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By using the complex variable function theory and the conformal mapping method, the scattering of plane shear wave (SH-wave) 
around an arbitrary shaped nano-cavity is studied. Surface e�ects at the nanoscale are explained based on the surface elasticity 
theory. According to the generalized Yong–Laplace equations, the boundary conditions are given, and the in�nite algebraic equations 
for solving the unknown coe�cients of the scattered wave solutions are established. �e numerical solutions of the stress �eld can 
be obtained by using the orthogonality of trigonometric functions. Lastly, the numerical results of dynamic stress concentration 
factor around a circular hole, an elliptic hole and a square hole as the special cases are discussed. �e numerical results show that 
the surface e�ect and wave number have a signi�cant e�ect on the dynamic stress concentration, and prove that our results from 
theoretical derivation are correct.

1. Introduction

Since the scattering problem plays an important role in under-
standing the propagation phenomena of various waves in 
engineering materials and structures, the elastic wave scat-
tering by the cavity embedded in the elastic matrix have 
always been a hot topic in wave motion theory. �e applica-
tion and development of mineral exploration, petroleum 
acquisition, quantitative nondestructive exploration, radar, 
underwater sonar, blasting and other technologies are all 
based on understanding the relationship between the scatter-
ing of elastic waves and the geometrical dimensions and phys-
ical parameters of defective bodies in elastic matrix. Pao and 
Mow [1] discussed in detail the di�raction of elastic waves in 
cavity/inclusion in an elastic medium by the methods of wave 
functions expansion, integral equation, and integral trans-
form method. Using the complex variable function theory, 
Liu [2] discussed the dynamic stress concentration around a 
circular hole caused by SH-wave in an anisotropic medium. 
Subsequently, Liu et al. [3, 4] studied the scattering of SH-wave 
around an elliptical hole and cracks. In recent years, the scat-
tering of circular cavity in circular domain to SH waves was 
analyzed by Wang and Jiang [5]. Liu et al. [6] discussed the 

scattering of plane SH-waves by an arbitrary shaped cavity 
embedded in a wedge-shaped domain by the method of 
IBEM. �en Yang et al. [7, 8] studied the scattering of shear 
waves by a circular or an elliptical cavity in inhomogeneous 
medium. Further, Ghafarollahi and Shodja [9] proposed 
an analytical treatment for the scattering of SH-waves by 
an  elliptical cavity/crack which is embedded near the inter-
face between exponentially graded and homogeneous 
half-spaces.

However, the above studies were carried out at the mac-
roscale, so the in§uence of the surface stresses was not con-
sidered. With the rapid development of nanotechnology, it is 
necessary to understand the mechanical behavior of nanoma-
terials and nanostructures. At the nano-scale, the surface e�ect 
becomes signi�cant due to the increasing ratio of surface to 
bulk volume [10]. �e surface elasticity theory that considers 
the surface/interface in§uences were proposed by Gurtin et al. 
[11], and Miller and Shenoy’s [12, 13] results agreed with the 
surface elasticity theory. Subsequently, a geometric illustration 
to prove the generalized Yong–Laplace equation was presented 
by Chen et al. [14]. �erefore, the surface elasticity theory has 
been widely applied to study the various mechanical behaviors 
of materials and constructers at nano-scale [15–17].
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By using the surface elasticity theory, Wang et al. [18, 19] 
considered the di�ractions of �-wave by a nano-cavity. 
Further, Ou and Lee [20] discussed the e�ects of interface 
energy on the scattering of plane elastic wave by a nano-sized 
coated �ber. Ru et al. [21–23] studied the di�raction of the 
elastic waves around a cylindrical nano-inclusion and then 
studied the surface e�ects of the scatterings of the vertical 
shear wave by a cluster of nanosized cylindrical holes. Wu and 
Ou [24, 25] studied the interface e�ects of SH-waves’ scatter-
ing around a cylindrical nano-inclusion by wave functions 
expansion method and complex variable function theory 
respectively. However, thanks to the complex boundary con-
ditions of the arbitrary shaped cavity, most of those studies 
are con�ned to the circular hole or the spherical cavity/inclu-
sion at the nano-size. Up to now, very few studies thought 
about the scattering of SH-wave by an arbitrary shaped 
nano-cavity. �erefore, it is necessary for us to study the rel-
evant contents of the issue.

In this work, based on the theory of surface elasticity, the 
scattering of SH-wave around an arbitrary shaped nano-cavity 
embedded in an in�nite elastic medium is studied, in which 
the numerical solutions of displacement �elds are expressed 
by employing the complex variable function theory and the 
conformal mapping. �e numerical results of dynamic stress 
concentration factor about a circular hole, an elliptic hole are 
illustrated graphically. �e e�ects of surface energy on the 
dynamic stress concentration factor in the matrix material 
are analyzed. �e paper is organized as follows. Section 2 
brie§y introduces the theory of surface elasticity. �e solution 
for SH wave �eld around an arbitrary shaped nano-cavity is 
obtained using the method of conformal mapping. �e gov-
erning equation and the corresponding boundary condition 
for the problem under consideration are presented in Section 
3. In Section 4 discusses the surface e�ects on the dynamical 
stress concentration induced by incident SH-wave with a cir-
cular hole and an elliptic hole. �e conclusions are presented 
in Section 5.

2. Surface Elasticity

According to the surface elasticity theory, a surface is consid-
ered to be a negligibly �lm that adheres to the matrix without 
slipping. �e equilibrium equations and the isotropic consti-
tutive relations in the matrix are the same as those in the clas-
sical theory of elasticity, but the presence of surface stress leads 
to nonclassical boundary conditions. To learn more about it, 
refer to Gurtin [11].

�e surface stress tensor �(sur)��  and the surface energy den-
sity �(���) satisfy the following formula

where ��� is the second-rank tensor of surface strain, ��� is the 
Kronecker delta. All repeated Latin indices (1, 2, 3) and Greek 
indices (1, 2) in the entire paper use Einstein’s summation 
convention.

(1)�(sur)�� = ���� + ������ ,

Based on the generalized Yong–Laplace equation [14], the 
equilibrium equations and the constitutive relations on the 
surface are

where �, �(I), �(sur) are the stress tensors of the matrix, the inclu-
sion, and the surface, respectively, � denotes the normal vector 
of the surface, and ∇� ⋅ �(sur) is the interface divergence. �(sur)
and �(sur) are two surface constants. �e residual surface tension 
�0 is not considered in our dynamic analysis, i.e. �0 = 0.

Since the classical elastic theory is established in the 
matrix, the equilibrium equations and isotropic constitutive 
relations are written as

where � is the time, � is the mass density of the material, � and 
� are the shear modulus and the Poisson’s ratio, respectively, 
and ���, ��� are stress tensor and strain tensor in the matrix 
material, respectively. �� is the component of displacement, 
and the strain tensor is related to the displacement vector �
by

3. The Scattering of SH-Wave Around an 
Arbitrary Shaped Nano-Cavity

Based on surface elasticity theory, we discuss the scattering of 
SH-wave by an arbitrary shaped nano-cavity embedded in an 
in�nite elastic medium, as shown in Figure 1.

�e anti-plane governing equation in the matrix is

(2)�(sur)�� = �0��� + 2(�(sur) − �0)������ + (�(sur) + �0)������.

(3)(� − �(I))n = −∇
s
⋅ �(sur),

(4)���,� = ��
2��
��2 ,

(5)��� = 2�(��� + �1 − �������),

(6)��� = 12(��,� + ��,�).

(7)
����
�� +
����
�� = �

�2�
��2 ,

x

L

SH-wave

y

z = x + iy

Figure 1:  �e scattering of SH-wave around an arbitrary shaped 
nano-cavity.
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where ���, ��� are the shear stresses in the bulk. � is the 
 displacement along the � axis.

�e relations between stresses and displacement are

By substituting Equation (8) into Equation (7), we obtain

For the steady-state response, the time can be separated as 
� = ��−���, then Equation (9) can be expressed as

where � is the displacement function, � = �/� is the wave 
number, � = √�/� is the shear velocity of the media, � is the 
circular frequency, and � is the mass density.

Based on the complex variable function theory, we intro-
duce complex variables � = � + ��, �̄ = � − ��. Equations (10) 
and (8) are

In order to solve the scattering of the noncircular cavity, the 
mapping function maps the arbitrary shaped nano-cavity 
boundary � of the �− plane to a conformal circle of radius �
with the boundary � of the �− plane, as shown in Figure 2.

Introduce the conformal mapping function

Substituting the mapping function into Equation (11), the 
following equation is obtained

(8)��� = ����� , ��� = �
��
�� .

(9)
�2�
��2 +
�2�
��2 =
�
�
�2�
��2 .

(10)∇2�+�2� = 0,

(11)�2�
����̄ +

1
4�
2� = 0.

(12)��� = �(���� +
��
��̄ ), ��� = ��(

��
�� +
��
��̄ ).

(13)� = g(�), � = ����.

(14)
1

g �(�)g �(�)
�2�
���� +

1
4�
2� = 0,

Introducing the cylindrical coordinates (�, �, �), in �-plane, 
we have

Assume that a harmonically plane SH-wave propagates in the 
positive �-direction, as shown in Figure 2. According to 
Equation (11), the general solution of incident plane SH-wave 
function �(Inc) in the cylindrical coordinates is expressed as 
[1]

where �0 is the amplitude of the incident wave, ��(⋅) is the �th
order Bessel function of the �rst kind, and the coe�cient �� = 1
for � = 0 and �� = 2 for � ≥ 1.

�e scattered wave function �(Sca) in the cylindrical 
 coordinates is expressed as [1]

where �(1)� (⋅) is the �th order Hankel function of the �rst kind, 
and �� are unknown coe�cients to be determined by the 
boundary conditions.

�e total wave function in the matrix is given by the 
 addition of �(Inc) and �(Sca)

According to the Equations (15)–(17), we can obtain

where

(15)

��� = ������g �(�)����
(����� + �

��
�� ),

��� = �������g �(�)����
(����� + �

��
�� ).

(16)

�(Inc) = 12�0
+∞
∑
�=0
������[�����g(�)����][(

g(�)����g(�)����
)
�

+ ( g(�)����g(�)����
)
−�

],

(17)

�(Sca) = 12�0
+∞
∑
�=0
���(1)� [�����g(�)����][( g(�)����g(�)����)

�

+ ( g(�)����g(�)����)
−�

],

(18)� = �(Inc) +�(Sca).

(19)�(Inc)�� = ���04�
∞
∑
�=0
����(�1 + �2),

(20)�(Inc)�� =
����0
4�

∞
∑
�=0
����(�1 − �2),

(21)�(Sca)�� = ���04�
∞
∑
�=0
��(�1 + �2),

(22)�(Sca)�� =
����0
4�

∞
∑
�=0
��(�1 − �2),

(23)

�1 =[��−1[�����g(�)����](
g(�)����g(�)����
)
�−1

− ��−1[�����g(�)����](
g(�)����g(�)����
)
−(�+1)

]

⋅ �g
�(�)
����g �(�)����
.

(r,θ)
S

SH-wave

ζ

ς

η = ς + iζ = Reiθ

Figure 2: �e conformal mapping of an arbitrary shaped nano-
cavity.
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4. Numerical Results and Discussion

In order to study the e�ect of surface e�ects on dynamic stress 
concentration factors (DSCF), we de�ne DSCF to be

where ��� is the bulk stress in the medium along the surface, 
and �0 = ���0 is the stress intensity in the propagation direc-
tion of SH-wave. From the Equation (30), It is easy to see that 
surface elasticity parameter � has a great impact on DSCF.

In what follows, as special cases, we discuss the in§uence 
of the surface e�ects on the DSCF around a circular hole and 
an elliptic hole.

4.1. Circular Hole. For a circular hole, the expression of � can 
be written as

Substituting Equation (32) into Equation (30), the coe�cients 
�� can be determined as

For a macroscopic circular hole, the surface e�ect is ignored 
(� = 0), our results for �� are consistent with results of [1].

�us, it is evident to see that our methods are correct, and 
the elastic stress �elds the SH-wave induces can be obtained.

In order to consider the e�ects of surface on DSCF, the 
distributions of DSCF on the surface for di�erent values of �
with low frequency incident wave � = 0.5 are shown in 
Figure 3, which indicates obviously the surface e�ect on the 

(31)DSCF =
���������
���
�0
���������
,

(32)� = g(�) = �, � = � + �� = ����.

(33)
�� = − ���� (�� − 1)��−1(��) + (�� + 1)��+1(��)(�� − 1)�(1)�−1(��) + (�� + 1)�(1)�+1(��) ,(� = 0, 1, 2 ⋅ ⋅ ⋅).

�e corresponding stresses are

According to the Equations (1)–(6), we can obtain the bound-
ary condition on the surface (� = �)

where � = �(sur)/��., which is a dimensionless parameter that 
re§ects the e�ect of surface at nano-scale. For a macroscopic 
cavity, the radius � is large enough (� ≪ 1). �erefore, there is 
no need to consider surface e�ects. However, when the radius 
� of the hole is reduced to the nano-scale, � becomes apparent 
and the surface e�ect should be considered [26–28].

Substituting Equations (19)–(27) into Equation (28), we 
have

where �(1), �(2), �(1), �(2) are presented in Appendix.
It is evident that Equation (29) is an equation related to �

though there are still some unknown coe�cients. Multiplying 
both sides of Equation (29) by �−���, then integrating respect 
to � between the limits −� and �, we obtain

From Equation (30), an in�nite algebraic equation about 
unknown constants �� can be obtained. By solving the Equation 
(30), the unknown constants �� can be calculated. It should be 
noted that it is mathematically convenient to truncate the 
in�nite algebraic equation in Equation (30) with � = � during 
numerical calculation.

(24)

�2 =[��−1[�|g(�)|]( g(�)|g(�)|)
−�−1
− ��+1[�|g(�)|]( g(�)|g(�)|)

(�+1)
]

⋅ �g
�(�)
|g �(�)|

(25)

�1 =[�(1)�−1[�����g(�)����]( g(�)����g(�)����)
�−1 − �(1)�+1[�����g(�)����]( g(�)����g(�)����)

−(�+1)]
⋅ �g �(�)����g �(�)���� .

(26)

Ψ2 =[�(1)�−1[�|g(�)|]( g(�)|g(�)|)
−�−1 − �(1)�+1[�|g(�)|]( g(�)|g(�)|)

�+1]
⋅ �g �(�)|g �(�)|

(27)��� = �(Inc)�� + �(Sca)�� , ��� = �(Inc)�� + �(Sca)�� .

(28)��� = −������� ,

(29)
+∞
∑
�=0
��(�(2) − ��(1)) =

+∞
∑
�=0
����(��(1) −�(2)),

(30)

+∞
∑
�=0
��
�

∫
−�

(�(2) − ��(1))�−�����

=
+∞
∑
�=0
����
�

∫
−�

(��(1) −�(2))�−�����.
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Figure 3: Distributions of DSCF around a circular hole with various 
� for � = 0.5.
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are shown in Figure 6, and the results are similar to those for 
� = 0.5 in most regions. However, for di�erent �, the location 
of the maximum DSCF is di�erent, the maximum DSCF 
decreases from 2.85 to 0.79. �e change of DSCF at high fre-
quency is larger than that at low frequency.

DSCF near the hole. As � increases, the DSCF decreases con-
tinuously, the maximum DSCF decreases from 2.07 to 0.95. 
�e maximum DSCF appears at about � = ±�/2, and there are 
two peak values in the interval (0, 2�). Similarly, the distri-
butions of DSCF on the surface for di�erent values of � with 
high frequency incident wave � = � are shown in Figure 4, 
which also indicates obviously the surface e�ect on the DSCF 
near the hole. Again, as � increases, the DSCF decreases con-
tinuously too, the maximum DSCF decreases from 1.37 to 0.46.  
However, due to the high frequency, the distributions of DSCF 
changes frequently. �e maximum value of DSCF occurs at 
angles of about � = ±5�/6.
4.2. Elliptic Hole. For an elliptic hole, the expression of � is 
written as

where � = (� + �)/2, � = (� − �)/(� + �).
�e distributions of DSCF on the surface for di�erent val-

ues of � with � = 1, � = 0.6 and low frequency incident wave 
� = 0.5 are shown in Figure 5. It is remarkable that the surface 
e�ect on the DSCF near the elliptic hole. Compare with Figure 
3, the results are similar to those for the circular hole in 
(−23�/50, 23�/50) and (27�/50, 73�/50), as � increases, the 
DSCF decreases continuously, while in (23�/50, 27�/50) and 
(73�/50, 77�/50), as � increases, the DSCF increases. 
However, the maximum DSCF appear at angles of about 
� = ±7�/18, and the maximum DSCF decreases from 2.34 to 
1.21. Similarly, the distributions of DSCF on the surface for 
di�erent values of � with high frequency incident wave � = �

(34)� = g(�) = �(� + ��), � = � + �� = ��
��,
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5. Conclusion

In the present paper, we investigate the scattering of SH-wave 
by an arbitrary shaped nano-cavity embedded in an in�nite 
elastic matrix based on the surface elasticity. By using the com-
plex variable function theory and conformal mapping method, 
the numerical solutions of the stress �eld are obtained around 
the cavity. Simultaneously, the analytical solutions of the stress 
�eld around a circular hole are obtained. Finally, the obtained 
numerical results are used to analyze the in§uence of the 

4.3. Square Hole. For a square hole, the expression of � is 
written as

�e distributions of DSCF on the surface for di�erent values 
of � with � = 0.5 are shown in Figure 7. It is remarkable that 
the surface e�ect on the DSCF near the square hole. Compare 
with Figures 3 and 5, the results are di�erent from the circular 
hole and the elliptic hole, as � increases, the DSCF increases 
in (5�/12, 7�/12) and (17�/12, 19�/12), and in other inter-
vals, the trend is not obvious. For di�erent �, the location of 
the maximum DSCF is di�erent. When � = 0.5 and � = 1, the 
changes are very signi�cant. Similarly, the distributions of 
DSCF on the surface for di�erent values of � with high fre-
quency incident wave � = � are shown in Figure 8, and the 
results are di�erent from � = 0.5. For di�erent �, the location 
of the maximum DSCF is approximately the same, the maxi-
mum DSCF appear at angles of about � = 11�/12 and 
� = 13�/12. However, due to the frequent disturbance of the 
incident wave and the complexity of the expression of � = �(�), 
with the increases of �, there are no certain rule in the changes 
of DSCF.

It is evident from Figures 9 to 11 that the in§uence of the 
wave number is great on the DSCF. �e DSCF decreases as �
increases in most regions. Stress concentration around the 
square hole is more signi�cant, the maximum value of DSCF 
is 6.19. However, the maximum value of DSCF is about 1.25
around the circular hole and the elliptical hole. In three cases, 
the symmetry of the DSCF with respect to � = �.

In summary, the numerical results show that the surface 
energy and the wave numbers have signi�cant e�ects on the 
DSCF in the di�erent shapes such as circular, ellipse or square.

(35)� = g(�) = 1� −
1
6�
3, � = � + �� = ����.
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study is helpful to analyze the mechanical properties of nonu-
niform nano-composites, such as the vibration of defective 
body models in micro-nano mechanical systems, the propaga-
tion of semiconductor nano-devices, and so on.

Appendix

Appendix A

(36)

�(1) =�2 [(�11 +�12)�1 + 2(�13 +�14)�2 + (�15 +�16)�̄1]
+ 12[(�21 −�22)�3 + (�23 −�24)�̄3].

(37)�(2) = (�21 −�22)�4 + (�23 −�24)�̄4.

(38)

�11 = ��−2[�����g(�)����](
g(�)����g(�)����
)
�−2

�12 = ��+2[�����g(�)����](
g(�)����g(�)����
)
−(�+2)

.

(39)
�13 = ��[�����g(�)����](

g(�)����g(�)����
)
�

�14 = ��[�����g(�)����](
g(�)����g(�)����
)
−�

.

(40)
�15 = ��−2[�����g(�)����](

g(�)����g(�)����
)
−(�−2)

�16 = ��+2[�����g(�)����](
g(�)����g(�)����
)
�+2

.

(41)
�21 = ��−1[�����g(�)����](

g(�)����g(�)����
)
�−1

�22 = ��+1[�����g(�)����](
g(�)����g(�)����
)
−(�+1)

.

(42)
�23 = ��−1[�����g(�)����](

g(�)����g(�)����
)
−(�−1)

�24 = ��+1[�����g(�)����](
g(�)����g(�)����
)
�+1

.

(43)

�(1) =�2 [(�11 + �12)�1 + 2(�13 + �14)�2 + (�15 + �16)�̄1]
+ 12[(�21 − �22)�3 + (�23 − �24)�̄3].

surface energy and the wave numbers on the DSCF around a 
circular hole, an ellipse hole and a square hole. When the radius 
of hole shrinks to nanometers, the surface e�ects become sig-
ni�cant and should be taken into account. Regardless of the 
frequency of incident wave, the surface e�ect weakens the 
DSCF around the circular and ellipse hole in most regions, but 
it is di�erent for the square hole. At the same time, the DSCF 
depends strongly on the wave numbers, with the wave numbers 
increases, the DSCF gradually decreases in most regions. �is 
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