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The principal pivoting algorithm is a popular direct algorithm in solving the linear complementarity problem, and its block forms
had also been studied bymany authors. In this paper, relying on the characteristic of block principal pivotal transformations, a block
principal pivoting algorithm is proposed for solving the linear complementarity problem with an𝑀-matrix. By this algorithm, the
linear complementarity problem can be solved in some block principal pivotal transformations. Besides, both the lower-order and
the higher-order experiments are presented to show the effectiveness of this algorithm.

1. Introduction

For a given matrix 𝐴 ∈ 𝑅𝑛×𝑛 and a given vector 𝑞 ∈ 𝑅𝑛, the
linear complementarity problem is to find a vector 𝑥 ∈ 𝑅𝑛
such that 𝑥T𝑤 = 0, 𝑥 ≥ 0, 𝑤 = 𝐴𝑥 + 𝑞 ≥ 0, (1)

where the superscript “T” denotes the transpose of a vector.
This problem is usually abbreviated as LCP(𝐴, 𝑞) and many
problems can be converted into (1) under some conditions,
such as the linear and quadratic programming problems,
the free boundary problems of journal bearings, and Black-
Scholes American option pricing problems (see [1–10] and
the references therein).

To obtain the numerical solution of (1), many authors
have presented all kinds of methods in recent decades. Some
authors discussed the single principal pivoting algorithms
based on the complementarity pivot idea (see [3, 11–18]). In
[3], the authors presented the principal pivoting algorithm
for the case that the matrix 𝐴 was an 𝑀-matrix, and
the concrete matrices were the tridiagonal matrix and the
block tridiagonal matrix, which were derived from the free
boundary problems of journal bearings. This algorithm was a

direct algorithm, and the principal pivoting procedure was
carried out element by element in a cycle. So, there needs
to be many cycles when the LCP(𝐴, 𝑞) was solved in the
end. There were some papers to discuss the block principal
pivoting algorithms for (1), such as [19–25]. In [20], the
authors presented two block principal pivoting algorithms
for the LCP(𝐴, 𝑞) and the BLCP(𝐴, 𝑞), respectively, and the
system matrix 𝐴 is the 𝑃-matrix. About the two block prin-
cipal pivoting algorithms, the authors gave many numerical
experiments to show the effectiveness in [20]. The two block
principal pivoting algorithms were designed for the general𝑃-matrix and there was a predetermined constant 𝑝 involved
in the block principle pivoting algorithms, which was related
to the number of the block principal pivotal transformations.
Besides the direct algorithms introduced above, there are
many iteration methods, in which the modulus-based matrix
splitting iteration methods were studied by many authors
recently, and a series of related methods had been presented
gradually (see [1, 9, 26–34] and the references therein). Other
solving methods, such as the nonstationary extrapolated
modulus algorithms, the projection type iteration methods,
and the interior-point iteration methods, can refer to [2, 7,
35–41] and the references therein.
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Table 1: The table of the LCP(𝐴, 𝑞).𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛𝑤1 𝑞1 𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛𝑤2 𝑞2 𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛... ... ... ... ...𝑤𝑛 𝑞𝑛 𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛
The iteration methods are affected by many factors, for

instance, the parameter matrix Ω and the matrix splitting
forms in the modulus-based matrix splitting related iteration
methods and the parameter 𝛼 in the projection type iteration
methods. The forms of the direct methods are very simple
sometimes, and the solving processes are only determined
by the matrix 𝐴 and the vector 𝑞. Moreover, the solutions
obtained by the direct methods are the exact solutions, which
are different from the approximate solutions obtained by
the iteration methods. In this paper, we further discuss the
direct methods for the LCP(𝐴, 𝑞). We consider a particular
linear complementarity problem that the system matrix 𝐴 is
an 𝑀-matrix. Utilizing the characteristic of the 𝑀-matrix’s
block principal pivotal transformation, that is, any block
principal pivotal transformation of an𝑀-matrix can produce
four particular submatrices, we provide a concrete block
principal pivoting algorithm based on [3, 6, 7, 11, 20]. The
numerical experiments show the effectiveness of this algo-
rithm.

This paper is organized as follows.We introduce the block
principal pivoting algorithm idea and present the concrete
algorithm in Sections 2 and 3, respectively. Numerical exper-
iments are shown and discussed in Section 4. Finally, we end
this paper by the concluding remark in Section 5.

2. Block Principal Pivoting Algorithm

We first briefly review some definitions and notations in the
following. The matrix 𝐴 ∈ 𝑅𝑛×𝑛 is denoted by 𝐴 ≥ 0 if 𝑎𝑖𝑗 ≥0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. A matrix 𝐴 ∈ 𝑅𝑛×𝑛 is called a 𝑍-matrix if𝑎𝑖𝑗 ≤ 0 (𝑖 ̸= 𝑗), 𝑖, 𝑗 = 1, 2, . . . , 𝑛. A matrix 𝐴 ∈ 𝑅𝑛×𝑛 is called
an𝑀-matrix if it is a𝑍-matrix and satisfies 𝐴−1 ≥ 0. The real
vector V is denoted by V ≥ 0 (> 0) if V𝑖 ≥ 0 (> 0) holds for𝑖 = 1, 2, . . . , 𝑛. All these definitions and notations can refer to
[1, 3, 7, 28] and the references therein.

Lemma 1 (see [11]). If 𝐴 ∈ 𝑅𝑛×𝑛 is a 𝑍-matrix and 𝑥 satisfies
conditions (1) 𝑞 + 𝐴𝑥 ≥ 0 and (2) 𝑥 ≥ 0 in (1), then 𝑥𝑖 > 0
whenever 𝑞𝑖 < 0.

For the LCP(𝐴, 𝑞), since the condition𝑤𝑖𝑥𝑖 = 0with𝑤𝑖 ≥ 0
and 𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛 are required, it is easy to establish
the following conclusion from Lemma 1.

Lemma 2. If𝐴 ∈ 𝑅𝑛×𝑛 is a 𝑍-matrix and 𝑥 is a solution of (1),
then 𝑥𝑖 > 0 and 𝑤𝑖 = 0 whenever 𝑞𝑖 < 0.

In [3], the authors introduced the two concepts, that is, the
basic variable 𝑤𝑖 and the nonbasic variable 𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑛
based on (1), and give Table 1.

From the theory of LCP(𝐴, 𝑞), we know that if the
problem is solved, there must exist an equivalent converted
LCP(𝐴(𝑖), 𝑞(𝑖)) corresponding to the solution 𝑥∗ with 𝑤∗,
as shown in the form of Table 2, where the LCP(𝐴(𝑖), 𝑞(𝑖))
is obtained from the LCP(𝐴, 𝑞) by the same computation
transformations for both the rows and the columns of 𝐴.
The index set 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 = {𝑖1, 𝑖2, . . . , 𝑖𝑟} corresponds to both
the nonbasic variable set of 𝑤𝑖s and the basic variable set
of 𝑥𝑖s; meanwhile, the index set 𝑆w𝑏𝑎𝑠𝑖𝑐 = {𝑖𝑟+1, 𝑖𝑟+2, . . . , 𝑖𝑛}
corresponds to both the basic variable set of 𝑤𝑖s and the
nonbasic variable set of 𝑥𝑖s. Moreover, if the solution is
unique, the solution of LCP(𝐴(𝑖), 𝑞(𝑖)) as well as the solution
of LCP(𝐴, 𝑞) can be constructed from
(𝑥∗𝑖1𝑥∗𝑖2...𝑥∗𝑖𝑟)= −(

(
𝑎(𝑖)11 𝑎(𝑖)12 ⋅ ⋅ ⋅ 𝑎(𝑖)1𝑟𝑎(𝑖)21 𝑎(𝑖)22 ⋅ ⋅ ⋅ 𝑎(𝑖)2𝑟... ... ...𝑎(𝑖)𝑟1 𝑎(𝑖)𝑟2 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑟𝑟

)
)
−1

(
(
𝑞(𝑖)1𝑞(𝑖)2...𝑞(𝑖)𝑟
)
)≥ 0

and (𝑥∗𝑖𝑟+1𝑥∗𝑖𝑟+2...𝑥∗𝑖𝑛)=(00...0).
(2)

At the same time, 𝑤∗ can be constructed from
(𝑤∗𝑖1𝑤∗i2...𝑤∗𝑖𝑟)=(00...0)
and (𝑤∗𝑖𝑟+1𝑤∗𝑖𝑟+2...𝑤∗𝑖𝑛)

= −((
(
𝑎(𝑖)𝑟+11 𝑎(𝑖)𝑟+12 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑟+1𝑟𝑎(𝑖)𝑟+21 𝑎(𝑖)𝑟+22 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑟+2𝑟... ... ...𝑎(𝑖)𝑛1 𝑎(𝑖)𝑛2 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑛𝑟

))
)

(𝑥∗𝑖1𝑥∗𝑖2...𝑥∗𝑖𝑟)

+(
(
𝑞(𝑖)𝑟+1𝑞(𝑖)𝑟+2...𝑞(𝑖)𝑛
)
)

≥ 0.

(3)
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Table 2: The table of the converted LCP(𝐴(𝑖), 𝑞(𝑖)).𝑥𝑖1 𝑥𝑖2 ⋅ ⋅ ⋅ 𝑥𝑖𝑟 𝑥𝑖𝑟+1 𝑥𝑖𝑟+2 ⋅ ⋅ ⋅ 𝑥𝑖𝑛𝑤𝑖1 𝑞(𝑖)1 𝑎(𝑖)11 𝑎(𝑖)12 ⋅ ⋅ ⋅ 𝑎(𝑖)1𝑟 𝑎(𝑖)1𝑟+1 𝑎(𝑖)1𝑟+2 ⋅ ⋅ ⋅ 𝑎(𝑖)1𝑛𝑤𝑖2 𝑞(𝑖)2 𝑎(𝑖)21 𝑎(𝑖)22 ⋅ ⋅ ⋅ 𝑎(𝑖)2𝑟 𝑎(𝑖)2𝑟+1 𝑎(𝑖)2𝑟+2 ⋅ ⋅ ⋅ 𝑎(𝑖)2𝑛... ... ... ... ... ... ... ...𝑤𝑖𝑟 𝑞(𝑖)𝑟 𝑎(𝑖)𝑟1 𝑎(𝑖)𝑟2 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑟𝑟 𝑎(𝑖)𝑟𝑟+1 𝑎(𝑖)𝑟𝑟+2 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑟𝑛𝑤𝑖𝑟+1 𝑞(𝑖)𝑟+1 𝑎(𝑖)𝑟+11 𝑎(𝑖)𝑟+12 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑟+1𝑟 𝑎(𝑖)𝑟+1𝑟+1 𝑎(𝑖)𝑟+1𝑟+2 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑟+1𝑛𝑤𝑖𝑟+2 𝑞(𝑖)𝑟+2 𝑎(𝑖)𝑟+21 𝑎(𝑖)𝑟+22 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑟+2𝑟 𝑎(𝑖)𝑟+2𝑟+1 𝑎(𝑖)𝑟+2𝑟+2 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑟+2𝑛... ... ... ... ... ... ... ...𝑤𝑖𝑛 𝑞(𝑖)𝑛 𝑎(𝑖)𝑛1 𝑎(𝑖)𝑛2 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑛𝑟 𝑎(𝑖)𝑛𝑟+1 𝑎(𝑖)𝑛𝑟+2 ⋅ ⋅ ⋅ 𝑎(𝑖)𝑛𝑛
So, if the LCP(𝐴, 𝑞) has a unique solution and the sets𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 and 𝑆w𝑏𝑎𝑠𝑖𝑐 are obtained, it can be solved easily from
(2) and (3). It is well known that LCP(𝐴, 𝑞) with an𝑀-matrix𝐴 has a unique solution for any 𝑞 ∈ 𝑅𝑛 (see [1, 3, 28]); thus
themain task is to find the above two sets. Besides, we remark
here that Table 2 is only a representation form for the sake
of later discussion, which has other representation forms,
where {𝑤𝑖1, 𝑤𝑖2, . . . , 𝑤𝑖𝑟} and {𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑟} are exchanged,
and both 𝐴(𝑖) and 𝑞(𝑖) are difference from Table 2 and it is
enough to note the index set in the solving process of the
LCP(𝐴, 𝑞).

Problem LCP(𝐴 (𝑖), 𝑞(𝑖)) is equivalent to the original
LCP(𝐴, 𝑞). Of course, both the equivalent LCP(𝐴 (𝑖), 𝑞(𝑖)) and
the above corresponding table are not unique and even the
original LCP(𝐴, 𝑞) has a unique solution. Moreover, if we
obtain Table 2, from the first two columns and the first row
of which, we can construct the solution 𝑥∗ with 𝑤∗ of the
LCP(𝐴, 𝑞).

From Lemma 2, we know that if 𝑞𝑖 < 0, then 𝑖 ∈ 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐.
However, if 𝑞𝑖 > 0 or 𝑞𝑖 = 0, we need to judge whether𝑖 ∈ 𝑆w𝑛𝑜n𝑏𝑎𝑠𝑖𝑐. For an𝑀-matrix 𝐴 with order 𝑛, if we set 𝑈 ={1, 2, . . . , 𝑛} and set a nonempty set 𝑁 = {𝑖1, 𝑖2, . . . , 𝑖𝑟} ⊆ 𝑈
with 𝑃 = 𝑈 − 𝑁, then through the block principal pivotal
transformation, we can obtain a matrix( 𝐴−1𝑁𝑁 −𝐴−1𝑁𝑁𝐴𝑁𝑃𝐴𝑃𝑁𝐴−1𝑁𝑁 𝐴𝑃𝑃 − 𝐴𝑃𝑁𝐴−1𝑁𝑁𝐴𝑁𝑃) , (4)

where 𝐴−1𝑁𝑁 ≥ 0,−𝐴−1𝑁𝑁𝐴𝑁𝑃 ≥ 0,𝐴𝑃𝑁𝐴−1𝑁𝑁 ≤ 0 (5)

and 𝐴𝑃𝑃 − 𝐴𝑃𝑁𝐴−1𝑁𝑁𝐴𝑁𝑃 (6)

is Schur complement matrix of 𝐴𝑁𝑁, which is a lower-
order 𝑀-matrix. From (5) and (6), combining with the
characteristic of the linear complementarity problem, a block
principal pivoting algorithm can be presented to search for

the set 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 and solve the LCP(𝐴, 𝑞). The basic idea
of this algorithm is that we set a small 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 according
to the original 𝑞 and then amplify 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 by adding the
new indices until the size of 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 keeps unchanged;
thus we construct the solution of the LCP(𝐴, 𝑞) by (2). We
show the concrete solving process of block principal pivoting
algorithm in the following paragraph.

We denote the negative entry index set of 𝑞 by 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 =𝑁 with 𝑁 ̸= 𝑈 and 𝑁 ̸= Φ, the other entry index set by𝑃, where 𝑈 = {1, 2, . . . , ., 𝑛} and Φ denotes the empty set.
Then from Lemma 2 we set 𝑤𝑁 = 0 and carry out the block
principal pivotal transformation to the submatrix 𝐴𝑁𝑁 of 𝐴,
and then we have 𝑥𝑁 = −𝐴−1𝑁𝑁(𝐴𝑁𝑃𝑥𝑃 + 𝑞𝑁) and𝑤𝑃 = (𝐴𝑃𝑃 − 𝐴𝑃𝑁𝐴−1𝑁𝑁𝐴𝑁𝑃) 𝑥𝑃 − 𝐴𝑃𝑁𝐴−1𝑁𝑁𝑞𝑁+ 𝑞𝑃,𝑤𝑃T𝑥𝑃 = 0. (7)

The equation in (7) is an established complementarity prob-
lem and the system matrix is still an 𝑀-matrix with lower-
order than the matrix 𝐴 from (6). Then we can select the
negative entry index set of the constant vector in the right side
of 𝑤𝑃 and add it to 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠i𝑐. At the same time, according to
the negative entry index set, we carry out the block principal
pivotal transformation to the lower-order complementarity
problem (7). These processes can be continued until the
constant vector in the last lower-order complementarity
problem has no negative element and then 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 keeps
unchanged. Once the last 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 is obtained, then we can
apply (2) to construct the unique solution of (1).

About the above block principal pivoting algorithm, we
have the following discussions.

(1) At the beginning of block principal pivoting algorithm,
the solution can be obtained easily if 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 = 𝑁 or𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 = Φ, that is, 𝑥∗ = 𝐴−1(−𝑞) and 𝑥∗ = 0, respectively.

(2)The block principal pivoting algorithm can be divided
into two parts: the searching process of 𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 and the
constructing process of 𝑥∗.

(3) The orders of the linear complementarity problems
in the block principal pivoting algorithm are decreasing
gradually, and the total number of the block principal pivotal
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Require:𝑀𝑎𝑡𝑟𝑖𝑥𝐴,𝑉𝑒𝑐𝑡𝑜𝑟𝑄
Ensure: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋
1: function 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋 = blockpivotingalgorithm(𝑀𝑎𝑡𝑟𝑖𝑥𝐴, 𝑉𝑒𝑐𝑡𝑜𝑟𝑄)
2: 𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = Location(𝑀𝑎𝑡𝑟𝑖𝑥𝐴,𝑉𝑒𝑐𝑡𝑜𝑟𝑄)
3: if 𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 equals to {1, 2, . . . , 𝑛} then
4: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋 ←󳨀 𝑖𝑛V(𝑀𝑎𝑡𝑟𝑖𝑥𝐴) ∗ (−𝑉𝑒𝑐t𝑜𝑟𝑄)
5: return
6: end if
7: if 𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 equals to an empty set then
8: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋 ←󳨀 0
9: return
10: end if
11: extract𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑛𝑛 from𝑀𝑎𝑡𝑟𝑖𝑥𝐴 according to𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
12: split 𝑉𝑒𝑐𝑡𝑜𝑟𝑄 into𝑉𝑒𝑐𝑡𝑜𝑟𝑄𝑛 and 𝑉𝑒𝑐𝑡𝑜𝑟𝑄𝑝 according to𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
13: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋𝑃𝑜𝑠𝑖𝑡𝑖V𝑒𝑃𝑎𝑟𝑡 ←󳨀 𝑖𝑛V(𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑛𝑛) ∗ (−𝑉𝑒𝑐𝑡𝑜𝑟𝑄𝑛)
14: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝑃𝑎𝑟𝑡 ←󳨀 0
15: construct 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋 with 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋𝑃𝑜𝑠𝑖𝑡𝑖v𝑒𝑃𝑎𝑟𝑡 and 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑋𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝑃𝑎𝑟𝑡
16: end function
17: function negativelocation = location(MatrixA, VectorQ)
18: 𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ←󳨀 according to the sign of each element of 𝑉𝑒𝑐𝑡𝑜𝑟𝑄
19: if 𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 == {1, 2, . . . , 𝑛} then
20: return
21: end if
22: if 𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 == Φ then
23: return
24: end if
25: extract𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑛𝑛,𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑝𝑛,𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑝𝑝 and𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑛𝑝 from𝑀𝑎𝑡𝑟𝑖𝑥𝐴 according to𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
26: split 𝑉𝑒𝑐𝑡𝑜𝑟𝑄 into𝑉𝑒𝑐𝑡𝑜𝑟𝑄𝑛 and 𝑉𝑒𝑐t𝑜𝑟𝑄𝑝 according to𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
27: 𝑀𝑎𝑡𝑟𝑖𝑥𝐴 ←󳨀 𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑝𝑝 −𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑝𝑛 ∗ 𝑖𝑛V(𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑛𝑛) ∗ 𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑛𝑝
28: 𝑉𝑒𝑐𝑡𝑜𝑟𝑄 ←󳨀 − 𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑝𝑛 ∗ 𝑖𝑛V(𝑀𝑎𝑡𝑟𝑖𝑥𝐴𝑛𝑛) ∗ 𝑉𝑒𝑐𝑡𝑜𝑟𝑄𝑛 + 𝑉𝑒𝑐𝑡𝑜𝑟𝑄𝑝
29: 𝑎𝑑𝑑𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ←󳨀 Location(𝑀𝑎𝑡𝑟𝑖𝑥𝐴,𝑉𝑒𝑐𝑡𝑜𝑟𝑄)
30: construct𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 by𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 and 𝑎𝑑𝑑𝑁𝑒𝑔𝑎𝑡𝑖V𝑒𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛
31: return
32: end function

Algorithm 1: Block-Principal-Pivoting-Algorithm.

transformations is no more than 𝑛 when the LCP(𝐴, 𝑞) is
solved.

3. Algorithm

In this section, based on the discussion in the above section,
we present the pseudocodes of the block principal pivoting
algorithm as Algorithm 1.

4. Numerical Experiment

In this section, we present three examples. In the first exam-
ple, we illustrate the solving process of the block principal
pivoting algorithm by two lower-order cases. In the second
example, we apply the block principal pivoting algorithm
to deal with a practical problem, that is, the free boundary
value problem about the flow of water through a porous dam,
which is a higher-order case. In the third example, we mainly
investigate the relationship between the running time and the
number of the block principal pivotal transformations in the
block principal pivoting algorithm.

Example 1. We set the systemmatrix 𝐴 in the LCP(𝐴, 𝑞) to be
𝐴 =((

(
1 0 −1 0 −1−1 2 0 −1 −10 −1 3 −1 0−1 0 −1 4 −10 −1 −1 0 5

))
)

, (8)

and consider the variable 𝑞 to be two cases:𝑞 = (−1, 2, −1, 2, 1)T ,𝑞̂ = (−1, 1, −1, 0, 1)T . (9)

Thus, the matrix 𝐴 is an𝑀-matrix and the LCP(𝐴, 𝑞) and the
LCP(𝐴, 𝑞̂) have the same 𝑈 = {1, 2, 3, 4, 5} and the original
negative element index set𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 = 𝑆̂w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 = {1, 3} , (10)

which corresponds to the the nonbasic variable set of 𝑤𝑖s
and the basic variable set of 𝑥𝑖𝑠. Applying the block principal
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Table 3: The block principal pivoting algorithm for solving the LCP(𝐴, 𝑞).
LCP(𝐴, 𝑞) LCP(𝐴, 𝑞̂)𝑛 400 900 1600 2500 3600 400 900 1600 2500 3600

CPU 0.005 0.025 0.094 0.298 0.732 0.007 0.038 0.122 0.341 1.012
NUM 1 1 1 1 1 2 2 2 2 2
ERROR 2e-15 3e-15 4e-15 5e-15 6e-15 2e-15 5e-15 4e-15 4e-15 1e-14

Table 4: Comparison between the running time and the number of block principal pivotal transformations.

LCP(𝐴, 𝑞), 𝐴 = tridiag(−1, 2, −1), 𝑞 = randn(𝑛, 1), 𝑛 = 1000𝑞 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7 𝑞8 𝑞9 𝑞10
CPU 0.121 0.105 0.087 0.089 0.068 0.102 0.086 0.088 0.072 0.065
NUM 21 20 21 17 22 22 18 27 35 21
ERROR 3e-12 2e-12 4e-12 5e-13 3e-11 3e-12 2e-12 3e-12 3e-11 9e-12

pivoting algorithm to the LCP(𝐴, 𝑞) and the LCP(𝐴, 𝑞̂),
respectively, then we have the last negative element index sets𝑆w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 = {1, 3}

and 𝑆̂w𝑛𝑜𝑛𝑏𝑎𝑠𝑖𝑐 = {1, 2, 3, 4, 5} (11)

and the solutions are𝑥∗ = (43 , 0, 13 , 0, 0)T with 𝑤∗ = (0, 23 , 0, 13 , 23)T (12)

and𝑥̂∗ = (167 , 1714 , 2928 , 2528 , 14)T
with 𝑤̂∗ = (0, 0, 0, 0, 0)T , (13)

respectively. Besides, the numbers of the block principal
pivoting transformations for the LCP(𝐴, 𝑞) and the LCP(𝐴, 𝑞̂)
are 1 and 2, respectively.

Example 2. In this example, we consider the higher-order
case and set 𝐴 in the LCP(𝐴, 𝑞) to be a block tridiagonal𝑀-
matrix, that is, 𝐴 = Tridiag(−𝐼, 𝑆, −𝐼) ∈ 𝑅𝑛×𝑛, where𝑆 = tridiag (−1, 4, −1)

= (((
(

4 −1 ⋅ ⋅ ⋅ 0 0−1 4 ⋅ ⋅ ⋅ 0 0... ... ... ...0 0 ⋅ ⋅ ⋅ 4 −10 0 ⋅ ⋅ ⋅ −1 4
)))
)

∈ 𝑅𝑚×𝑚 (14)

and 𝐼 is an identity matrix of order𝑚. We set𝑞 = (−1, 1, −1, 1, . . .)T ,𝑞̂ = (−1, 1, 0, −1, 1, 0, . . .)T ∈ 𝑅𝑛 (15)

with 𝑛 = 𝑚2 and perform five experiments for 𝑚 =20, 30, 40, 50, 60, respectively. This problem arises from the

finite difference discretization on equidistant grid of a free
boundary value problem about the flow of water through
a porous dam (see [26] and the references therein). We
consider three quantities, that is, the running time (CPU), the
number of block principal pivotal transformations (NUM),
and the error of the residual vector (ERROR). ERROR is
defined as

ERROR = norm (min (𝑥, 𝐴𝑥 + 𝑞)) , (16)

where both “norm” and “min” are the functions in Matlab
software (see [1, 26]). Then the numerical results are shown
in Table 3.

From Table 3, we can find that the block principal
pivoting algorithm is effective and the number of the block
principal pivotal transformations is very small in this exam-
ple. Besides, the precision of the solution is very high and
the running time will be increased when the model’s size is
enlarged.

Example 3. In this example, we consider the relationship
between the running time and the number of block principal
pivotal transformations. Set the system matrix 𝐴 to be a
tridiagonal𝑀-matrix, that is,𝐴 = tridiag (−1, 2, −1) ∈ 𝑅𝑛×𝑛, (17)

and set 𝑞 to be an arbitrary vector, that is, 𝑞 = randn(𝑛, 1),
and carry out 10 experiments; then we obtain Table 4.

From Table 4, we can observe that when the number of
block principal pivotal transformations is larger, the running
time usually increases slightly. However, the relationship
between the number of block principal pivotal transforma-
tions and the running time is not entirely consistent, which
can be found from 𝑞1, 𝑞2, 𝑞8, and 𝑞9. In addition, although
the precision of the solution decreases slightly compared with
Example 2 with the increasing number of block principal
pivotal transformations, we can see that the precision is still
very high.
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At the end of this section, we remark that since the
LCP(𝐴, 𝑞) is equivalent to the linear complementarity prob-
lem 𝑤T𝑥 = 0, 𝑤 ≥ 0, 𝑥 = 𝐴−1𝑤 + 𝐴−1 (−𝑞) ≥ 0, (18)

which is denoted by LCP(𝐴−1, 𝐴−1(−𝑞)) here, if 𝐴−1 is
an 𝑀-matrix (𝐴 is called an inverse 𝑀-matrix), then
the original LCP(𝐴, 𝑞) can be solved through solving the
LCP(𝐴−1, 𝐴−1(−𝑞)) by the block principal pivoting algorithm.
In addition, besides the free boundary value problem about
the flow of water through a porous dam mentioned in
Example 2, there are other two applications where the block
principal pivoting algorithm can be utilized: one is Black-
Scholes American option pricing problem and the other
is the free boundary problem of journal bearings. The
discretized approximation models of the two problems are
the LCP(𝐴, 𝑞)s with𝑀-matrices and the details can be found
in [8, 9] and [3], respectively.

5. Concluding Remark

In this paper, we provide a block principal pivoting algorithm
for solving the LCP(𝐴, 𝑞) with an 𝑀-matrix. By this algo-
rithm, the LCP(𝐴, 𝑞) can be solved in the limited block princi-
pal pivotal transformations.Thenumerical experiments show
that this algorithm is effective in practical applications and
the numerical solutions possess very high precision.
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[22] L. F. Portugal, J. J. Júdice, and L. N. Vicente, “A comparison
of block pivoting and interior-point algorithms for linear least



Advances in Mathematical Physics 7

squares problems with nonnegative variables,” Mathematics of
Computation, vol. 63, no. 208, pp. 625–643, 1994.

[23] A. L. Murthy and G. S. Murthy, “Principal pivoting method
for solving column sufficient complmentarty problems,” SIAM
Journal on Matrix Analysis and Applications, vol. 22, no. 2, pp.
527–532, 2000.

[24] M. J. Todd, “A generalized complementary pivoting algorithm,”
Mathematical Programming, vol. 6, no. 1, pp. 243–263, 1974.

[25] M. J. Todd, “Extensions of Lemke’s algorithm for the linear
complementarity problem,” Journal of Optimization �eory and
Applications, vol. 20, no. 4, pp. 397–416, 1976.

[26] J.-L. Dong and M.-Q. Jiang, “A modified modulus method for
symmetric positive-definite linear complementarity problems,”
Numerical Linear Algebra with Applications, vol. 16, no. 2, pp.
129–143, 2009.

[27] X.-M. Fang and C.-M. Wei, “The general modulus-based
Jacobi iteration method for linear complementarity problems,”
Filomat, vol. 29, no. 8, pp. 1821–1830, 2015.

[28] W. Li, “A general modulus-based matrix splitting method
for linear complementarity problems of 𝐻-matrices,” Applied
Mathematics Letters, vol. 26, no. 12, pp. 1159–1164, 2013.

[29] S. Liu, H. Zheng, and W. Li, “A general accelerated modulus-
based matrix splitting iteration method for solving linear
complementarity problems,” Calcolo. A Quarterly on Numerical
Analysis and�eory of Computation, vol. 53, no. 2, pp. 189–199,
2016.

[30] K. G.Murty, “On the number of solutions to the complementar-
ity problem and spanning properties of complementary cones,”
Linear Algebra and Its Applications, vol. 5, no. 1, pp. 65–108, 1972.

[31] H. Ren, X. Wang, X.-B. Tang, and T. Wang, “The general
two-sweep modulus-based matrix splitting iteration method
for solving linear complementarity problems,” Computers &
Mathematics with Applications. An International Journal, vol. 77,
no. 4, pp. 1071–1081, 2019.

[32] X.-P. Wu, X.-F. Peng, and W. Li, “A preconditioned general
modulus-based matrix splitting iteration method for linear
complementarity problems of 𝐻-matrices,” Numerical Algo-
rithms, vol. 79, no. 4, pp. 1131–1146, 2018.

[33] L.-L. Zhang, “Two-stage multisplitting iteration methods using
modulus-based matrix splitting as inner iteration for linear
complementarity problems,” Journal of Optimization �eory
and Applications, vol. 160, no. 1, pp. 189–203, 2014.

[34] N. Zheng and J.-F. Yin, “Accelerated modulus-based matrix
splitting iteration methods for linear complementarity prob-
lem,” Numerical Algorithms, vol. 64, no. 2, pp. 245–262, 2013.

[35] B. H. Ahn, “Iterativemethods for linear complementarity prob-
lems with upperbounds on primary variables,” Mathematical
Programming, vol. 26, no. 3, pp. 295–315, 1983.

[36] Z.-Z. Bai, “The convergence of parallel iteration algorithms for
linear complementarity problems,”Computers andMathematics
with Applications, vol. 32, no. 9, pp. 1–17, 1996.

[37] Z.-Z. Bai and D. J. Evans, “Matrix multisplitting relaxation
methods for linear complementarity problems,” International
Journal of Computer Mathematics, vol. 63, no. 3-4, pp. 309–326,
1997.

[38] Z.-Z. Bai, “On the convergence of themultisplittingmethods for
the linear complementarity problem,” SIAM Journal on Matrix
Analysis and Applications, vol. 21, no. 1, pp. 67–78, 2006.

[39] A. Hadjidimos and M. Tzoumas, “Nonstationary extrapolated
modulus algorithms for the solution of the linear complemen-
tarity problem,” Linear Algebra and its Applications, vol. 431, no.
1-2, pp. 197–210, 2009.

[40] A. Hadjidimos, M. Lapidakis, and M. Tzoumas, “On iterative
solution for linear complementarity problem with an 𝐻+-
matrix,” SIAM Journal on Matrix Analysis and Applications, vol.
33, no. 1, pp. 97–110, 2012.

[41] A. Hadjidimos and L.-L. Zhang, “Comparison of three classes
of algorithms for the solution of the linear complementarity
problem with an 𝐻+-matrix,” Journal of Computational and
Applied Mathematics, vol. 336, pp. 175–191, 2018.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

