition prior to (43) for
the special case 𝛼1 = 0), then 𝐴(𝜌) cannot vanish at any point𝜌. Of course if 𝛼1 = 0 then (again) 𝐶 = 0 by definition and
the second condition in (50) is the triviality 0 ≥ 0. If 𝛼1 > 0,
then since 𝛼3 > 𝛼2 ≥ 𝛼1, 𝐶 > 0 by (16) and

V ≥ 2𝐶𝛼1𝛽󳨐⇒ V2 ≥ 4𝐶2𝛼21𝛽2 > 0. (51)

That is, conditions for the nonvanishing of 𝐴(𝜌) are (for 𝛼1 ̸=0)
V2 > 4𝑎20𝜅4,
V2 ≥ 4𝐶2𝛼21𝛽2 ,

(52)

with the single condition V2 > 4𝑎20𝜅4 if 𝛼1 = 0.
4. Mapping the Cold Plasma Metric to
a Black Hole Metric

We are in a position now to proceed towards a formulation
of the main results. A precise mapping (𝜏, 𝜌) 󳨀→ (𝜏, 𝑟) of the
plasma metric 𝑔𝑝𝑙𝑎𝑠𝑚𝑎 in (39) with coordinates (𝜏, 𝜌) to a J-T
black hole metric 𝑔𝑏ℎ, given in (74) below, with coordinates(𝜏, 𝑟), is presented in (76). For a suitable dilaton field Φ, the
pair (𝑔𝑏ℎ, Φ) solves J-T field equations that involve a nega-
tive cosmological constant Λ that we express (interestingly
enough) in terms of 𝛾 and 𝛿 in the RNLS equation (2), 𝛿
there (as pointed out in the introduction) being the same𝛿 in the cold plasma system (1). The Hawking black hole
temperature and entropy are also expressed in terms of 𝛾 and𝛿, and in terms of the parameters 𝛼1, 𝑎0, V, 𝜅 that describe the
plasma density 𝜌1(𝑥, 𝑡) in (18), and hence also the velocity

𝑢1(𝑥, 𝑡) in (16). The mapping is used, moreover, to construct
an explicit dilaton field Φ𝑝𝑙𝑎𝑠𝑚𝑎, and we show that the pair(𝑔𝑝𝑙𝑎𝑠𝑚𝑎, Φ𝑝𝑙𝑎𝑠𝑚𝑎) is also a solution of the J-T field equations,
a solution in terms of Jacobi elliptic functions, which thus is
another extension of results in [1].

Two trivial corrections of errors in [1] are in order:
(1) On page 4 there, in the second equation for 𝑑𝑠2 in (28)

the 𝑑𝑡2 should read 𝑑𝜏2.
(2) On page 10 the factor 𝑒𝑆/𝛽 for 𝑠 in (76) should read𝑒−𝑆/𝛽.
With (39) now established on solid ground, via the

assumptions (52), we first set up a critical change of variables
by which 𝑔𝑝𝑙𝑎𝑠𝑚𝑎 assumes a considerably more manageable
form, a formwhich is a step away froma J-T black holemetric.
This key change of variables is given by

𝑥 𝑑𝑒𝑓= 𝑎20𝛽2𝜅2𝛾 𝑠𝑛2 (𝜌, 𝜅) . (53)

From (22), (53)

𝑑𝑥 = 2𝑎20𝛽2𝜅2𝛾 (𝑠𝑛 𝑐𝑛 𝑑𝑛) (𝜌, 𝜅) 𝑑𝜌,
𝑑𝑥2 = 4𝑎40𝛽4𝜅4𝛾2 (𝑠𝑛2𝑐𝑛2𝑑𝑛2) (𝜌, 𝜅) 𝑑𝜌2,

𝑠𝑛2 (𝜌, 𝜅) = 𝛾𝑥𝑎20𝛽2𝜅2 ,
𝑐𝑛2 (𝜌, 𝜅) = 1 − 𝛾𝑥𝑎20𝛽2𝜅2 ,
𝑑𝑛2 (𝜌, 𝜅) = 1 − 𝛾𝑥𝑎20𝛽2 ,

(54)

which by (39) gives for 𝐴(𝑥) = 𝐴(𝜌) with 𝑥, 𝜌 related by (53)

𝑔 = 𝐴 (𝑥) 𝑑𝜏2 − 𝑑𝑥2𝐴 (𝑥) . (55)

Plug the last three elliptic functions expressions in (54) into
(36). A modest amount of work renders the result

𝐴 (𝑥) = 2𝛾𝑥2𝛽2 − (2𝑎20𝜅2 + V22 )𝑥 +
𝑎20𝛽2V22𝛾 + V2𝛼18𝛾

− V𝐶4𝛾𝛽 + (−2𝛼1𝛾𝑥
2

𝛽2 + 2𝛼1𝜅2𝑎20𝑥 + 𝐶28𝛾𝛽2)
⋅ ( 1−4𝛾𝑥 + 𝛼1 + 4𝑎20𝛽2) ,

(56)

which might be seen as limited progress, but the point is
the latter quotient term, which we denote by 𝑄(𝑥), very
fortunately by long division has a zero remainder. To see this,
note that

(−4𝛾𝑥 + 𝛼3) (𝑥 + 𝛼24𝛾)
= −4𝛾𝑥2 + (𝛼3 − 𝛼2) 𝑥 + 𝛼2𝛼34𝛾 ,

(57)
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where

𝛼3 − 𝛼2 = 𝜅2 (𝛼3 − 𝛼1) (by equation (16))
= 4𝜅2𝑎20𝛽2 (by (17)) 󳨐⇒

( 𝛼12𝛽2) (−4𝛾𝑥 + 𝛼3) (𝑥 + 𝛼24𝛾)
= −2𝛼1𝛾𝑥2𝛽2 + 2𝛼1𝜅2𝑎20𝑥 + 𝐶28𝛾𝛽2 ,

(58)

which is precisely the numerator 𝑛(𝑥)of𝑄(𝑥) since 𝐶2 𝑑𝑒𝑓=𝛼1𝛼2𝛼3 by (16). However (again by (17)) 𝛼3 = 𝛼1 + 4𝑎20𝛽2 and
therefore we see also that

𝑛 (𝑥) = ( 𝛼12𝛽2)(𝑥 + 𝛼24𝛾) 𝑑 (𝑥) (59)

where 𝑑(𝑥) is the denominator of 𝑄(𝑥) 󳨐⇒ 𝑄(𝑥) =(𝛼1/2𝛽2)(𝑥 + 𝛼2/4𝛾) = 𝛼1𝑥/2𝛽2 + 𝛼1𝛼2/8𝛾𝛽2, where
𝛼1𝛼2 = 𝐶2𝛼3 =

𝐶2(𝛼1 + 4𝑎20𝛽2)
= 𝛼1 [4𝑎20𝛽2 (1 − 𝜅2) + 𝛼1]

(60)

(by (19)) leads to

𝑄 (𝑥) = 𝛼1𝑥2𝛽2 + 𝛼18𝛾𝛽2 [4𝑎20𝛽2 (1 − 𝜅2) + 𝛼1] . (61)

This expression substituted in (56) gives the useful result that𝐴(𝑥) is simply a quadratic polynomial in 𝑥 :
𝐴 (𝑥) = 2𝛾𝑥2𝛽2 − (2𝑎20𝜅2 + V22 − 𝛼12𝛽2)𝑥

+ 𝛼18𝛾𝛽2 [4𝑎20𝛽2 (1 − 𝜅2) + 𝛼1] +
𝑎20𝛽2V22𝛾

+ V2𝛼18𝛾 − V𝐶4𝛾𝛽

(62)

with 𝐶 given by (19), as usual.
Equations (55), (62) show that 𝑔𝑝𝑙𝑎𝑠𝑚𝑎 has the form
𝑔 = − [𝐴1𝑥2 + 𝐵1𝑥 + 𝐶1] 𝑑𝜏2 + [𝐴1𝑥2 + 𝐵1𝑥
+ 𝐶1]−1 𝑑𝑥2

for 𝐴1 𝑑𝑒𝑓= −2𝛾𝛽2 > 0,
𝐵1 𝑑𝑒𝑓= 2𝑎20𝜅2 + V22 − 𝛼12𝛽2 ,
𝐶1 𝑑𝑒𝑓= −𝛼18𝛾𝛽2 [4𝑎20𝛽2 (1 − 𝜅2) + 𝛼1] −

𝑎20𝛽2V22𝛾 − V2𝛼18𝛾
+ V4𝛾𝛽 (𝛼1 [4𝑎20𝛽2 (1 − 𝜅2) + 𝛼1] [4𝑎20𝛽2 + 𝛼1])1/2 .

(63)

Therefore since 𝐴1 ̸= 0, it follows directly that the change of
variables
𝑟 𝑑𝑒𝑓= 𝑥 +𝐵1/2𝐴1 transforms 𝑔 to the J-T Lorentzian form

𝑔𝑏ℎ = −[𝐴1𝑟2 + 𝐶1 − 𝐵214𝐴1 ]𝑑𝜏
2

+ 𝑑𝑟2𝐴1𝑟2 + 𝐶1 − 𝐵21/4𝐴1 .
(64)

By (63), one can calculate that

𝐶1 − 𝐵214𝐴1
= V4𝛾𝛽 (𝛼1 [4𝑎20𝛽2 (1 − 𝜅2) + 𝛼1] [4𝑎20𝛽2 + 𝛼1])1/2

− 𝑎20𝛽2V22𝛾 + 𝑎40𝜅4𝛽22𝛾 + 𝑎20𝜅2V2𝛽24𝛾 + V4𝛽232𝛾
− 3V2𝛼116𝛾 − 3𝛼2132𝛾𝛽2 +

𝛼1𝑎20𝜅24𝛾 − 𝛼1𝑎202𝛾 .

(65)

Before we declare 𝑔𝑏ℎ to be an authentic J-T black holemetric,
we would first like to have that 𝐶1 − 𝐵21/4𝐴1 < 0 since,
for example, we would look for an event horizon by setting
𝐴1𝑟2 + 𝐶1 − 𝐵21/4𝐴1 = 0 : 𝑟 = √−(𝐶1 − 𝐵21/4𝐴1)/√𝐴1,
where already 𝐴1 > 0 by definition (63), as 𝛾 < 0. We saw
that 𝐴(𝜌) was nonvanishing provided that V2 was sufficiently
large; see the conditions in (52). Similarly we check that also𝐶1 − 𝐵21/4𝐴1 < 0 provided V2 is sufficiently large; see the
conditions in (67), (73) below.

Note that 𝑘 ≤ 1 󳨐⇒ 2𝜅2 + 𝜅4 ≤ 2 + 1 < 4, in particular.
That is

2 (2 − 𝜅2) > 𝜅4 󳨐⇒ 8𝑎20 (2 − 𝜅2) > 4𝑎20𝜅4. (66)

Thus if V2 > 8𝑎20(2 − 𝜅2), then V2 > 4𝑎20𝜅4, which is the first
condition in (52). Suppose in fact that

V2 > 8𝑎20 (2 − 𝜅2) + 6𝛼1𝛽2 . (67)

Then since 𝛾 < 0,
(V2𝛽232𝛾 ) V2 < (V2𝛽232𝛾 ) (8𝑎20 (2 − 𝜅2))

+ (V2𝛽232𝛾 ) 6𝛼1𝛽2
= V2𝑎20𝛽22𝛾 − V2𝑎20𝜅2𝛽24𝛾 + 3V2𝛼116𝛾 ;

(68)
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that is

V4𝛽232𝛾 −
V2𝑎20𝛽22𝛾 + V2𝑎20𝜅2𝛽24𝛾 − 3V2𝛼116𝛾 < 0. (69)

Therefore to insure that (𝐶1−𝐵21)/4𝐴1 < 0 in (65), it is enough
to require the condition

V𝐶4𝛾𝛽 +
𝑎40𝜅4𝛽22𝛾 − 3𝛼2132𝛾𝛽2 +

𝛼1𝑎20𝜅24𝛾 − 𝛼1𝑎202𝛾 < 0 (70)

on the remaining terms there, as one continues to keep (19)
in mind:

V𝐶4𝛽 +
𝑎40𝜅4𝛽22 − 3𝛼2132𝛽2 +

𝛼1𝑎20𝜅24 − 𝛼1𝑎202 > 0 (71)

happens in particular if

V𝐶4𝛽 −
3𝛼2132𝛽2 −

𝛼1𝑎202 ≥ 0, (72)

which is automatic if 𝛼1 = 0 :
V ≥ 𝛼1𝐶 [3𝛼18𝛽 + 2𝑎20𝛽] , 𝛼1 ̸= 0. (73)

With conditions (67), (73) in place to guarantee that 𝐶1 −𝐵21/4𝐴1 < 0, we express 𝑔𝑏ℎ in (64) as a J-T black hole metric
in the form

𝑔𝑏ℎ = − [𝑚2𝑟2 −𝑀]𝑑𝜏2 + 𝑑𝑟2𝑚2𝑟2 −𝑀 (74)

for 𝑚2 = 𝐴1 = −2𝛾/𝛽2 > 0, 𝑀 = −[𝐶1 − 𝐵21/4𝐴1] > 0, M
being a mass parameter given by (65).

We have noted that (67) implies, in particular, the first
condition V2 > 4𝑎20𝜅4 in (52).

The composite change of variables (𝜏, 𝜌) 󳨀→ (𝜏, 𝑥) 󳨀→(𝜏, 𝑟) therefore transforms the cold plasma metric 𝑔𝑝𝑙𝑎𝑠𝑚𝑎 in
(39) to the black hole metric 𝑔𝑏ℎ in (74). This composition is
immediately computed: (𝜏, 𝜌) 󳨀→ (𝜏, 𝑟) where (by (53), (63),
(22))

𝑟 𝑑𝑒𝑓= 𝑥 + 𝐵12𝐴1
𝑑𝑒𝑓= 𝑎20𝛽2𝜅2𝛾 𝑠𝑛2 (𝜌, 𝜅) + 2𝑎20𝜅2 + V2/2 − 𝛼1/2𝛽2−4𝛾/𝛽2
= 𝑎20𝛽2𝛾 [1 − 𝑑𝑛2 (𝜌, 𝜅)] − 𝑎20𝛽2𝜅22𝛾 − V2𝛽28𝛾 + 𝛼18𝛾 .

(75)

That is,

𝑟 = 𝜓 (𝜌)
𝑑𝑒𝑓= 𝑎20𝛽2𝑑𝑛2 (𝜌, 𝜅)−𝛾 + 𝑎20𝛽22𝛾 [2 − 𝜅2] + V2𝛽2 − 𝛼1−8𝛾 . (76)

Going back to (39) again, which we write as

𝑔𝑝𝑙𝑎𝑠𝑚𝑎 = 𝐴 (𝜌) 𝑑𝜏2 + 𝐵 (𝜌)𝐴 (𝜌)𝑑𝜌2,
𝐵 (𝜌) 𝑑𝑒𝑓= −4𝑎40𝛽4𝜅4𝛾2 (𝑠𝑛2𝑐𝑛2𝑑𝑛2) (𝜌, 𝜅) ,

(77)

we note that 𝐵(𝜌) and 𝜓(𝜌) in (76) are in fact related:

[𝜓󸀠 (𝜌)]2 = −𝐵 (𝜌) , (78)

a fact that will be useful later.𝑔𝑏ℎ solves the J-T field equations

𝑅 (𝑔) + 2Λ = 0
∇𝑖∇𝑗Φ + ΛΦ𝑔𝑖𝑗 = 0, (79)

where Λ is a negative cosmological constant, Φ is a dilaton
field, and the Hessian is given by

∇𝑖∇𝑗 = 𝜕2𝜕𝑥𝑖𝜕𝑥𝑗 −
2∑
𝑘=1

Γ𝑘𝑖𝑗 𝜕𝜕𝑥𝑘 , (80)

for the (second) Christoffel symbols Γ𝑘𝑖𝑗 of 𝑔. In the present
case (𝑥1, 𝑥2) = (𝜏, 𝑟) and

Λ = −𝑚2 𝑑𝑒𝑓= 2𝛾𝛽2 𝑑𝑒𝑓= 2𝛾(𝛿 − 1) ,
Φ (𝜏, 𝑟) 𝑑𝑒𝑓= 𝑚𝑟.

(81)

The equations of motion (79) are derived from the J-T action
integral

𝐼J−T (𝑔, Φ) = 12𝐺 ∫𝑀2 𝑑2𝑥√󵄨󵄨󵄨󵄨det𝑔󵄨󵄨󵄨󵄨Φ (𝑅 (𝑔) + 2Λ) (82)

for a two-dimensional spacetime 𝑀2 and a gravitational
coupling constant 𝐺.

For ℎ = ℎ/2𝜋 the normalized Planck constant, one has
the general formulas for the black hole Hawking temperature𝑇𝐻 and Bekenstein-Hawking entropy 𝑆𝐵𝐻 [14]:

𝑇𝐻 = ℎ𝐺𝜋 √𝑀 = ℎ𝐺𝜋 √−(𝐶1 − 𝐵214𝐴1),

𝑆𝐵𝐻 = 2𝜋ℎ𝐺√𝑀 = 2𝜋ℎ𝐺√−(𝐶1 − 𝐵214𝐴1).
(83)

In particular, 𝑇𝐻 and 𝑆𝐵𝐻 are also expressed in terms of
solution data for the plasma system (1).

Given 𝜓,Φ in (76), (81), define Φ𝑝𝑙𝑎𝑠𝑚𝑎 by
Φ𝑝𝑙𝑎𝑠𝑚𝑎 (𝜏, 𝜌) = Φ (𝜏, 𝜓 (𝜌)) . (84)
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The Christoffel symbols for 𝑔𝑝𝑙𝑎𝑠𝑚𝑎 and 𝑔𝑏ℎ (in the form
expressed in (77) and (74)) can be computed using Maple, for
example. The nonvanishing ones are given, respectively, by

Γ112 = 12
𝐴󸀠 (𝜌)
𝐴 (𝜌) ,

Γ211 = −12
𝐴 (𝜌)𝐴󸀠 (𝜌)
𝐵 (𝜌) ,

Γ222 = 12 [
𝐵󸀠 (𝜌)
𝐵 (𝜌) −

𝐴󸀠 (𝜌)
𝐴 (𝜌) ] ,

Γ112 = −𝑚2𝑟−𝑚2𝑟2 +𝑀,
Γ211 = − (−𝑚2𝑟2 +𝑀)𝑚2𝑟,
Γ222 = 𝑚2𝑟−𝑚2𝑟2 +𝑀.

(85)

By our notation/definition, 𝐴(𝜌) = −𝑚2𝜓(𝜌)2 + 𝑀 󳨐⇒𝐴󸀠(𝜌) = −2𝑚2𝜓(𝜌)𝜓󸀠(𝜌), which permits one to relate the
Christoffel symbols of 𝑔𝑝𝑙𝑎𝑠𝑚𝑎 and 𝑔𝑏ℎ in (85):

Γ112 (𝜏, 𝜌) = Γ112 (𝜏, 𝜓 (𝜌)) 𝜓󸀠 (𝜌)
Γ211 (𝜏, 𝜌) = −Γ

2
11 (𝜏, 𝜓 (𝜌))𝜓󸀠 (𝜌)𝐵 (𝜌)

Γ222 (𝜏, 𝜌) = 12
𝐵󸀠 (𝜌)
𝐵 (𝜌) + Γ222 (𝜏, 𝜓 (𝜌)) 𝜓󸀠 (𝜌) ,

(86)

the left hand side of these equations being the Christoffel
symbols of 𝑔𝑝𝑙𝑎𝑠𝑚𝑎. Using the equations in (86), we can, in
the end, relate the Hessian acting on Φ𝑝𝑙𝑎𝑠𝑚𝑎 and Φ in (84),
(81); see (80):

(∇1∇1Φ𝑝𝑙𝑎𝑠𝑚𝑎) (𝜏, 𝜌) = (∇1∇1Φ) (𝜏, 𝜓 (𝜌))
(∇1∇2Φ𝑝𝑙𝑎𝑠𝑚𝑎) (𝜏, 𝜌) = (∇1∇2Φ) (𝜏, 𝑟) = 0
(∇2∇2Φ𝑝𝑙𝑎𝑠𝑚𝑎) (𝜏, 𝜌)
= −𝐵 (𝜌) (∇2∇2Φ𝑝𝑙𝑎𝑠𝑚𝑎) (𝜏, 𝜓 (𝜌)) ,

(87)

where for the last formula here we use (78) and its implication2𝜓󸀠(𝜌)𝜓󸀠󸀠(𝜌) = −𝐵󸀠(𝜌).
Since the pair (𝑔𝑏ℎ, Φ) solves the J-T field equations

(79) (as we have noted, for the cosmological constant Λ =
−𝑚2 𝑑𝑒𝑓= 2𝛾/𝛽2), one concludes from (87) that the pair(𝑔𝑝𝑙𝑎𝑠𝑚𝑎, Φ𝑝𝑙𝑎𝑠𝑚𝑎) also solves the J-T field equations, where by
(76), (84) Φ𝑝𝑙𝑎𝑠𝑚𝑎 is given explicitly by

Φ𝑝𝑙𝑎𝑠𝑚𝑎 (𝜏, 𝜌) = 𝑚[𝑎20𝛽2𝑑𝑛2 (𝜌, 𝜅)−𝛾 + 𝑎20𝛽2 (2 − 𝜅2)2𝛾
+ (V2𝛽2 − 𝛼1)−8𝛾 ] .

(88)

For convenience, we iterate that the plasma metric for the
dilaton field Φ𝑝𝑙𝑎𝑠𝑚𝑎 in (88) is given by (36), (39):

𝑔𝑝𝑙𝑎𝑠𝑚𝑎 = 𝐴 (𝜌) 𝑑𝜏2
− [4𝜅4𝑎40𝛽4𝐴 (𝜌) 𝛾2 (𝑠𝑛2𝑐𝑛2𝑑𝑛2) (𝜌, 𝜅)] 𝑑𝜌2

(89)

for

𝐴 (𝜌)
= 4𝑎20𝛽2 [−𝑎

4
0𝜅42𝛾 (𝑠𝑛2 𝑐𝑛2) (𝜌, 𝜅) + V28𝛾𝑑𝑛2 (𝜌, 𝜅)]

+ 16𝛼1𝛽2𝜅4𝑎40 (𝑠𝑛2 𝑐𝑛2) (𝜌, 𝜅) + 𝐶2/𝛽28𝛾 [𝛼1 + 4𝑎20𝛽2𝑑𝑛2 (𝜌, 𝜅)]
+ V2𝛼18𝛾 − V𝐶4𝛾𝛽,

𝐶 = 𝛼11/2 [4𝑎20𝛽2 (1 − 𝜅2) + 𝛼1]1/2 [4𝑎20𝛽2 + 𝛼1]1/2 .

(90)

In the special, but important, case when the elliptic modulus𝜅 is chosen to be 1, Φ𝑝𝑙𝑎𝑠𝑚𝑎 in (88) reduces to the equation

Φ𝑝𝑙𝑎𝑠𝑚𝑎 (𝜏, 𝜌)
= 𝑚[𝑎20𝛽2𝑠𝑒𝑐ℎ2𝜌−𝛾 + 𝑎20𝛽22𝛾 + (V2𝛽2 − 𝛼1)−8𝛾 ] (91)

and 𝑔𝑝𝑙𝑎𝑠𝑚𝑎in (89) simplifies to

𝑔𝑝𝑙𝑎𝑠𝑚𝑎 = 𝐴 (𝜌) 𝑑𝜏2
− [ 4𝑎40𝛽4𝐴 (𝜌) 𝛾2 (tanh2sech4) (𝜌)] 𝑑𝜌2

(92)

for

𝐴 (𝜌)
= 4𝑎20𝛽2 [−𝑎

4
02𝛾 (tanh2sech2) (𝜌) + V28𝛾 sech2 (𝜌)]

+ 16𝛼1𝛽2𝑎40 (tanh2sech2) (𝜌) + 𝐶2/𝛽28𝛾 [𝛼1 + 4𝑎20𝛽2sech2 (𝜌)] + V2𝛼18𝛾
− V𝐶4𝛾𝛽,

𝐶 = 𝛼1 (4𝑎20𝛽2 + 𝛼1)1/2 ,

(93)

by (22). Lastly as the only restriction on 𝛼1 is 𝛼1 ≥ 0,
one can certainly specialize the choice 𝛼1 = 0 in (91),
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in which case 𝐶 = 0 and 𝐴(𝜌) in (92), (93) simplifies
to
𝐴 (𝜌)
= 4𝑎20𝛽2 [−𝑎

4
02𝛾 (tanh2sech2) (𝜌) + V28𝛾 sech2 (𝜌)] .

(94)

Also for the choices 𝛼2 = 𝛼1 = 1 (relevant for the
plasma physics) we have noted in formula (26) the simpler
expression for the Gurevich–Krylov traveling wave solution
of the plasmadensity𝜌1(𝑥, 𝑡) (and hence of its velocity𝑢1(𝑥, 𝑡)
by (16)) in terms of the hyperbolic secant.

5. Closing Remarks

The transformation formula (76) is the key connection
between the cold plasma metric 𝑔𝑝𝑙𝑎𝑠𝑚𝑎 in (39) attached to
the solutions (16), (18) of the magnetoacoustic system (1) and
the J-T black hole metric 𝑔𝑏ℎ in (74), a connection nicely
facilitated by the general correspondence set up in Section 2
between solutions of (1) and of the resonance Schrödinger
equation (2). The dilaton field Φ𝑝𝑙𝑎𝑠𝑚𝑎 constructed in (88)
provides for a solution (𝑔𝑝𝑙𝑎𝑠𝑚𝑎, Φ𝑝𝑙𝑎𝑠𝑚𝑎) of the J-T field equa-
tions (79) (in terms of Jacobi elliptic functions), where the
cosmological constant Λ is negative and is expressed in (81) in
terms of the parameters 𝛾, 𝛿 in the Schrödinger equation (2),𝛾 being assumed negative (which was exploited in Section 2
in the aforementioned correspondence of solutions of (1) and
(2), and 𝛿 > 1 being the same 𝛿 in (1)).

The conditions established in (67), (73) insure positivity
of the black holemassM in (74). In particular, the expressions
in (83) forHawking temperature and entropy are meaningful.
However, one could relax these conditions and obtain, more
generally, by way of (76) a connection between cold plasma
and 2d black holes with a naked singularity (for 𝑀 < 0)
and black hole vacua, with 𝑀 = 0. It should be possible,
extending methods presented here, to construct additional
dilaton fields Φ such that the pairs (𝑔𝑝𝑙𝑎𝑠𝑚𝑎, Φ) also solve the
J-T field equations (79), this and other matters the author
could consider in future work.

The construction of the plasma metric (89), which even-
tually was transformed to the black hole metric (74), was
based on solutions of the RDS (5) generated by solutions
of the RNLS equation (2), or equivalently (as shown in
Section 2) by solutions of the MAS (1), given the general
prescription (6). Apart from the traveling wave, one-soliton
solutions of (2), or of (5), that arise here for 𝜅 = 1, one could
consider multisoliton solutions as well. In Section 6 of [3],
Lee and Pashaev apply the Hirota bilinear representation to
construct, for example, an explicit two-dissipaton solution
of the RDS (5). This means that in principle one could
construct the corresponding constant scalar curvature metric
(again by way of (6)), attempt to diagonalize it, and map the
diagonalized form to a black hole metric. Obviously that task
would be more difficult than that which was dealt with here,
but it would be an extremely interesting, fascinating task to
pursue as it would likely provide insight, for example, on the
collision of black holes in the plasma, or possibly multi-black
hole solutions in J-T gravity.
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cations of Bäcklund-Darboux transformations and superposi-
tion principles,” Journal of Plasma Physics, vol. 73, no. 2, pp. 257–
272, 2007.

[5] J.-H. Lee and O. K. Pashaev, “Solitons of the resonant nonlinear
Schrödinger equation with nontrivial boundary conditions and
Hirota bilinear method,”Theoretical and Mathematical Physics,
vol. 152, no. 1, pp. 991–1003, 2007.

[6] O. K. Pashaev, J.-H. Lee, and C. Rogers, “Soliton resonances
in a generalized nonlinear Schrödinger equation,” Journal of
Physics A: Mathematical and Theoretical, vol. 41, no. 45, Article
ID 452001, 9 pages, 2008.

[7] L.Martina,O. K. Pashaev, andG. Soliani, “Integrable dissipative
structures in the gauge theory of gravity,” Classical and Quan-
tum Gravity, vol. 14, no. 12, pp. 3179–3186, 1997.

[8] L. Martina, O. K. Pashaev, and G. Soliani, “Bright solitons as
black holes,”Physical ReviewD: Particles, Fields, Gravitation and
Cosmology, vol. 58, no. 8, Article ID 084025, 13 pages, 1998.

[9] R. Jackiw, “A two-dimensional model of gravity,” in Quantum
Theory of Gravity, S. Christensen, Ed., pp. 403–420, Adam
Hilger Ltd., 1984.

[10] C. Teitelboim, “The Hamiltonian structure of two-dimensional
spacetime and its relation with the conformal anomaly,” in
Quantum Theory of Gravity, S. Christensen, Ed., pp. 327–344,
Adam Hilger Ltd., 1984.
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