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The Davey-Stewartson Equation (DSE) is an equation system that reflects the evolution in finite depth of soft nonlinear packets
of water waves that move in one direction but in which the waves’ amplitude is modulated in spatial directions. This paper
uses the Generalized Elliptic Equation Rational Expansion (GEERE) technique to extract fresh exact solutions for the DSE. As
a consequence, solutions with parameters of trigonometric, hyperbolic, and rational function are achieved. To display the physical
characteristics of this model, the solutions obtained are graphically displayed. Modulation instability assessment of the outcomes
acquired is also discussed and it demonstrates that all the solutions built are accurate and stable.

1. Introduction

Nonlinear partial differential equations (NLPDEs) are used in
multiple study areas to define significant phenomena. Exact
NLPDEs solutions play an important part in the research
of physics, applied mathematics, and engineering, including
solid state physics, fluid mechanics, population ecology,
plasma physics, plasma waves, biology, optical fibres, prop-
agation of shallow waves, heat flow, quantum mechanics, and
wave propagation phenomena. Current studies are underway
to find new techniques to extract traveling wave solution for
NLPDEs. These techniques include the tanh-sech method
[1], the Jacobi elliptic function method [2], the homotopy
perturbation method [3], the homogeneous balance method
[4], sine-cosine method [5, 6], the extended Weierstrass
transformation method [7–10], the expansion method [11,
12], the B ̈𝑎cklund transformation method [13], the inverse
scattering method [14], modified extended mapping method
[15], Darboux transformation [16], the extended tanh-coth
method [17], Hirota bilinear method [18], modified extended
direct algebraic method [19], lumped Galerkin method [20],
and auxiliary equation method [21]. A lot of these methods
are dependent on the type of problem and may or may not be
suitable for other different problems [22–31].

The Davey-Stewartson Equation (DSE) [32] is an equa-
tion system that reflects the evolution in finite depth of soft
nonlinear packets of water waves traveling in one direction
but in which the amplitude of waves is modulated in spatial
directions. This equation also defines long wave–short wave
resonances and the development of a 3-dimensional wave
packet on finite depth water [33, 34]. A few solutions have
been acquired for this equation [35–38]. The DSE, a two-
dimensional system that coexists with both short waves and
long waves, and a precise representation of two-dimensional
modulation of nonlinear waves should require both short
wave and long wave modes. A pair of coupled nonlinear
DSE in two dependent variables can be decreased to the
(1+1)-dimensional nonlinear Schrödinger (NLS) equation by
carrying out a suitable dimensional reduction. A number of
analytical methods have been created to be used for NLPDEs
such as the DSE, which in recent years have specific types
of solutions, such as growing and decaying solutions [39–
41], dromions, breathers, instantaneous, propagating, and
regular wave patterns, and fluid flow and heat transfer over a
stretching or shrinking sheet in a porousmedium [34, 42, 43].

The Generalized Elliptic Equation Rational Expansion
(GEERE) technique developed by Wan, Song, Yin, and
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Zhang [44] is applied in this paper. This technique is a very
strong technique that can be used to obtain several partic-
ular solutions including rational formal regular triangular,
Weierstrass doubly regular, rational formal solitary wave,
and rational formal Jacobi solutions [44]. In addition, the
modulation instability assessment of the solutions obtained
will be explored. Modulation instability is universal, and the
basis for the formation of soliton solutions results from the
interaction between dispersion and nonlinearity in the spatial
and time domain [45–47]. It is therefore of interest to derive
explicit DSE equation solutions using the GEERE method.
This paper is structured as follows: in Section 2 new soliton
solutions are built for DSE. DSE assessment of modulation
instability is shown in Section 3. Section 4 also presents the
outcomes and discussion. Finally, in Section 5, the conclusion
is provided.

2. Nonlinear (2+1)-Dimensional Davey-
Stewartson Equation

TheDavey-Stewartson system [32] is of the form

𝑖 𝜕𝑍𝜕𝑡 + 12𝛼2 (𝜕2𝑍𝜕𝑥2 + 𝛼2 𝜕2𝑍𝜕𝑦2 ) − ] |𝑍|2 𝑍 + 𝑍𝜕𝑄𝜕𝑥 = 0,
𝜕2𝑄𝜕𝑥2 − 𝛼2 𝜕2𝑄𝜕𝑦2 − 2]𝜕 |𝑍|2𝜕𝑥 = 0. (1)

Here 𝑧(𝑥, 𝑦, 𝑡) is a complex value function, 𝑥 is the dimen-
sionless variable, 𝑦 is the propagation coordinate, 𝑡 is the
time, ] = ±1, and 𝛼2 = ±1. The case where 𝛼 = 1 is
called the DSE I equation, while that where 𝛼 = 𝑖 is the
DSE II. The ] parameter denotes the focusing or defocusing
case. The DSE has the following types of soliton solutions:
conventional line, algebraic, periodic, and lattice solution.
Conventional line soliton has a structure that is essentially
one-dimensional. The solitons of periodic, algebraic, and
lattice have a structure of two dimensions. The DSE I and
II are common examples of two-dimensional integrable
equations that emerge as a higher-dimensional generalization
of the nonlinear Schrödinger equation (NLSE). DSE has
several applications that include the description of gravity-
capillarity surface wave packets within the shallow water
boundary. Several strong techniques have been created to
obtain explicit solutions for (1), such as the technique of
homotopy analysis [48], the sine-cosine method [49], and the
technique of variational iteration [50]. To obtain fresh soliton
solutions for (1) using the following traveling wave equation,
we apply the widely discussed GEERE technique in [44]:𝑧 (𝑥, 𝑦, 𝑡) = 𝑍 (𝜉) 𝑒𝑖𝛾,𝑞 (𝑥, 𝑦, 𝑡) = 𝑄 (𝜉) ,𝜉 = 𝑥 + 𝑦 − 𝑐𝑡,𝛾 = 𝑘1𝑥 + 𝑘2𝑦 + 𝑘3𝑡,

(2)

where 𝑐, 𝑘1, 𝑘2, and 𝑘3 are real constants. Substituting (2)
into (1) gives the real and imaginary part:

𝑐 = 𝛼2 (𝑘1 + 𝛼2𝑘2) , (3)𝛼2 (1 + 𝛼2) 𝑍󸀠󸀠 (𝜉) + 2]𝑍3 (𝜉)− 2 [(𝑄󸀠 (𝜉) + 𝑘3) + 𝛼2 (𝑘21 + 𝛼2𝑘22)] 𝑍 (𝜉) , (4)

(1 − 𝛼2) 𝑄󸀠󸀠 (𝜉) − 2] (𝑍2 (𝜉))󸀠 = 0. (5)

Integrating (5) with respect to 𝜉 and setting the constant of
integration to zero, we have

𝑄󸀠 (𝜉) = 2]1 − 𝛼2𝑍2 (𝜉) . (6)

Putting (6) into (4) gives

𝛼2 (𝛼4 − 1) 𝑍󸀠󸀠 (𝜉) + 2] (𝛼2 + 1) 𝑍3 (𝜉)− (𝛼2 − 1) [2𝑘3 + 𝛼2 (𝑘21 + 𝛼2𝑘22)] 𝑍 (𝜉) = 0. (7)

Introducing a new ansatz of finite rational expansion in the
form:

𝑍 (𝜉) = 𝑎0 + 𝑁∑
𝑖=1

𝑎𝑖𝜙𝑖 (𝜉) + 𝑏𝑖𝜙𝑖−1 (𝜉) 𝜙󸀠 (𝜉)(𝜇𝜙 (𝜉) + 1)𝑖 , (8)

the new parameter 𝜙 = 𝜙(𝜉) and
𝜙󸀠 = √ 4∑

𝑗=0

𝑙𝑗𝜙𝑗, (9)

where 𝑙𝑗, 𝑎0, 𝑎𝑖, and 𝑏𝑖 (𝑗 = 0, 1, 2, . . . ; 𝑖 = 1, 2, 3, . . . , 𝑁)
are constant real values to be computed. Using homogeneous
balance principle by balancing the highest nonlinear terms
and the highest order partial derivative terms in (7) we have𝑁 = 1; hence

𝑍 (𝜉) = 𝑎0 + 𝑎1𝜙 (𝜉) + 𝑏1𝜙󸀠 (𝜉)𝜇𝜙 (𝜉) + 1 , (10)

putting (10) and (9) in (7) we have a system of algebraic equa-
tions in parameters, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑎0, 𝑎0, 𝑎1, 𝑏1, 𝜇. The system of
algebraic equations after solving gives the following family of
solutions with respect to different cases.

Case 1. 𝑙4 = 0, 𝑙3 = 0.
Family 1.1. 𝑎0 = ±√−(𝛼2(𝛼2 − 1)𝑙2)/𝜅/√2, 𝑎1 = 𝑎1, 𝑏1 = 𝑎1,𝑘3 = −(1/4)𝛼2(2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2), 𝜇 = 0
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𝑍11 (𝜉) = ±√− (𝛼2 (𝛼2 − 1) 𝑙2) /𝜅√2 + 𝑎1 (𝑒√𝑙2(−𝑐𝑡+𝑥+𝑦) − 𝑙12𝑙2)
± 𝑎1√𝑙2 (𝑒√𝑙2(−𝑐𝑡+𝑥+𝑦) − 𝑙12𝑙2)2 + 𝑙1 (𝑒√𝑙2(−𝑐𝑡+𝑥+𝑦) − 𝑙12𝑙2) + 𝑙0
× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 14𝛼2𝑡 (2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2))] ,

(11)

𝑄11 (𝜉) = 2]3 (1 − 𝛼2) , (𝑍11 (𝜉))3 ,
𝑙0 = 𝑙214𝑙2 ,𝑙2 > 0.

(12)

𝑍12 (𝜉) = ±√− (𝛼2 (𝛼2 − 1) 𝑙2) /𝜅√2
+ 𝑎1 ((𝑙2√𝑙21 (sin2 (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) − 1) /𝑙2) + 𝑙1 (sin (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) − 1))2𝑙2× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 14𝛼2𝑡 (2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2))] ,

(13)

𝑄12 (𝜉) = 2]3 (1 − 𝛼2) (𝑍12 (𝜉))3 ,
𝑙0 = 0,𝑙2 < 0. (14)

𝑍13 (𝜉) = ±√−𝛼2 (𝛼2 − 1) 𝑙2/𝜅√2
+ 𝑎1 (𝑙2√(𝑙21 (sin2 ℎ (√𝑙2 ((−𝑐𝑡 + 𝑥 + 𝑦))) − 1) /𝑙2) + 4𝑙0 + 𝑙1 (sinh (√𝑙2 ((−𝑐𝑡 + 𝑥 + 𝑦))) − 1))2𝑙2× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 14𝛼2𝑡 (2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2))] ,

(15)

𝑄13 (𝜉) = 2]3 (1 − 𝛼2) (𝑍13 (𝜉))3
𝑙0 = 0,𝑙2 > 0. (16)

Family 1.2. 𝑎0 = 0, 𝑎1 = 𝑎1, 𝑏1 =2√(𝛼2(𝛼2 − 1)(−𝜅)𝑙22(𝑙21 − 4𝑙0𝑙2)2)/(𝜅𝑙31 − 4𝜅𝑙0𝑙1𝑙2) ± 𝑎1,𝑘3 = (1/2)𝛼2(2𝑙2𝛼2 + 2𝑙2 + 𝑘22𝜎2 + 𝑘21), 𝜇 = 0
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𝑍14 (𝜉) = 𝑎1 (𝑒√𝑙2(−𝑐𝑡+𝑥+𝑦) − 𝑙12𝑙2) ± 𝑎1 + ( 𝑙12𝑙2 (𝑒√𝑙2(−𝑐𝑡+𝑥+𝑦) − 𝑙1/2𝑙2) + 𝑙1) 2𝜅𝑙31 − 4𝜅𝑙0𝑙1𝑙2
× [[√𝑙2 (𝑒√𝑙2(−𝑐𝑡+𝑥+𝑦) − 𝑙12𝑙2)2 + 𝑙1 (𝑒√𝑙2(−𝑐𝑡+𝑥+𝑦) − 𝑙12𝑙2) + 𝑙0√−𝛼2 (𝛼2 − 1) 𝜅𝑙22 (𝑙21 − 4𝑙0𝑙2)2]]× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 + 12𝛼2 (2𝑙2𝛼2 + 2𝑙2 + 𝑘22𝜎2 + 𝑘21))] ,

(17)

𝑄14 (𝜉) = 2]3 (1 − 𝛼2) (𝑍14 (𝜉))3 ,
𝑙0 = 𝑙214𝑙2 ,𝑙2 > 0.

(18)

𝑍15 (𝜉) = csc(√𝑙2 (𝑐𝑡 − 𝑥 − 𝑦))2𝜅𝑙31𝑙2 (𝑎1𝜅𝑙31 (𝑙1 (sin (√𝑙2 (𝑐𝑡 − 𝑥 − 𝑦)) − 1) − 2𝑙2) + 2𝑙2√−𝛼2 (𝛼2 − 1) 𝜅𝑙41𝑙22
× √−𝑙21 cos2 (√𝑙2 (𝑐𝑡 − 𝑥 − 𝑦))𝑙2 ) × exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 + 12𝛼2 (2𝑙2𝛼2 + 2𝑙2 + 𝑘22𝜎2 + 𝑘21))] ,

(19)

𝑄15 (𝜉) = 2]3 (1 − 𝛼2) (𝑍15 (𝜉))3 ,
𝑙0 = 0,𝑙2 < 0. (20)

𝑍16 (𝜉) = csch(√−𝑙2 (𝑐𝑡 − 𝑥 − 𝑦))2𝜅𝑙31𝑙2 [[[[[𝑎1𝜅𝑙31 (𝑙1 (sinh (√−𝑙2 (𝑐𝑡 − 𝑥 − 𝑦)) − 1) − 2𝑙2) + 2𝑙2√−𝛼2 (𝛼2 − 1) 𝜅𝑙41𝑙22
× √−𝑙21 cos2 ℎ (√−𝑙2 (𝑐𝑡 − 𝑥 − 𝑦))𝑙2 ]]]]] × exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 + 12𝛼2 (2𝑙2𝛼2 + 2𝑙2 + 𝑘22𝜎2 + 𝑘21))] ,

(21)

𝑄16 (𝜉) = 2]3 (1 − 𝛼2) (𝑍16 (𝜉))3 ,
𝑙0 = 0,𝑙2 < 0. (22)

Case 2. 𝑙1 = 0, 𝑙3 = 0.
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Family 2.1. 𝑎0 = −√−𝛼2(𝛼2 − 1)𝑙2/𝜅/√2, 𝑎1 = 𝑎1, 𝑏1 = 𝑎1,𝑘3 = −(1/4)𝛼2𝑡(2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2), 𝜇 = 0
𝑍21 (𝜉) = 𝑎1√𝜅√𝑙0√𝑙24𝑙32 tan2 (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) (𝑙2𝑙34 tan2 (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) + 4) + 16𝑙0

+ 2𝑙2𝑙4√𝑙0𝑎1√𝜅 tan(√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) − 2√𝑙0√−𝛼2 (𝛼2 − 1) 𝑙22
× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 14𝛼2𝑡 (2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2))] ,

(23)

𝑄21 (𝜉) = 2]3 (1 − 𝛼2) (𝑍213 (𝜉))3 ,
𝑙0 = 𝑙214𝑙2 ,𝑙2 > 0,𝑙4 < 0.

(24)

𝑍22 (𝜉) = 𝑎1√𝜅√𝑙0√𝑙24𝑙32 tan2 ℎ (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) (𝑙2𝑙34 tan2 ℎ (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) + 4) + 16𝑙0
+ 2𝑙2𝑙4√𝑙0𝑎1√𝜅 tanh (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) − 2√𝑙0√−𝛼2 (𝛼2 − 1) 𝑙22
× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 14𝛼2𝑡 (2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2))] ,

(25)

𝑄22 (𝜉) = 2]3 (1 − 𝛼2) (𝑍223 (𝜉))3 ,
𝑙0 = 𝑙214𝑙2 ,𝑙2 > 0,𝑙4 > 0.

(26)

Family 2.2. 𝑎0 = 0, 𝑎1 = 𝑎1, 𝑏1 = ((√𝛼4𝜅𝑙0𝑙2 − 𝛼2𝜅𝑙0𝑙2 −2𝑎1𝜅𝑙0)/2𝜅𝑙0), 𝑘3 = −(1/4)𝛼2𝑡(2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2),𝜇 = −𝑖√𝑙2/√𝑙0
𝑍23 (𝜉) = 𝜅𝑙016√𝑙016√𝑙0 − 8𝑖√𝑙2𝑙2𝑙4 tan (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦) /√2) [[[(√𝛼2 (𝛼2 − 1) 𝜅𝑙0𝑙2 − 2𝑎1𝜅𝑙0)

× √𝑙24𝑙32 tan2 (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) (𝑙2𝑙34 tan2 (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) + 4) + 16𝑙0
+ 4𝑎1𝑙2𝑙4𝜅𝑙0 tan(√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 )]]] × exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 14𝛼2𝑡 (2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2))] ,

(27)
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𝑄23 (𝜉) = 2]3 (1 − 𝛼2) (𝑍233 (𝜉))3 ,
𝑙0 = 𝑙214𝑙2 ,𝑙2 > 0,𝑙4 > 0.

(28)

𝑍24 (𝜉) = 𝜅𝑙016√𝑙016√𝑙0 − 8𝑖√𝑙2𝑙2𝑙4 tanh (√−𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦) /√2) [[[(√𝛼2 (𝛼2 − 1) 𝜅𝑙0𝑙2 − 2𝑎1𝜅𝑙0)
× √𝑙24𝑙32 tan2 (√−𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) (𝑙2𝑙34 tanh2 (√−𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 ) + 4) + 16𝑙0
+ 4𝑎1𝑙2𝑙4𝜅𝑙0 tan(√−𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)√2 )]]] × exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 14𝛼2𝑡 (2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2))] ,

(29)

𝑄24 (𝜉) = 2]3 (1 − 𝛼2) (𝑍243 (𝜉))3 ,
𝑙0 = 𝑙214𝑙2 ,𝑙2 < 0,𝑙4 > 0.

(30)

Case 3. 𝑙3 = 0, 𝑙4 = 0, 𝑙0 = 0. Family 3.1. 𝑎0 = 0, 𝑎1 = 𝑎1, 𝑏1 = (√𝜅ℎ22𝛼2 − 𝜅𝑙22𝛼4 −2𝑎1𝜅𝑙1)/2𝜅𝑙1, 𝑘3 = −(1/4)𝜎2(𝑙2𝛼2 + 𝑙2 + 2𝑘22𝛼2 + 2𝑘21), 𝜇 = 𝑙2/𝑙1
𝑍31 (𝜉) = 2𝑎1𝜅𝑙1 (𝑙1 (sin (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) − 1) − 𝑙2√(𝑙21 (sin2 (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) − 1)) /𝑙2)2𝜅𝑙1𝑙2 (sin (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) + 1)

+ 2𝜅𝑙1𝑙2 (sin (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) + 1) + 𝑙2√−𝛼2 (𝛼2 − 1) 𝜅𝑙22√𝑙21 (sin2 (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) − 1) /𝑙22𝜅𝑙1𝑙2 (sin (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) + 1)
× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 14𝛼2𝑡 (2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2))] ,

(31)

𝑄31 (𝜉) = 2]3 (1 − 𝛼2) (𝑍313 (𝜉))3 ,
𝑙2 < 0. (32)
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𝑍32 (𝜉) = 2𝑎1𝜅𝑙1 (𝑙1 (sinh (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) − 1) − 𝑙2√𝑙21 (sin2 ℎ (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) − 1) /𝑙2)2𝜅𝑙1𝑙2 (sinh (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) + 1)
+ 2𝜅𝑙1𝑙2 (sinh (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) + 1) + 𝑙2√−𝛼2 (𝛼2 − 1) 𝜅𝑙22√𝑙21 (sin2 ℎ (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) − 1) /𝑙22𝜅𝑙1𝑙2 (sinh (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) + 1)
× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 14𝛼2𝑡 (2𝑘22𝜎2 + 2𝑘21 + 𝛼2𝑙2 + 𝑙2))] ,

(33)

𝑄32 (𝜉) = 2]3 (1 − 𝛼2) (𝑍323 (𝜉))3 ,
𝑙2 > 0. (34)

Family 3.2. 𝑎0 = 0, 𝑎1 = 𝑎1, 𝑏1 = (2√𝜅ℎ22𝛼2 − 𝜅𝑙22𝛼4 −𝑎1𝜅𝑙1)/𝜅𝑙1, 𝑘3 = −(1/2)𝛼2(2𝑙2𝛼2 + 2𝑙2 + 𝑘22𝛼2 + 𝑘21), 𝜇 = 2𝑙2/𝑙1
𝑍33 (𝜉) = 12𝜅𝑙1𝑙2(csc(√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦)))

⋅ [[[[[𝑎1𝜅𝑙1 [[[[[𝑙1 (sin (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) − 1)
− 𝑙2√ 𝑙21 (sin2 (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) − 1)𝑙2 ]]]]]+ 2𝑙2√−𝛼2 (𝛼2 − 1) 𝜅𝑙22
× √ 𝑙21 (sin2 (√𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) − 1)𝑙2 ]]]]])
× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 12𝛼2 (2𝑙2𝛼2 + 2𝑙2 + 𝑘22𝛼2
+ 𝑘21))] ,

(35)

𝑄33 (𝜉) = 2]3 (1 − 𝛼2) (𝑍333 (𝜉))3 ,
𝑙2 < 0. (36)

𝑍34 (𝜉) = 12𝜅𝑙1𝑙2(csch(√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦))
⋅ [[[[[𝑎1𝜅𝑙1 [[[[[𝑙1 (sinh (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) − 1)
− 𝑙2√ 𝑙21 (sin2ℎ (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) − 1)𝑙2 ]]]]]+ 2𝑙2√−𝛼2 (𝛼2 − 1) 𝜅𝑙22
× √ 𝑙21 (sin2ℎ (√𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) − 1)𝑙2 ]]]]])
× exp [𝑖 (𝑘1𝑥 + 𝑘2𝑦 − 12𝛼2 (2𝑙2𝛼2 + 2𝑙2 + 𝑘22𝛼2
+ 𝑘21))] ,

(37)

𝑄34 (𝜉) = 2]3 (1 − 𝛼2) (𝑍343 (𝜉))3 ,
𝑙2 > 0. (38)

Case 4. 𝑙0 = 0, 𝑙1 = 0, 𝑙4 = 0.
Family 4.1. 𝑎0 = 0, 𝑎1 = 𝑎1, 𝑏1 = (((√𝛼2𝜅𝑙23 − 𝛼4𝜅𝑙23/𝑙2) −2𝑎1𝜅)/2𝜅), 𝑘3 = −(1/2)𝛼2𝑡(𝑘2𝛼2 + 𝑙2 − 𝑘22𝛼2 − 𝑙21), 𝜇 = 𝑙3/𝑙2
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𝑍41 (𝜉) = 𝑎1𝑙2csc2 ((1/2) 𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦)))𝑙3
− 12𝜅𝑙2 [[[(√−𝛼2 (𝛼2 − 1) 𝜅𝑙23
− 2𝑎1𝜅𝑙2) cot2 (12 𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦)))
⋅ √ 𝑙22sec4 ((1/2) 𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) (𝑙3 − 𝑙22sec2 ((1/2) 𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))))𝑙33 ]]]× exp [𝑖 (𝑘1𝑥
+ 𝑘2𝑦 − 12𝛼2𝑡 (𝑘2𝛼2 + 𝑙2 − 𝑘22𝛼2 − 𝑙21))] ,

(39)

𝑄41 (𝜉) = 2]3 (1 − 𝛼2) (𝑍413 (𝜉))3 ,
𝑙2 < 0. (40)

𝑍42 (𝜉) = 𝑎1𝑙2csch2 ((1/2) 𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦))𝑙3
− 12𝜅𝑙2 [[[(√−𝛼2 (𝛼2 − 1) 𝜅𝑙23
− 2𝑎1𝜅𝑙2) cot2ℎ (12 𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦))
⋅ √ 𝑙22sec4ℎ ((1/2) 𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) (𝑙3 − 𝑙22sec2ℎ (((1/2)) 𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)))𝑙33 ]]]× exp [𝑖 (𝑘1𝑥
+ 𝑘2𝑦 − 12𝛼2𝑡 (𝑘2𝛼2 + 𝑙2 − 𝑘22𝛼2 − 𝑙21))] ,

(41)

𝑄42 (𝜉) = 2]3 (1 − 𝛼2) (𝑍423 (𝜉))3 ,
𝑙2 > 0. (42)

Family 4.2. 𝑎0 = 0, 𝑎1 = 𝑎1, 𝑏1 = (−2𝑎1√𝜅 + 𝑖√2𝜇)/2√𝜅,𝑘3 = (1/2)(𝑘21 − 𝑘22), 𝜇 = 0
𝑍43 (𝜉)

= 12√𝜅 [[[𝑖 (√2𝜇

+ 2𝑖𝑎1√𝜅)
⋅ √ 𝑙22 sec4 ((1/2) 𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦))) (𝑙3 − 𝑙22 sec2 ((1/2) 𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)))𝑙33 ]]]
+ 𝑎1𝑙2sec2 ((1/2) 𝑙2 (− (−𝑐𝑡 + 𝑥 + 𝑦)))𝑙3× exp [𝑖 (𝑘1𝑥
+ 𝑘2𝑦 + 12𝑡 (𝑘21 − 𝑘22))] ,

(43)

𝑄43 (𝜉) = 2]3 (1 − 𝛼2) (𝑍433 (𝜉))3 ,
𝑙2 < 0. (44)

𝑍44 (𝜉)
= 12√𝜅 [[[𝑖 (√2𝜇
+ 2𝑖𝑎1√𝜅)
⋅ √ 𝑙22 sech4 ((1/2) 𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)) (𝑙3 − 𝑙22 sech2 ((1/2) 𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦)))𝑙33 ]]]+ 𝑎1𝑙2 sec2 ℎ ((1/2) 𝑙2 (−𝑐𝑡 + 𝑥 + 𝑦))𝑙3× exp [𝑖 (𝑘1𝑥+ 𝑘2𝑦 + (1/2) 𝑡 (𝑘21 − 𝑘22))] ,

(45)

𝑄44 (𝜉) = 2]3 (1 − 𝛼2) (𝑍443 (𝜉))3 ,
𝑙2 > 0. (46)

Case 5. 𝑙0 = 0, 𝑙1 = 0.
Family 5.1. 𝑎0 = 0, 𝑎1 = 𝑎1, 𝑏1 = (𝑎1(−√𝜅)𝑙3 − 4𝑖√2𝑙4)/√𝜅𝑙3,𝑘3 = (1/2)(𝑘21 − 𝑘22), 𝜇 = 4𝑙4/𝑙3

𝑍51 (𝜉)
= 1(4𝑙2𝑙4 sec2 (−√𝑙2𝜉/2) /𝑙3 (2√−𝑙2𝑙4 tan ((1/2) √−𝑙2𝜉) + 𝑙3)) + 1 [[[

𝑎1𝑙2 sec2 (√−𝑙2𝜉/2)2√−𝑙2𝑙4 tan ((1/2) √−𝑙2𝜉) + 𝑙3 + ((𝑎1 (−√𝜅) 𝑙3 − 4𝑖√2𝑙4)√𝜅𝑙3 × [[ 𝑙4𝑙42 sec8 (√−𝑙2𝜉/2)(2√−𝑙2𝑙4 tan ((1/2) √−𝑙2𝜉) + 𝑙3)4
+ 𝑙3𝑙32 sec6 (√−𝑙2𝜉/2)(2√−𝑙2𝑙4 tan ((1/2) √−𝑙2𝜉) + 𝑙3)3
+ 𝑙32 sec4 (√−𝑙2𝜉/2)(2√−𝑙2𝑙4 tan ((1/2) √−𝑙2𝜉) + 𝑙3)2]]

1/2)]]]× exp [𝑖 (𝑘1𝑥
+ 𝑘2𝑦 + 12𝑡 (𝑘21 − 𝑘22))] ,

(47)

𝑄51 (𝜉) = 2]3 (1 − 𝛼2) (𝑍513 (𝜉))3 ,
𝑙2 < 0. (48)
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𝑍52 (𝜉)
= 1(4𝑙2𝑙4 sec2 (√𝑙2𝜉/2) /𝑙3 (2√𝑙2𝑙4 tan ((1/2) √𝑙2𝜉) + 𝑙3)) + 1 [[[

𝑎1𝑙2 sec2 (√𝑙2𝜉/2)2√𝑙2𝑙4 tan ((1/2) √𝑙2𝜉) + 𝑙3 + ((𝑎1 (−√𝜅) 𝑙3 − 4𝑖√2𝑙4)√𝜅𝑙3 × [[ 𝑙4𝑙42 sec8 (√𝑙2𝜉/2)(2√𝑙2𝑙4 tan ((1/2) √𝑙2𝜉) + 𝑙3)4
+ 𝑙3𝑙32 sec6 (√𝑙2𝜉/2)(2√𝑙2𝑙4 tan ((1/2) √𝑙2𝜉) + 𝑙3)3
+ 𝑙32 sec4 (√𝑙2𝜉/2)(2√𝑙2𝑙4 tan ((1/2) √𝑙2𝜉) + 𝑙3)2]]

1/2)]]]× exp [𝑖 (𝑘1𝑥
+ 𝑘2𝑦 + 12𝑡 (𝑘21 − 𝑘22))] ,

(49)

𝑄52 (𝜉) = 2]3 (1 − 𝛼2) (𝑍523 (𝜉))3 ,
𝑙2 > 0. (50)

3. Modulation Instability
of Davey-Stewartson Equation

Equation (1) reveals a certain formal connection with the
defocusing nonlinear Schrödinger equation in 1+1 dimension
[51, 52], given below

𝑖 𝜕𝑍𝜕𝑡 + 12𝛼2 𝜕2𝑍𝜕𝑥2 − ] |𝑍|2 𝑍 = 0. (51)

Most nonlinear higher-orderNLPDEsdemonstrate insta-
bility leading to the research of steady-state modulation as
a result of interaction between nonlinear and dispersive
impacts. The modulation instability analysis of (51) is carried
out by using the standard linear stability analysis [53, 54] to
check how weak and time dependent perturbations develop
along the propagation distance [53, 54]. The 1+1 dimension
defocusing nonlinear Schrödinger equation (51) of the Non-
linear (2+1)-Dimensional Davey-Stewartson Equation (1) has
a state solution of the form𝑍 (𝑥, 𝑦, 𝑡) = (√𝑃 + 𝜙 (𝑥, 𝑦, 𝑡) 𝑒𝑖𝛾) ,𝛾 (𝑡) = 𝑃𝛽𝑡, (52)

where the optical power P is normalized and 𝛽 is a constant.
The perturbation 𝜙(𝑥, 𝑦, 𝑡) is examined by utilizing linear
stability analysis. Putting (52) into (51) and linearizing, we
obtain

𝑖 𝜕𝜙𝜕𝑡 + 12𝛼2 𝜕2𝜙𝜕𝑥2 + √𝑃3 (𝛽 + ]) − 3𝑃]𝜙∗ = 0, (53)

where ∗ is a complex conjugate. The solution of (53) is
considered in the form giving below𝜙 (𝑥, 𝑦, 𝑡) = 𝜓1𝑒𝑖(ℎ1𝑥+ℎ2𝑦−𝑡𝜆) + 𝜓2𝑒−𝑖(ℎ1𝑥+ℎ2𝑦−𝑡𝜆), (54)

where 𝜆 is the frequency of perturbation and ℎ1, ℎ2 normal-
ized wave numbers. The dispersion relation determines how
spatial oscillations 𝑒𝑖ℎ1𝑥, 𝑒𝑖ℎ2𝑦 are linked to time oscillations

𝑒𝑖𝜆𝑡 of a wave number; substituting (54) into (53), we obtain
the dispersive relation as

𝜆 = ±𝛼2𝜓1ℎ21 + 6𝜓2]𝑃2𝜓1 , 𝜓1 ̸= 0. (55)

The dispersion relation in (55) above demonstrates that the
steady-state stability depends on the self-phase modulation,
stimulated scattering, group velocity dispersion, and self-
phasemodulation.The expression of (55) shows that the value
of the frequency 𝜆 is real for all values of ℎ except when𝜓 = 0,
which means that the steady-state solution is stable.

4. Results and Discussion

Rational, periodic, and solitonic solutions for the DSE have
been successfully obtained using the GEERE method. The
constructed solutions by this method are novel and unique
from other solutions obtained using different methods [48–
50]. Different forms of solutions such as trigonometric,
hyperbolic trigonometric, and rational functions are obtained
because the assumed solution of GEERE is different from
other methods. Physical properties of some obtained results
are demonstrated graphically using suitable parameters.
Figure 1 evaluates the rational solitary wave solution (11),
periodic solitary wave solution (13), and soliton solitary wave
solution (15) plotted at (𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙1 = 9; 𝑙2 =20; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8), (𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0; 𝑙1 =9; 𝑙2 = −30; 𝜅 = −0.7; 𝑐 = 0.1; 𝑦 = 0.8), and (𝑎1 = 1; 𝛼 =0.6; 𝑙0 = 0.7; 𝑙1 = 9; 𝑙2 = 20; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8),
respectively. The rational solitary wave solution (17), periodic
solitary wave solution (19), and soliton solitary wave solution
(21) are evaluated in Figure 2 plotted at (𝑎1 = 1; 𝛼 = 0.6; 𝑙0 =0; 𝑙1 = 9; 𝑙2 = 20; 𝜅 = 0.7; 𝑐 = −0.1; 𝑦 = 0.8), (𝑎1 = 1; 𝛼 =0.6; 𝑙0 = 0; 𝑙1 = 9; 𝑙2 = −30; 𝜅 = −0.7; 𝑐 = −0.1; 𝑦 = 0.8),
and (𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙1 = 9; 𝑙2 = 20; 𝜅 = 0.7; 𝑐 =−0.1; 𝑦 = 0.8), respectively. Figure 3 shows a periodic solitary
wave solution (23) and a dark solitary wave solution (25)
plotted at (𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙4 = 9; 𝑙2 = 30; 𝜅 =−0.7; 𝑐 = 0.1; 𝑦 = 0.8) and (𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙4 =
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Figure 1: Plot of the exact traveling wave solutions of (a) rational solitary wave solution (11) with parameters 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙1 =9; 𝑙2 = 20; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8; (b) periodic solitary solution (13) plotted at 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0; 𝑙1 = 9; 𝑙2 = −30; 𝜅 = −0.7; 𝑐 = 0.1; 𝑦 =0.8; and (c) soliton solitary solution (15) plotted at 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙1 = 9; 𝑙2 = 20; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8.
9; 𝑙2 = −10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8), respectively. Periodic
solitary wave solution (27) and dark solitary wave solution
(29) plotted at (𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙4 = 9; 𝑙2 = 30; 𝜅 =−0.7; 𝑐 = 0.1; 𝑦 = 0.8) and (𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙4 =9; 𝑙2 = −10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8), respectively, are
evaluated in Figure 4. Figure 5 evaluates bright solitary wave
solution (31) and soliton solitary wave solution (33) plotted at
(𝑎1 = 1; 𝛼 = 0.6; 𝑙1 = 9; 𝑙2 = −10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8)
and (𝑎1 = 1; 𝛼 = 0.6; 𝑙1 = 9; 𝑙2 = 10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8),
respectively. Periodic solitary wave solution (35) and soliton
solitary wave solution (37) plotted at (𝑎1 = 1; 𝛼 = 0.6; 𝑙1 =9; 𝑙2 = −10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8) and (𝑎1 = 9; 𝛼 =0.6; 𝑙1 = 9; 𝑙2 = 10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8), respectively, are
evaluated in Figure 6. Figure 7 shows periodic solitary wave
solution (39) and dark solitary wave solution (41) plotted at
(𝑎1 = 9; 𝛼 = 0.6; 𝑙2 = −1; 𝑙3 = −1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8)
and (𝑎1 = 9; 𝛼 = 0.6; 𝑙2 = 9; 𝑙3 = 1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8),
respectively. Figure 8 shows periodic solitary wave solution
(43) and dark solitary wave solution (45) plotted at (𝑎1 =9; 𝛼 = 0.6; 𝑙2 = −1; 𝑙3 = −1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8) and
(𝑎1 = 1; 𝛼 = 0.6; 𝑙2 = 1; 𝑙3 = 1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8),
respectively. Also periodic solitary wave solution (47) and
dark solitary wave solution (49) plotted at (𝑎1 = 9; 𝑙2 =−3; 𝑙3 = −3; 𝑙4 = 1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8) and

(𝑎1 = 1; 𝑙2 = 5; 𝑙3 = 5; 𝑙4 = 0; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8),
respectively, are evaluated in Figure 9.The dispersion relation
among frequency (𝜆) and wave numbers (ℎ1, ℎ2) of (55) is
plotted in Figure 10. This relation determines how spatial
oscillations 𝑒𝑖ℎ2𝑥, 𝑒𝑖ℎ2𝑦 are linked to time oscillations 𝑒𝑖𝜆𝑡 of a
wave number of obtained solutions for the DSE.

5. Conclusion

By implementing the strong GEERE technique, this article
has effectively built fresh solitonic and reasonable regular
solutions for the DSE. Some freshly obtained solitary wave
solutions are provided graphically to display their physical
characteristics and also provide information on the circum-
stances for the creation of solitons of light and kink. The
solutions extracted have theoretical and experimental appli-
cations that can be anticipated to occur in other associated
revolutionary equations such as the nonlinear Schrödinger
equation to explain the Bose-Einstein condensation. We con-
trasted our solution to current existing solution and claimed
that there are many new solutions. The equation recognize
the huge variety of possible solutions for only values of a
small subset of parameters, which helps to comprehend the
physical phenomena of this equation. Modulation instability
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Figure 2: Plot of the exact traveling wave solutions of (a) rational solitary wave solution (17) with parameters 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0; 𝑙1 =9; 𝑙2 = 20; 𝜅 = 0.7; 𝑐 = −0.1; 𝑦 = 0.8; (b) periodic solitary wave solution (19) plotted at 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0; 𝑙1 = 9; 𝑙2 = −30; 𝜅 = −0.7; 𝑐 =−0.1; 𝑦 = 0.8; and (c) soliton solitary wave solution (21) plotted at 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙1 = 9; 𝑙2 = 20; 𝜅 = 0.7; 𝑐 = −0.1; 𝑦 = 0.8.
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Figure 3: Plot of the exact traveling wave solutions of (a) periodic solitary wave solution (23) with parameters 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙4 =9; 𝑙2 = 20; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8; (b) dark solitary wave solution (25) plotted at 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0; 𝑙4 = 9; 𝑙2 = −30; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 =0.8.
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Figure 4: Plot of the exact traveling wave solutions of (a) periodic solitary wave solution (27) with parameters 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙4 =9; 𝑙2 = 30; 𝜅 = −0.7; 𝑐 = 0.1; 𝑦 = 0.8; (b) dark solitary wave solution (29) plotted at 𝑎1 = 1; 𝛼 = 0.6; 𝑙0 = 0.7; 𝑙4 = 9; 𝑙2 = −10; 𝜅 = 0.7; 𝑐 =0.1; 𝑦 = 0.8.
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Figure 5: Plot of the exact traveling wave solutions of (a) bright solitary wave solution (31) with parameters 𝑎1 = 1; 𝛼 = 0.6; 𝑙1 = 9; 𝑙2 =−10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8; (b) soliton solitary wave solution (33) plotted at 𝑎1 = 1; 𝛼 = 0.6; 𝑙1 = 9; 𝑙2 = 10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8.
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Figure 6: Plot of the exact traveling wave solutions of (a) periodic solitary wave solution (35) with parameters 𝑎1 = 1; 𝛼 = 0.6; 𝑙1 = 9; 𝑙2 =−10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8; (b) soliton solitary wave solution (37) plotted at 𝑎1 = 9; 𝛼 = 0.6; 𝑙1 = 9; 𝑙2 = 10; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8.
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Figure 7: Plot of the exact traveling wave solutions of (a) periodic solitary wave solution (39) with parameters 𝑎1 = 9; 𝛼 = 0.6; 𝑙2 = −1; 𝑙3 =−1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8; (b) dark solitary wave solution (41) plotted at 𝑎1 = 9; 𝛼 = 0.6; 𝑙2 = 9; 𝑙3 = 1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8.
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Figure 8: Plot of the exact traveling wave solutions of (a) periodic solitary wave solution (43) with parameters 𝑎1 = 9; 𝛼 = 0.6; 𝑙2 = −1; 𝑙3 =−1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8; (b) dark solitary wave solution (45) plotted at 𝑎1 = 1; 𝛼 = 0.6; 𝑙2 = 1; 𝑙3 = 1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8.
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Figure 9: Plot of the exact traveling wave solutions of (a) periodic solitary wave solution (47) with parameters 𝑎1 = 9; 𝑙2 = −3; 𝑙3 = −3; 𝑙4 =1; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8; (b) dark solitary wave solution (49) plotted at 𝑎1 = 1; 𝑙2 = 5; 𝑙3 = 5; 𝑙4 = 0; 𝜅 = 0.7; 𝑐 = 0.1; 𝑦 = 0.8.
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

Figure 10: Diagram of dispersion relation among frequency (𝜆) and
wave number (ℎ1).
assessment is used to verify the stability of the solutions
acquired. We conclude that the modulation instability ana-
lytical expression is gained, which demonstrates that all
built solutions are accurate and stable. The effectiveness and
simplicity of the suggested GEERE technique show that it can
be applied to distinct kinds of separate nonlinear models in
different nonlinear science fields.
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