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In this paper, a high-order compact finite difference method is proposed for a class of temporal fractional subdiffusion equation. A
numerical scheme for the equation has been derived to obtain 2 − 𝛼 in time and fourth-order in space. We improve the results by
constructing a compact scheme of second-order in time while keeping fourth-order in space. Based on the 𝐿2-1𝜎 approximation
formula and a fourth-order compact finite difference approximation, the stability of the constructed scheme and its convergence of
second-order in time and fourth-order in space are rigorously proved using a discrete energy analysis method. Applications using
two model problems demonstrate the theoretical results.

1. Introduction

The Black-Scholes model, proposed in 1973 by Black and
Scholes [1] and Merton [2], gives a theoretical estimate of
the price of European-style options. Until Now, some of
Black-Scholes models involving the fractional derivatives
have emerged. In [3], Wyss priced a European call option
by a time-fractional Black-Scholes model. In [4], Liang et
al. derive a biparameter fractional Black-Merton-Scholes
equation and obtain the explicit option pricing formulas for
the European call option and put option, individually. An
explicit closed-form analytical solution for barrier options
under a generalized time-fractional Black-Scholes model by
using eigenfunction expansion method together with the
Laplace transform is derived in [5]. In [6], a discrete implicit
numerical scheme with a spatially second-order accuracy
and a temporally 2 − 𝛼 order accuracy is constructed; the
stability and convergence of the proposed numerical scheme
are analysed using Fourier analysis. In [7], H.Zhang et al.
use some numerical technique to price a European double-
knock-out barrier option, and then the characteristics of the
three fractional Black-Scholes models are analysed through
comparison with the classical Black-Scholes model. More
recently, a numerical scheme of fourth-order in space and 2−𝛼 in time is derived in [8]; the solvability and convergence of
the proposed numerical scheme are proved rigorously using

a Fourier analysis. Some computationally efficient numerical
methods have been proposed for solving fractional differ-
ential equation, for example, which include finite difference
methods, finite element methods, finite volume methods,
spectral methods, and meshless methods [9–26].

In this paper, we continue the work of R.H.De Staelen et
al. [8]. The class of equations is given by

𝜕𝛼𝐶 (𝑆, 𝑡)𝜕𝑡𝛼 + 12𝜎2𝑆2 𝜕
2𝐶 (𝑆, 𝑡)𝜕𝑆2 + (𝑟 − 𝐷) 𝑆𝜕𝐶 (𝑆, 𝑡)𝜕𝑆

= 𝑟𝐶 (𝑆, 𝑡) , (𝑆, 𝑡) ∈ (𝐵𝑑, 𝐵𝑢) × (0, 𝑇)
(1)

with the following boundary (barrier) and final conditions

𝐶 (𝐵𝑑, 𝑡) = 𝑃 (𝑡) ,
𝐶 (𝐵𝑢, 𝑡) = 𝑄 (𝑡) ,

𝑡 ∈ (0, 𝑇] ,
(2)

and its initial condition

𝐶 (𝑆, 𝑇) = 𝑉 (𝑆) , 𝑆 ∈ [𝐵𝑑, 𝐵𝑢] , (3)

where 𝑟 is the risk free rate, 𝐷 is the dividend rate, and𝜎 > 0 is the volatility of the returns. The functions 𝑃 and
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𝑄 are the rebates paid when the corresponding barrier is
hit. The terminal playoff of the option is 𝑉(𝑆). The fractional
derivative in (1) is a Caputo derivative defined as

𝜕𝛼𝐶 (𝑆, 𝑡)𝜕𝑡𝛼

= {{{{{{{

1Γ (1 − 𝛼) ∫𝑡
0

𝜕𝐶𝜕𝜂 (𝑆, 𝜂) (𝑡 − 𝜂)−𝛼 d𝜂, 0 < 𝛼 < 1,
𝜕𝐶 (𝑆, 𝑡)𝜕𝑡 , 𝛼 = 1.

(4)

As described in [8], we consider the transform problem of (1)

𝐶
0D
𝛼

𝑡𝑈 (𝑥, 𝑡) = 𝑎𝜕2𝑈 (𝑥, 𝑡)𝜕𝑥2 + 𝑏𝜕𝑈 (𝑥, 𝑡)𝜕𝑥 − 𝑐𝑈 (𝑥, 𝑡)
+ 𝑓 (𝑥, 𝑡) ,

(𝑥, 𝑡) ∈ (0,∞) × (0, 𝑇) ,
𝑈 (𝑏𝑑, 𝑡) = 𝑝 (𝑡) ,
𝑈 (𝑏𝑢, 𝑡) = 𝑞 (𝑡) ,

𝑡 ∈ (0, 𝑇] ,
𝑈 (𝑥, 0) = 𝜑 (𝑥) , 𝑥 ∈ [𝑏𝑑, 𝑏𝑢] .

(5)

The rest of the paper is organized as follows: in Section 2,
an efficient implicit numerical scheme with second-order
accuracy in time and fourth-order accuracy in space is
constructed. The analysis of the stability and convergence are
presented in Section 3. In Section 4, numerical examples are
given to illustrate the accuracy of the presented scheme and to
support our theoretical results. Concluding remarks are given
in the last section.

2. Construction of the Compact Finite
Difference Scheme

In order to simplify the computation and analysis of the
following compact finite difference scheme for Black-Scholes
model, we use an indirect approach by introducing a suitable
transformation.

According to some simple calculations, we transform
equation (5) into

𝐶
0D
𝛼

𝑡 𝑉(𝑥, 𝑡) = 𝑎𝜕2𝑉 (𝑥, 𝑡)𝜕𝑥2 − 𝑑𝑉 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) ,
(𝑥, 𝑡) ∈ (0,∞) × (0, 𝑇) ,

𝑉 (𝑏𝑑, 𝑡) = 𝑝∗ (𝑡) ,
𝑉 (𝑏𝑢, 𝑡) = 𝑞∗ (𝑡) ,

𝑡 ∈ (0, 𝑇] ,
𝑉 (𝑥, 0) = 𝜑∗ (𝑥) , 𝑥 ∈ [𝑏𝑑, 𝑏𝑢] .

(6)

where
𝑝∗ (𝑡) = 𝑝 (𝑡) ,
𝑞∗ (𝑡) = 𝑘 (𝑏𝑢) 𝑞 (𝑡) ,
𝜑∗ (𝑥) = 𝑘 (𝑥) 𝜑 (𝑥) .

(7)

It is clear that 𝑈(𝑥, 𝑡) is a solution of (5) if and only if 𝑉(𝑥, 𝑡)
is a solution of (6).

In order to construct the compact finite difference scheme
for the problem (5), we consider the above equivalent form
(6).

Let 𝜏 = 𝑇/𝑁 be the time step and ℎ = (𝑏𝑢−𝑏𝑑)/𝑀 = 𝐿/𝑀
be the spatial step, where𝑀,𝑁 are positive integers.

Since the grid function V = {V𝑖 | 0 ≤ 𝑖 ≤ 𝑀}, we then
define difference operators as follows:

𝛿𝑥V𝑖−1/2 = 1ℎ (V𝑖 − V𝑖−1) ,
𝛿2𝑥V𝑖 = 1ℎ2 (V𝑖+1 − 2V𝑖 + V𝑖−1) ,

H𝑥V𝑖 = V𝑖 + ℎ212𝛿2𝑥V𝑖,
(8)

We also define
𝑎0 = 𝜎1−𝛼,
𝑏0 = 0,
𝑎𝑘 = (𝑘 + 𝜎)1−𝛼 − (𝑘 − 𝛼2)1−𝛼 (𝑘 ≥ 1) ,
𝑏𝑘 = 12 − 𝛼 ((𝑘 + 𝜎)2−𝛼 − (𝑘 − 𝛼2)2−𝛼)

− 12 ((𝑘 + 𝜎)1−𝛼 + (𝑘 − 𝛼2 )1−𝛼) (𝑘 ≥ 1) .

(9)

where 𝜎 = 1 − 𝛼/2, and

𝑐𝑘,𝑛 =
{{{{{{{{{

𝑎0, 𝑘 = 0, 𝑛 = 1
𝑎𝑘 + 𝑏𝑘+1 − 𝑏𝑘, 0 ≤ 𝑘 ≤ 𝑛 − 2, 𝑛 ≥ 2
𝑎𝑛−1 − 𝑏𝑛−1, 𝑘 = 𝑛 − 1, 𝑛 ≥ 2.

(10)

Lemma 1. It holds (see [27])
1 − 𝛼2 (𝑘 + 𝜎)−𝛼 < 𝑎𝑘 − 𝑏𝑘 < (𝑘 + 𝜎)1−𝛼 − (𝑘 − 𝛼2)1−𝛼

(𝑘 ≥ 1) ,
(11)

In order to discretize (6) into a compact finite difference
system, we introduce the following lemmas.

Lemma 2. Assuming V(𝑡) ∈ C3[0, 𝑇], we have
𝐶
0D
𝛼

𝑡 V (𝑡𝑛−𝛼/2) = 1𝜇
𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛 (V (𝑡𝑘) − V (𝑡𝑘−1))
+ O (𝜏3−𝛼) .

(12)

where 𝜇 = 𝜏𝛼Γ(2 − 𝛼).
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Proof. From Lemma 2 of [9], we can obtain the proof of
lemma.

Lemma 3. Assuming V(𝑡) ∈ C2[0, 𝑇]. When 𝑛 ≥ 1, we obtain
V (𝑡𝑛−𝛼/2) = 𝛼2 V (𝑡𝑛−1) + (1 − 𝛼2) V (𝑡𝑛) + O (𝜏2) . (13)

Proof. According to some simple calculations, the proof
follows from Taylor expansions of the function V(𝑡) at the
point 𝑡𝑛−𝛼/2 for 𝑡 = 𝑡𝑛−1 and 𝑡 = 𝑡𝑛.

Since the above lemmas, we then discretize (6) into a
compact finite difference scheme. In order to analyse, we
define

𝛿𝑡V𝑛−1/2 = 1𝜏 (V𝑛 − V𝑛−1) (1 ≤ 𝑛 ≤ 𝑁) ,
V𝑛,𝛼/2 = 𝛼2 V𝑛−1 + (1 − 𝛼2) V𝑛 (1 ≤ 𝑛 ≤ 𝑁) .

(14)

We also define the grid functions as follows:

𝑉𝑛𝑖 = 𝑉 (𝑥𝑖, 𝑡𝑛) ,
𝑊𝑛𝑖 = 𝜕𝑉 (𝑥𝑖, 𝑡𝑛)𝜕𝑡 ,
𝑍𝑛𝑖 = 𝜕2𝑉 (𝑥𝑖, 𝑡𝑛)𝜕𝑥2 ,
𝑔𝑛𝑖 = 𝑔 (𝑥𝑖, 𝑡𝑛) ,

𝑔𝑛−𝛼/2𝑖 = 𝑔 (𝑥𝑖, 𝑡𝑛−𝛼/2) ,
𝑝∗,𝑛 = 𝑝∗ (𝑡𝑛) ,
𝑞∗,𝑛 = 𝑞∗ (𝑡𝑛) ,
𝜑∗𝑖 = 𝜑∗ (𝑥𝑖) .

(15)

For the second-order spatial derivative 𝑍𝑛𝑖 , we adopt the
following fourth-order compact approximation (see [28])

H𝑥𝑍𝑛𝑖 = 𝛿2𝑥V (𝑥𝑖) + 𝑂 (ℎ4) , 1 ≤ 𝑖 ≤ 𝑀 − 1, (16)

We consider equation (6) at the point (𝑥𝑖, 𝑡𝑛−𝛼/2); we can
obtain
𝐶
0D
𝛼

𝑡
𝑉 (𝑥𝑖, 𝑡𝑛−𝛼/2) = 𝑎𝑍𝑛−𝛼/2𝑖 − 𝑑𝑉𝑛−𝛼/2𝑖 + 𝑔𝑛−𝛼/2𝑖 . (17)

From Lemmas 2 and 3, we have

1𝜇
𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛 (𝑉𝑘𝑖 − 𝑉𝑘−1𝑖 )
= 𝑎𝑍𝑛,𝛼/2𝑖 − 𝑑𝑉𝑛,𝛼/2𝑖 + 𝑔𝑛−𝛼/2𝑖 + (𝑅𝛼𝑡 )𝑛𝑖 ,

0 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁,
(18)

where

(𝑅𝛼𝑡 )𝑛𝑖 = (𝑎 − 𝑑)O (𝜏2) + O (𝜏3−𝛼) ,
0 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁. (19)

We applyH𝑥 to equation (18); then we have

1𝜇
𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛H𝑥 (𝑉𝑘𝑖 − 𝑉𝑘−1𝑖 )
= 𝑎𝛿2𝑥𝑉𝑛,𝛼/2𝑖 − 𝑑H𝑥𝑉𝑛,𝛼/2𝑖 +H𝑥𝑔𝑛−𝛼/2𝑖 + (𝑅𝛼𝑡𝑥)𝑛𝑖 ,

1 ≤ 𝑖 ≤ 𝑀 − 1, 1 ≤ 𝑛 ≤ 𝑁,
(20)

where
(𝑅𝛼𝑡𝑥)𝑛𝑖 = H𝑥 (𝑅𝛼𝑡 )𝑛𝑖 + 𝑎 (𝑅𝛼𝑥)𝑛𝑖 ,

1 ≤ 𝑖 ≤ 𝑀 − 1, 1 ≤ 𝑛 ≤ 𝑁 (21)

and󵄨󵄨󵄨󵄨󵄨(𝑅𝛼𝑡𝑥)𝑛𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶𝑅 (𝜏2 + ℎ4) ,
1 ≤ 𝑖 ≤ 𝑀 − 1, 1 ≤ 𝑛 ≤ 𝑁. (22)

If we omit (𝑅𝛼𝑡𝑥)𝑛𝑖 , then we have the compact finite difference
scheme:

1𝜇
𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛H𝑥 (V𝑘𝑖 − V𝑘−1𝑖 )
= 𝑎𝛿2𝑥V𝑛,𝛼/2𝑖 − 𝑑H𝑥V𝑛,𝛼/2𝑖 +H𝑥𝑔𝑛−𝛼/2𝑖 ,

1 ≤ 𝑖 ≤ 𝑀 − 1, 1 ≤ 𝑛 ≤ 𝑁,
V (𝑏𝑑, 𝑡) = 𝑝∗ (𝑡) ,
V (𝑏𝑢, 𝑡) = 𝑞∗ (𝑡) ,

𝑡 ∈ (0, 𝑇] ,
V (𝑥, 0) = 𝜑∗ (𝑥) , 𝑥 ∈ [𝑏𝑑, 𝑏𝑢] .

(23)

3. Stability and Convergence of the Proposed
Compact Difference Scheme

Theorem 4. �e compact difference scheme (23) is uniquely
solvable.

Proof. The compact difference scheme (23) can be written in
matrix form

AV𝑛 = b𝑛−1, (24)

where

b𝑛−1 = 𝑛−1∑
𝑘=0

𝜁𝑘V𝑘, 𝜁𝑘 ∈ R (25)

The tridiagonal coefficient matrixA = (𝑎𝑖𝑗) yields
󵄨󵄨󵄨󵄨𝑎𝑖𝑖󵄨󵄨󵄨󵄨 = 56 ((𝑎(𝛼)0 + 𝑏(𝛼)1 )

𝜇 ) + 𝑎 (2 − 𝛼)ℎ2 + 5 (2 − 𝛼)12 𝑑,
∑
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
16 ((𝑎(𝛼)0 + 𝑏(𝛼)1 )

𝜇 ) − 𝑎 (2 − 𝛼)ℎ2 + (2 − 𝛼)12 𝑑
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(26)
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It is easy to see that the tridiagonal coefficient matrix A is
strictly diagonally dominant.Therefore, the coefficientmatrix
is nonsingular and hence invertible.

Next, we consider the stability and convergence analysis
of the compact difference scheme (23).

Letting Ω = {𝑢 | 𝑢 = (𝑢0, 𝑢1, . . . , 𝑢𝑀), 𝑢0 = 𝑢𝑀 = 0},
for grid functions 𝑢, V ∈ Ω, we define the inner product and
norm as follows:

(𝑢, V) = ℎ𝑀−1∑
𝑖=1

𝑢𝑖V𝑖,
‖𝑢‖ = (𝑢, 𝑢)1/2 ,

‖𝑢‖∞ = max
0≤𝑖≤𝑀

󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨 .
(𝛿𝑥𝑢, 𝛿𝑥V) = ℎ𝑀−1∑

𝑖=0

𝛿𝑥𝑢𝑖+1/2𝛿𝑥V𝑖+1/2,
|𝑢|1 = (𝛿𝑥𝑢, 𝛿𝑥𝑢]1/2 ,
‖𝑢‖1 = (‖𝑢‖2 + |𝑢|21)1/2 .

(27)

According to simple calculations, we obtain

(𝛿2𝑥𝑢, V) = − (𝛿𝑥𝑢, 𝛿𝑥V) ,
ℎ 󵄩󵄩󵄩󵄩󵄩𝛿2𝑥𝑢󵄩󵄩󵄩󵄩󵄩 ≤ 2 |𝑢|1 ,

ℎ |𝑢|1 ≤ 2 ‖𝑢‖ .
(28)

In order to analyse, we introduce the discrete inner
product and norm:

⟨𝑢, V⟩ = (H𝑥𝑢, −𝛿2𝑥V) = (𝛿𝑥𝑢, 𝛿𝑥V] − ℎ212 (𝛿2𝑥𝑢, 𝛿2𝑥V) ,
‖𝑢‖𝜀 = ⟨𝑢, 𝑢⟩1/2 .

(29)

Based on above inner product and norm, we have the
following lemmas.

Lemma 5 (see [29]). Suppose 𝑢 ∈ Ω, we obtain

󵄩󵄩󵄩󵄩H𝑥𝑢󵄩󵄩󵄩󵄩2 ≤ ‖𝑢‖2 ≤ 3𝐿216 ‖𝑢‖2𝜀 ,
‖𝑢‖2∞ ≤ 3𝐿8 ‖𝑢‖2𝜀 ,
‖𝑢‖21 ≤ 3 (8 + 𝐿2)

16 ‖𝑢‖2𝜀 .
(30)

Lemma 6 (see [27]). Suppose 𝑢 ∈ Ω, we obtain

‖𝑢‖ ≤ 𝐿28 󵄩󵄩󵄩󵄩󵄩𝛿2𝑥𝑢󵄩󵄩󵄩󵄩󵄩 ,
‖𝑢‖2𝜀 ≤ 3𝐿216 󵄩󵄩󵄩󵄩󵄩𝛿2𝑥𝑢󵄩󵄩󵄩󵄩󵄩2 .

(31)

Lemma 7 (see [9]). Suppose 𝑢 ∈ Ω, we obtain

( 𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛H𝑥 (𝑢𝑘 − 𝑢𝑘−1) , −𝛿2𝑥𝑢𝑛,𝛼/2)

≥ 12
𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛 (󵄩󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩󵄩2𝜀 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑘−1󵄩󵄩󵄩󵄩󵄩2𝜀) , 1 ≤ 𝑛 ≤ 𝑁.
(32)

In the next, we then analyse the stability and convergence
of the scheme (23).

Theorem8 (stability). Let V𝑛 = (V𝑛0 , V𝑛1 , . . . , V𝑛𝑀) be the solution
of the compact difference scheme (23) with V𝑛0 = V𝑛𝑀 = 0.
Assume that one of the conditions 1 ≤ 4(4𝜀 − 1)𝑎/3𝑑𝜀𝐿2 holds
for some positive constant 𝜀 > 1/4.

�en it holds

󵄩󵄩󵄩󵄩V𝑛󵄩󵄩󵄩󵄩2𝜀 ≤ 󵄩󵄩󵄩󵄩󵄩V0󵄩󵄩󵄩󵄩󵄩2𝜀 + 4𝜀Γ (1 − 𝛼) 𝑇𝛼𝑎 max
1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩󵄩H𝑥𝑔𝑛−𝛼/2󵄩󵄩󵄩󵄩󵄩2 ,
1 ≤ 𝑛 ≤ 𝑁.

(33)

Proof. We take the inner product of equation (23) with−𝛿2𝑥V𝑛,𝛼/2 yield
1𝜇 ( 𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛H𝑥 (V𝑘 − V𝑘−1) , −𝛿2𝑥V𝑛,𝛼/2)
= −𝑎 󵄩󵄩󵄩󵄩󵄩𝛿2𝑥V𝑛,𝛼/2󵄩󵄩󵄩󵄩󵄩2 − 𝑑 (H𝑥 (V𝑛,𝛼/2) , 𝛿2𝑥V𝑛,𝛼/2)

− (H𝑥𝑔𝑛−𝛼/2, 𝛿2𝑥V𝑛,𝛼/2) , 1 ≤ 𝑛 ≤ 𝑁.
(34)

Using Lemma 7,

12𝜇
𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛 (󵄩󵄩󵄩󵄩󵄩V𝑘󵄩󵄩󵄩󵄩󵄩2𝜀 − 󵄩󵄩󵄩󵄩󵄩V𝑘−1󵄩󵄩󵄩󵄩󵄩2𝜀)
≤ −𝑎 󵄩󵄩󵄩󵄩󵄩𝛿2𝑥V𝑛,𝛼/2󵄩󵄩󵄩󵄩󵄩2 + 𝑑 󵄩󵄩󵄩󵄩󵄩V𝑛,𝛼/2󵄩󵄩󵄩󵄩󵄩2𝜀

− (H𝑥𝑔𝑛−𝛼/2, 𝛿2𝑥𝑢𝑛,𝛼/2) , 1 ≤ 𝑛 ≤ 𝑁.
(35)

When 1 ≤ 4(4𝜀 − 1)𝑎/3𝑑𝜀𝐿2 for some positive constant𝜀 > 1/4, we have from the Cauchy-Schwarz inequality and
Lemmas 6 that

𝑑 󵄩󵄩󵄩󵄩󵄩V𝑛,𝛼/2󵄩󵄩󵄩󵄩󵄩2𝜀 ≤ 3𝑑𝐿216 󵄩󵄩󵄩󵄩󵄩𝛿2𝑥V𝑛,𝛼/2󵄩󵄩󵄩󵄩󵄩2

≤ (𝑎 − 𝑎4𝜀) 󵄩󵄩󵄩󵄩󵄩𝛿2𝑥V𝑛,𝛼/2󵄩󵄩󵄩󵄩󵄩2
(36)

− (H𝑥𝑔𝑛−𝛼/2, 𝛿2𝑥𝑢𝑛,𝛼/2)
≤ 𝜀𝑎 󵄩󵄩󵄩󵄩󵄩H𝑥𝑔𝑛−𝛼/2󵄩󵄩󵄩󵄩󵄩2 + 𝑎4𝜀 󵄩󵄩󵄩󵄩󵄩𝛿2𝑥V𝑛,𝛼/2󵄩󵄩󵄩󵄩󵄩2

(37)

By (35) and the Cauchy-Schwarz inequality,

− 𝑎 󵄩󵄩󵄩󵄩󵄩𝛿2𝑥𝑢𝑛,𝛼/2󵄩󵄩󵄩󵄩󵄩2 + 𝑑 󵄩󵄩󵄩󵄩󵄩V𝑛,𝛼/2󵄩󵄩󵄩󵄩󵄩2𝜀 − (H𝑥𝑔𝑛−𝛼/2, 𝛿2𝑥𝑢𝑛,𝛼/2)
≤ 𝜀𝑎 󵄩󵄩󵄩󵄩󵄩H𝑥𝑔𝑛−𝛼/2󵄩󵄩󵄩󵄩󵄩2 .

(38)
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Substituting (38) into (35) leads to

𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛 (󵄩󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩󵄩2𝜀 − 󵄩󵄩󵄩󵄩󵄩𝑢𝑘−1󵄩󵄩󵄩󵄩󵄩2𝜀) ≤ 2𝜀𝜇𝑎 󵄩󵄩󵄩󵄩󵄩H𝑥𝑔𝑛−𝛼/2󵄩󵄩󵄩󵄩󵄩2 . (39)

The above inequality can be rewritten as

𝑐0,𝑛 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2𝜀 ≤
𝑛−1∑
𝑘=1

(𝑐𝑛−𝑘−1,𝑛 − 𝑐𝑛−𝑘,𝑛) 󵄩󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩󵄩2𝜀 + 𝑐𝑛−1,𝑛 󵄩󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩󵄩2∗
+ 2𝜀𝜇𝑎 󵄩󵄩󵄩󵄩󵄩H𝑥𝑔𝑛−𝛼/2󵄩󵄩󵄩󵄩󵄩2 .

(40)

Since by the definition of 𝑐𝑛−1,𝑛,
𝜇𝑐𝑛−1,𝑛 =

𝜇𝑎𝑛−1 − 𝑏𝑛−1 < 2Γ (1 − 𝛼)𝑇𝛼, (41)

we have from (40) that

𝑐0,𝑛 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2𝜀
≤ 𝑛−1∑
𝑘=1

(𝑐𝑛−𝑘−1,𝑛 − 𝑐𝑛−𝑘,𝑛) 󵄩󵄩󵄩󵄩󵄩𝑢𝑘󵄩󵄩󵄩󵄩󵄩2𝜀
+ 𝑐𝑛−1,𝑛 (󵄩󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩󵄩2𝜀 + 4𝜀Γ (1 − 𝛼) 𝑇𝛼𝑎 󵄩󵄩󵄩󵄩󵄩H𝑥𝑔𝑛−𝛼/2󵄩󵄩󵄩󵄩󵄩2) .

(42)

Letting

𝐸 = 󵄩󵄩󵄩󵄩󵄩𝑢0󵄩󵄩󵄩󵄩󵄩2𝜀 + 4𝜀Γ (1 − 𝛼) 𝑇𝛼𝑎 max
1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩󵄩H𝑥𝑔𝑛−𝛼/2󵄩󵄩󵄩󵄩󵄩2 (43)

and assuming ‖𝑢𝑘‖2𝜀 ≤ 𝐸(0 ≤ 𝑘 ≤ 𝑛 − 1), we obtain
𝑐0,𝑛 󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩2𝜀 ≤

𝑛−1∑
𝑘=1

(𝑐𝑛−𝑘−1,𝑛 − 𝑐𝑛−𝑘,𝑛) 𝐸 + 𝑐𝑛−1,𝑛𝐸 = 𝑐0,𝑛𝐸. (44)

and we have the needed estimates.

Letting 𝑒𝑛𝑖 = 𝑉𝑛𝑖 − V𝑛𝑖 , we get the following error equation:

1𝜇
𝑛∑
𝑘=1

𝑐𝑛−𝑘,𝑛H𝑥 (𝑒𝑘𝑖 − 𝑒𝑘−1𝑖 )
= 𝑎𝛿2𝑥𝑒𝑛,𝛼/2𝑖 − 𝑑H𝑥𝑒𝑛,𝛼/2𝑖 + (𝑅𝛼𝑡𝑥)𝑛𝑖 ,

1 ≤ 𝑖 ≤ 𝑀 − 1, 1 ≤ 𝑛 ≤ 𝑁,
𝑒 (𝑏𝑑, 𝑡) = 0,
𝑒 (𝑏𝑢, 𝑡) = 0,

𝑡 ∈ (0, 𝑇] ,
𝑒 (𝑥, 0) = 0, 𝑥 ∈ [𝑏𝑑, 𝑏𝑢] .

(45)

Since the above error equation (45), we now obtain the
following convergence results.

Theorem 9 (convergence). Let 𝑉𝑛𝑖 denote the value of the
solution V(𝑥, 𝑡) of (23) at the mesh point (𝑥𝑖, 𝑡𝑛) and let
V𝑛 = (V𝑛0 , V𝑛1 , . . . , V𝑛𝑀) be the solution of the compact difference
scheme (23). �en when 1 ≤ 4(4𝜀 − 1)𝑎/3𝑑𝜀𝐿2, it holds󵄩󵄩󵄩󵄩𝑈𝑛 − 𝑢𝑛󵄩󵄩󵄩󵄩𝜀 ≤ 𝐶1 (𝜏2 + ℎ4) , 1 ≤ 𝑛 ≤ 𝑁, (46)

where

𝐶1 = (4Γ (1 − 𝛼) 𝑇𝛼𝐿𝐶2𝑅𝑎 )1/2 , (47)

Proof. It follows fromTheorem 8 that

󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2𝜀 ≤ 4𝜀Γ (1 − 𝛼) 𝑇𝛼𝑎 max
1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩󵄩(𝑅𝛼𝑡𝑥)𝑛𝑖 󵄩󵄩󵄩󵄩󵄩2 , 1 ≤ 𝑛 ≤ 𝑁, (48)

Applying (22), we get
󵄩󵄩󵄩󵄩𝑒𝑛󵄩󵄩󵄩󵄩2𝜀 ≤ 𝐶21 (𝜏2 + ℎ4)2 . (49)

The estimate (46) is proved.

Remark 10. The constraint condition 1 ≤ 4(4𝜀 − 1)𝑎/3𝑑𝜀𝐿2
in Theorems 8 and 9 is only for the analysis of the stability
and convergence of the compact difference scheme (23).This
condition is easily verifiable for practical problems.

4. Numerical Experiment

For demonstrating the efficiency of the compact difference
scheme (23), we make two numerical experiments of it.

Suppose 𝑉𝑛𝑖 = V(𝑥𝑖, 𝑡𝑛) be the value of the solution V(𝑥, 𝑡)
of the problem (1)–(3) at the mesh point (𝑥𝑖, 𝑡𝑛). From (22),
we can see that󵄩󵄩󵄩󵄩𝑉𝑛 − V𝑛󵄩󵄩󵄩󵄩] ≤ 𝐶2 (𝜏2 + ℎ4) , ] = 1, 2,∞ (50)

where𝐶2 is a positive constant independent. In order to check
this accuracy of the compact difference scheme, we compute
the following norm errors:

E] (𝜏, ℎ) = max
0≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝑉𝑛 − V𝑛󵄩󵄩󵄩󵄩] (] = 1, 2,∞) . (51)

The temporal convergence order and the spatial convergence
order are denoted by

Ot
] (𝜏, ℎ) = log2 (E] (2𝜏, ℎ)

E] (𝜏, ℎ) ) ,
Os

] (𝜏, ℎ) = log2 (E] (𝜏, 2ℎ)
E] (𝜏, ℎ) )

(] = 1, 2,∞) .
(52)

Example 1. We first consider a problem, which is governed
by equation (1) in [0, 1] × [0, 1] with 𝑟 = 0.05, 𝜎 = 0.25, 𝑎 =𝜎2/2, 𝑏 = 𝑟 − 𝑎, 𝑐 = 𝑟 and

𝑓 (𝑥, 𝑡) = ( 2𝑡2−𝛼Γ (3 − 𝛼) + 2𝑡1−𝛼Γ (2 − 𝛼)𝑥2 (1 − 𝑥) − (𝑡 + 1)2

⋅ [𝑎 (2 − 6𝑥) + 𝑏 (2𝑥 − 3𝑥2) − 𝑐𝑥2 (1 − 𝑥)]) .
(53)
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Table 1: The errors and the temporal convergence orders of the compact difference scheme (23) for Example 1 (ℎ = 1/100).
𝛼 𝜏 E1(𝜏, ℎ) Ot

1(𝜏, ℎ) E2(𝜏, ℎ) Ot
2(𝜏, ℎ) E∞(𝜏, ℎ) Ot

∞(𝜏, ℎ)
1/4 1/10 3.7361e–05 3.7314e–05 6.2608e–05

1/20 9.3611e–06 1.9968 9.3492e–06 1.9968 1.5684e–05 1.9970
1/40 2.3429e–06 1.9984 2.3399e–06 1.9984 3.9251e–06 1.9985
1/80 5.8603e–07 1.9992 5.8528e–07 1.9992 9.8176e–07 1.9993
1/160 1.4654e–07 1.9997 1.4635e–07 1.9997 2.4549e–07 1.9997
1/320 3.6634e–08 2.0001 3.6587e–08 2.0001 6.1372e–08 2.0000

1/2 1/10 6.7788e–05 6.7702e–05 1.1393e–04
1/20 1.6994e–05 1.9960 1.6972e–05 1.9960 2.8555e–05 1.9964
1/40 4.2543e–06 1.9980 4.2489e–06 1.9980 7.1480e–06 1.9981
1/80 1.0643e–06 1.9990 1.0630e–06 1.9990 1.7882e–06 1.9991
1/160 2.6617e–07 1.9995 2.6583e–07 1.9995 4.4718e–07 1.9996
1/320 6.6548e–08 1.9999 6.6463e–08 1.9999 1.1181e–07 1.9999

3/4 1/10 8.8226e–05 8.8110e–05 1.4950e–04
1/20 2.2098e–05 1.9973 2.2069e–05 1.9973 3.7435e–05 1.9976
1/40 5.5299e–06 1.9986 5.5226e–06 1.9986 9.3672e–06 1.9987
1/80 1.3832e–06 1.9993 1.3813e–06 1.9993 2.3429e–06 1.9993
1/160 3.4587e–07 1.9996 3.4542e–07 1.9996 5.8585e–07 1.9997
1/320 8.6475e–08 1.9999 8.6361e–08 1.9999 1.4647e–07 1.9999

Table 2: The errors and the spatial convergence orders of the compact difference scheme (23) for Example 1 (ℎ = 1/10000).
𝛼 𝜏 E1(𝜏, ℎ) Ot

1(𝜏, ℎ) E2(𝜏, ℎ) Ot
2(𝜏, ℎ) E∞(𝜏, ℎ) Ot

∞(𝜏, ℎ)
1/4 1/2 1.1190e–04 6.4607e–05 9.1369e–05

1/4 5.4155e–06 4.3690 4.2667e–06 3.9205 5.4429e–06 4.0693
1/8 2.9041e–07 4.2209 2.6840e–07 3.9907 3.3922e–07 4.0041
1/16 1.7125e–08 4.0840 1.6758e–08 4.0015 2.1165e–08 4.0024
1/32 1.0264e–09 4.0604 1.0207e–09 4.0372 1.2889e–09 4.0375

1/2 1/2 1.0340e–04 5.9701e–05 8.4430e–05
1/4 5.0151e–06 4.3659 3.9472e–06 3.9189 4.9995e–06 4.0779
1/8 2.6907e–07 4.2202 2.4841e–07 3.9900 3.1142e–07 4.0048
1/16 1.5831e–08 4.0871 1.5487e–08 4.0036 1.9400e–08 4.0047
1/32 9.2534e–10 4.0967 9.2011e–10 4.0731 1.1538e–09 4.0716

3/4 1/2 9.3459e–05 5.3959e–05 7.6309e–05
1/4 4.5477e–06 4.3611 3.5734e–06 3.9165 4.4770e–06 4.0912
1/8 2.4420e–07 4.2190 2.2506e–07 3.9889 2.7865e–07 4.0060
1/16 1.4335e–08 4.0905 1.4014e–08 4.0053 1.7372e–08 4.0036
1/32 8.2043e–10 4.1270 8.1562e–10 4.1028 1.0150e–09 4.0971

The boundary and initial conditions are given by (2) and (3)
with

𝑈 (𝑥, 0) = 𝑥2 (1 − 𝑥) ,
𝑈 (0, 𝑡) = 𝑈 (1, 𝑡) = 0. (54)

It is easy to check that𝑈(𝑥, 𝑡) = (𝑡+1)2𝑥2(1−𝑥) is the solution
of this problem.

For different 𝛼, we let the spatial step ℎ = 1/100. Table 1
gives the errors E](𝜏, ℎ) (] = 1, 2,∞) and the temporal
convergence orders Ot

](𝜏, ℎ) (] = 1, 2,∞) of the computed
solution 𝑈𝑛𝑖 for 𝛼 = 1/4, 1/2, 3/4 and different time step 𝜏.
From the table, we can see that the computed solution 𝑈𝑛𝑖

has the second-order temporal accuracy. For comparison, the
corresponding temporal convergence orders Ot

](𝜏, ℎ) (] =∞) given in [8] has only 2−𝛼 order; thus it is far less accurate
than the compact difference scheme (23) given in this paper.

Next, we compute the spatial convergence order of the
compact difference scheme (23). Table 2 presents the errors
E](𝜏, ℎ) (] = 1, 2,∞) and the spatial convergence orders
o𝑟𝑑𝑒𝑟𝑂s

](𝜏, ℎ) (] = 1, 2,∞). The table demonstrates that the
compact difference scheme (23) has the fourth-order spatial
accuracy.

Example 2. In this example, we test the error and the
convergence order of the compact difference scheme (23).
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Table 3: The errors and the temporal convergence orders of the compact difference scheme (23) for Example 2 (𝜏 = 1/100).
𝛼 ℎ E1(𝜏, ℎ) Os

1(𝜏, ℎ) E2(𝜏, ℎ) Os
2(𝜏, ℎ) E∞(𝜏, ℎ) Os

∞(𝜏, ℎ)
1/4 1/10 9.5681e–05 9.5622e–05 1.3266e–04

1/20 2.3985e–05 1.9961 2.3971e–05 1.9961 3.3254e–05 1.9961
1/40 6.0044e–06 1.9981 6.0007e–06 1.9981 8.3244e–06 1.9981
1/80 1.5021e–06 1.9990 1.5012e–06 1.9990 2.0825e–06 1.9991
1/160 3.7564e–07 1.9996 3.7541e–07 1.9996 5.2078e–07 1.9996
1/320 9.3916e–08 1.9999 9.3859e–08 1.9999 1.3020e–07 1.9999

1/2 1/10 1.7283e–04 1.7272e–04 2.4033e–04
1/20 4.3358e–05 1.9950 4.3331e–05 1.9950 6.0286e–05 1.9951
1/40 1.0858e–05 1.9975 1.0852e–05 1.9975 1.5097e–05 1.9976
1/80 2.7169e–06 1.9987 2.7153e–06 1.9987 3.7774e–06 1.9988
1/160 6.7952e–07 1.9994 6.7910e–07 1.9994 9.4474e–07 1.9994
1/320 1.6991e–07 1.9998 1.6980e–07 1.9998 2.3622e–07 1.9998

3/4 1/10 2.2075e–04 2.2061e–04 3.0894e–04
1/20 5.5326e–05 1.9964 5.5291e–05 1.9964 7.7418e–05 1.9966
1/40 1.3849e–05 1.9981 1.3841e–05 1.9981 1.9378e–05 1.9983
1/80 3.4646e–06 1.9991 3.4624e–06 1.9991 4.8476e–06 1.9991
1/160 8.6641e–07 1.9995 8.6587e–07 1.9995 1.2123e–06 1.9996
1/320 2.1663e–07 1.9998 2.1650e–07 1.9998 3.0311e–07 1.9998

Table 4: The errors and the spatial convergence orders of the compact difference scheme (23) for Example 2 (ℎ = 1/15000).
𝛼 𝜏 E1(𝜏, ℎ) Ot

1(𝜏, ℎ) E2(𝜏, ℎ) Ot
2(𝜏, ℎ) E∞(𝜏, ℎ) Ot

∞(𝜏, ℎ)
1/4 1/2 1.2909e–04 7.4532e–05 1.0540e–04

1/4 6.2469e–06 4.3691 4.9219e–06 3.9206 6.2789e–06 4.0693
1/8 3.3499e–07 4.2210 3.0961e–07 3.9907 3.9130e–07 4.0042
1/16 1.9745e–08 4.0846 1.9323e–08 4.0021 2.4403e–08 4.0031
1/32 1.1750e–09 4.0707 1.1685e–09 4.0475 1.4745e–09 4.0488

1/2 1/2 1.1929e–04 6.8871e–05 9.7399e–05
1/4 5.7849e–06 4.3660 4.5533e–06 3.9189 5.7675e–06 4.0779
1/8 3.1036e–07 4.2203 2.8654e–07 3.9901 3.5923e–07 4.0050
1/16 1.8246e–08 4.0883 1.7849e–08 4.0048 2.2357e–08 4.0061
1/32 1.0507e–09 4.1182 1.0447e–09 4.0946 1.3056e–09 4.0980

3/4 1/2 1.0782e–04 6.2247e–05 8.8031e–05
1/4 5.2457e–06 4.3613 4.1220e–06 3.9166 5.1648e–06 4.0912
1/8 2.8166e–07 4.2191 2.5959e–07 3.9891 3.2142e–07 4.0062
1/16 1.6515e–08 4.0921 1.6146e–08 4.0070 2.0016e–08 4.0053
1/32 9.2416e–10 4.1595 9.1874e–10 4.1354 1.1316e–09 4.1447

Consider equation (1) in the domain [0, 1] × [0, 1] with 𝑟 =0.5, 𝑎 = 1, 𝑏 = 𝑟 − 𝑎, 𝑐 = 𝑟 and
𝑓 (𝑥, 𝑡) = ( 2𝑡2−𝛼Γ (3 − 𝛼) + 2𝑡1−𝛼Γ (2 − 𝛼) (𝑥3 + 𝑥2 + 1)

− (𝑡 + 1)2
⋅ [𝑎 (2 + 6𝑥) + 𝑏 (2𝑥 + 3𝑥2) − 𝑐 (𝑥3 + 𝑥2 + 1)]) .

(55)

The boundary and initial conditions are given by (2) and (3)
with

𝜙0 (𝑡) = 𝑥3 + 𝑥2 + 1,

𝑈 (0, 𝑡) = (𝑡 + 1)2 ,
𝑈 (1, 𝑡) = 3 (𝑡 + 1)2 .

(56)

It is clear that 𝑈(𝑥, 𝑡) = (𝑡 + 1)2(𝑥3 + 𝑥2 + 1) is the exact
analytical solution of this problem.

Apply the compact difference scheme (23) to solve the
above problem. Table 3 presents the errors E](𝜏, ℎ) (] =1, 2,∞) and the temporal convergence orders Ot

](𝜏, ℎ) (] =1, 2,∞); we can see that the computed solution 𝑈𝑛𝑖 has the
second-order temporal accuracy.

From Table 4, we can obtain the errors E](𝜏, ℎ) (] = 1, 2,∞) and the spatial convergence ordersOs
](𝜏, ℎ) (] = 1, 2,∞).
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These numerical results demonstrate that the accuracy of the
compact difference scheme (23) is fourth-order.

5. Concluding Remarks

In this paper, a high-order compact finite difference method
for a class of time-fractional Black-Scholes equations is
presented and analysed. We apply the 𝐿2-1𝜎 approximation
formula to the Caputo derivative; then we construct a fourth-
order compact finite difference approximation for the spatial
derivative. We have analysed the solvability, stability, and
convergence of the constructed scheme and provided the
optimal error estimates. The constructed scheme has the
second-order temporal accuracy and the fourth-order spatial
accuracy, which improves the temporal accuracy of the
method given in [8].
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