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The purpose of this paper is to establish the necessary conditions for a fuzzy optimal control problem of several variables. Also, we
define fuzzy optimal control problems involving isoperimetric constraints and higher order differential equations. Then, we convert
these problems to fuzzy optimal control problems of several variables in order to solve these problems using the same solution
method. The main results of this paper are illustrated throughout three examples, more specifically, a discussion on the strong

solutions (fuzzy solutions) of our problems.

1. Introduction

Optimal control theory is considered as a modern extension
of the classical calculus of variations; however, it differs from
calculus of variations in that it uses control variables to opti-
mize the function. The development of the mathematical the-
ory for optimal control began in the early 1950’s, partially in
response to problems in various branches of engineering and
economics. The study of classical optimal control theory
from different viewpoints greatly attracted the attention of
many mathematicians, and the detailed arguments can be
found in many textbooks, for instance, [1], and references
therein. Moreover, optimal control strategy, i.e., solving nec-
essary conditions for optimality, can be applied in several
fields, such as economy, biology, and process engineering
(for more details, see [1-5]).

On the other hand, uncertainty is inherent in most
dynamical systems in its input, output, and manner, and
fuzziness is a kind of uncertainty very common in real-
world problems [6]. In 1965, Zadeh introduced the concepts
of fuzzy sets and fuzzy numbers in [7], followed up in 1972 by
Chang and Zadeh when they proposed the concept of the
fuzzy derivative in [8]. A large number of researches have
been studied in various aspects of the theory and applications
of these notions; one of these research lines has been the
fuzzy optimal control problem. In the past few decades, the

fuzzy optimal control problem has received growing atten-
tion, and many results of researches have been reported in
the literature ([9-19] and references therein).

Recently, a lot of works done in the field of the fuzzy opti-
mal control problem have only examined problems with one
control and one dependent state variable; however, many
times, we will wish to examine fuzzy optimal control problems
which arise in a wide variety of scientific and engineering
applications such as physics, chemical engineering, and econ-
omy, with more variables (more controls and more states). It
seems that it is a good idea to consider fuzzy optimal control
problems of several variables and discuss how to handle such
problems. Further, treating a special type of fuzzy optimal
control problems such as problems having a type of constraint
known as an isoperimetric constraint and problems involving
higher order differential equations has been presented. In [11],
the modified fuzzy Euler-Lagrange condition was established
for the fuzzy Isoperimetric Variational Problem (IVP), which
is considered as a fuzzy constrained variational problem, but,
in this paper, we overcome the fuzzy optimal control problem
involving the isoperimetric constraint, which is considered as
a fuzzy constrained optimal control problem.

The main aim of this paper is to derive the necessary
conditions of the fuzzy optimal control problem of several var-
iables based on the concepts of differentiability and integrabil-
ity of a fuzzy valued function parameterized by the left- and
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right-hand functions of its a-level set and variational
approaches, in order to provide the solutions of this problem.
However, the solutions of the fuzzy optimal control problem
of several variables, optimal controls, and corresponding opti-
mal states are not always fuzzy functions. Thus, to guarantee
that the solutions of the fuzzy optimal control problem of sev-
eral variables are always fuzzy functions, we will introduce the
concepts of strong (fuzzy) and weak solutions of this problem.

The rest of this paper is organized as follows: In Section 2,
we recall some basic terminologies and definitions used in the
present paper. In Section 3, we establish our main results
concerning the necessary conditions of the fuzzy optimal
control problem of several variables and treating two special
cases of the fuzzy optimal control problem. Additionally, we
propose the definitions of strong (fuzzy) and weak solutions
of our problem. In Section 4, we give three examples that
can serve to illustrate our main results. In Section 5, we pres-
ent some concluding remarks.

2. Preliminaries

Throughout this paper, F(R) denotes the class of fuzzy
subsets of the real axis. A fuzzy set ¥ on R is a mapping
v:R—>0,1]. For each fuzzy set ¥, we denote its a-level
set by V[a] and defined by V[a] = [v/(a), v (a)] = {x€R: 7
(x)>a} for any a€(0,1]. The support of ¥ we denote
by supp(¥), where supp ¥={x € R: ¥(x) >0}. The closure
of suppv defines the 0-level set of v; thus,

if0<a<l,

x€R:V(x)=a},
ﬂﬂ={{€ e m

cl(supp v), ifa=0,
where cl(M) denotes the closure of set M. Fuzzy set v €
F(R) is called a fuzzy number if

(1) visanormal fuzzy set, i.e., there exists an x,, € R such
that 7(x,) =1

(2) ¥ is a convex fuzzy set, i.e, ¥(rx+ (1 —r)y) > min {¥
(x),¥(y)} for any x, y € Rand r € [0, 1]

(3) v is upper semicontinuous on R
(4) ¥[0] = cl(supp ¥) = AUeeo,1 v[a]) is compact

In the rest of this paper, we use E! to denote the fuzzy
number space.

It is clear that the a—level set v[a] = [v/(a),v"(a)] is
bounded closed interval in R for all a € [0, 1], where v/(a)
and v'(«a) denote the left-hand and right-hand endpoints of
v[a], respectively. Obviously, any v € R can be regarded as a
fuzzy number ¥ defined by

1, x=v,
v(x) = { (2)

0, x#v.

In particular, fuzzy zero is defined as 0(x) = 1 if x = 0 and
0(x) = 0 otherwise.
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Let a,bcE" and keR. For any x€R, we can define

the addition a+b and scalar multiplication ka, respec-
tively, as

(Zz + l;) (x) = sup min {&(s), B(t)},

sti=x

(ki) (x) =a(%),k;eo, )

03 ~ 1, x=0,
(ax@—{o)x¢0

Using « — level set, we can also define the addition a+ b
and scalar multiplication ka, respectively, as

(a + 13) (o] = &[od] + bla] = {s +tisedlalte E[a]}, W
(ka)[a] = kai[] = {kx : x € a[a]}.

Let a be a fuzzy number, the opposite of a is denoted
by —a and characterized by —a(x) = a(—x) [20]. In the case
that a[a] =[a(a),a’(«)], we have —a[a]=[-a"(«a),—a'(a)]
for all a €0, 1].

The binary operation “.” in R can be extended to the
binary operation “(-)” of two fuzzy numbers by using the

extension principle. Let @ and b be fuzzy numbers, then

(54 o} I;) (z) = sup min {&(s), E(t)} (5)

st=z

Using a-level set, the product (&® b) is defined by

(a o B) o] = {min {oc’(oc)bl(oc), ()b’ (@), o (a) b (a), a’(a)b'(a)},
max {(xl(oc)bl((x), ()b’ (@), o (a) b (a), oc’(oc)b’((x)}],
(6)

in the case that a[a] = [a!(a), a’(«)] and bla] = [b'(a), b (a)].

Lemma 1 (see [21]). Ifa': [0,1] — R and a” : [0, 1] — R
satisfy the following conditions:

(1) d' is a bounded increasing function

(2) a” is a bounded decreasing function

(3) d\(1)<a'(1)

(4) (}ig}al((x) =a'(k) and o}gll}a'(oc) =a’(k), for all

0<k<1
(5) Jin3+al(a) =a'(0) and lim a’(a) = a’(0)

a—0*
then @ : R — [0, 1] defined by a(x) =sup {a|a'(a)<x<a"
(@)} is a fuzzy number with ala] = [a'(«), a”(«)]. Conversely,
ifa:R—[0,1] is a fuzzy number with ala] = [a'(«), a" (a))],
then the functions a'(«) and a' (&) satisfy conditions (1)-(5).
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Define D : E' x E' — R, U {0} by

D(Et, Z)) = sup max {|al((x) e

a€l0,1]

(@)Hld (@) ~b'(@) |},
)

where [a] = [d!(a), a’ ()] and b[a] = [b'(«), b («)]. D(&, b) is

called the distance between fuzzy numbers @ and b.
It should be noted that D satisfies the following
properties:

(1) (E',
(2) D(a+¢b+¢)

D) is a complete metric space
= D(a, b)

(3) D(ka, kb) = |k|D(a, b), where &, b, ¢ € E' and k € R

A special class of fuzzy numbers is the class of triangular
fuzzy numbers. We say that the fuzzy number a is triangular
if a'(1) =a’(1), d'(a) =a'(1) = (1 - a)(a'(1) - a'(0)), and a"
(a)=a'(1) + (1 -a)(a’(0) —a'(1)). The triangular fuzzy
number a is generally denoted by @ = (a'(0), a'(1), a"(0)).

Definition 2 (partial ordering [9]). Let a, b € E', we write a<b,

if a'(«) <b'(a) and a’(«) <b'(a) for all a€0,1]. We also

write @ < b, if a<b and there exists a, € [0, 1] such that a’

() < b'(ay) or a'(ay) < b (aty). Furthermore, @ = b, if a<b

and a>b. In other words, @ = b, if afa] = bla] for all « € [0, 1].
In the sequel, we say that 4, b € E" are comparable if either
a<b or a>b and noncomparable otherwise.

Definition 3 (gH-difference [22]). Suppose that a,b¢E',
where a[a] = [a!(a), a"(«)] and bla] = [b'(«), b’ ()] for all «
€ [0, 1], the generalized Hukuhara difference of two fuzzy
numbers @ and b (gH-difference for short) is defined by

&egHE:h:){ (8)

or (2)b=a+ (-1)c.

Ifc=ae gHZ) exists as a fuzzy number, then its a-level set is

cl(oc) = min {al(oc) - bl(oc), a’(a) - b’(a)},

©)
() = max {al(oc) ~b(a),d () - b’((x)}, ’

for all a € [0, 1].

Definition 4 (fuzzy valued function [9]). The functionf : [tor
t,] — E' is called a fuzzy valued function if f(¢) is assigned
a fuzzy number for any ¢ € [t,, t,]. We also denote f(t)[a] =

[f!(t,0),£7(t, )}, where £'(t,) = (F(1)) («) = min {F(1)]a]}
and f'(t,a)=(f(1)) (« ) = max {f()[a]}. Therefore, any

fuzzy valued function f may be understood by f'(, )
and f'(t,a) being, respectively, a bounded increasing

function of « and a bounded decreasing function of « for
a€ [0, 1]. Also, it holds f'(t, «) < f"(, @) for any a € [0, 1].

Deﬁnition 5 (continuity of a fuzzy valued function [23]). We
say that f : [t,,t,] — E' is continuous at t € [f,, t,], if both

fl(t,«) and f7(t,«) are continuous functions at t € [t,, t,]
for all a € 0, 1].

Definition 6 (gH-differentiability of a fuzzy valued function
[24]). Let T € (ty, t,) and h be such that T+ h € (t,,t,), then
the gH-derivative of a fuzzy valued function x(t): (¢, )
— E'atf e (ty, t,) is defined as

,}(’t‘) :}E%M. (10)

If x() € E', we say that % is generalized Hukuhara dif-
ferentiable (gH-differentiable for short) at 7. Also, we say
that x is (1)-gH-differentiable at 7 if

(1) x(?) [a] = {kl(?, (x),jc’(?, oc)},foroc €[0,1], (11)

and x is (2)-gH-differentiable at 7 if

2) k(D)o = [x’(?, a), %, oc)},foroc €0,1.  (12)

Definition 7 (nth order gH-differentiability of a fuzzy val-
ued function [25]). Let x(t): (ot )—>E1 We say that
x(t) is nth order gH-differentiable at 7 whenever the func-
tion x(t) is gH-differentiable of the order i, i=1,2, -,

n—1, at t and if there exist fc(”)(?) € E! such that

7 (n-1) T(n-1) =

() . X (t+h) arx (7)

t)=1 . 13
& (f) = lim 7 (13)
Deﬁmtzon 8 (switching point [26]). We say that a point
Ty € (ty t;) is a switching point for the differentiability of
x(t) if in any neighborhood N of %, there exist points
t, <t,<t, such that

(i) type(D): at; (11) holds while (12) does not hold and
at', (12) holds while (12) does not hold or

(ii) type(Il): at 7, (12) holds while (12) does not hold and
at't, (11) holds while (12) does not hold

Definition 9 (see [21]). Let f : [t,, t,] — E'. We say that f is
fuzzy-Riemann integrable to I € E' if for any &> 0, there
exists 8 > 0 such that for any division P = {[i, j] ; &} of [t,, t]
with the norms A(p) < &8, we have

D<i(i—

P

jefE®) ﬂ) <6 (14)



where X* denotes the fuzzy summation. We choose to write
— t s
L=[! f(t)dt. Furthermore, for any « € [0, 1],

f?mmwhwfwaﬂmarfaﬂwﬁ. (15)

fy ty )

Theorem 10 (see [24]). If f (): [ty t,] — E" is gH-differentiable
with no switching point in the interval [ty t,], then we have

Fu>=f?wyu=faneﬂjuw- (16)

to

Theorem 11 (see [24]). Let f(t): [ty t,] — E' be a contin-
uous fuzzy valued function. Then,

E(t)= Jt f(x)dx, te[tyt,], (17)

)
is gH-differentiable and I:“(t) = £ ().

From now, we use Cp[t,, t;] to denote the space of all
fuzzy valued functions that have continuous gH-derivatives
on [ty, t,] and C},i [ty t,] to denote the space of all fuzzy valued
functions that have nth continuous gH-derivatives on [t,, t,].

3. Fuzzy Optimal Control of Several Variables

This section is aimed at deriving the necessary conditions for
the fuzzy optimal control problem of several variables. For
this purpose, the fuzzy optimal control problem of several
variables is introduced at first, then using fuzzy variational
approaches, the problem is solved.

Consider the following fuzzy optimal control problem of
several variables:

.’xn, ul’ (N ﬁm)

:‘7’(5‘1“) X (tl) )
S ICIONRE NG NGRS

J(t) = g](fcl(t), "')';Cn(t)’ f{l(t)) e am(t)’ t)
Xi(tg) =Xj0,  X;(t))isfree, forj=1,2,--,n,

(18)
where f, § : E" x E" x R — E" are assumed to be functions
of class Cgi[ty, t;] with respect to all their arguments. The
fuzzy states x;(t) for j=1,2,---,n and the fuzzy controls
i, (t) for k=1,2,---,m are functions of ¢ € [t,, t;] € R. Fur-
thermore, x;(t) are assumed to be (1)-gH-differentiable
functions for all j=1,2,---,n. In problem (18), we make
no requirements on # and m. In other words, n>m, n=
m, or n<m are all acceptable.

We say that an admissible fuzzy curve (X7, ---, X, ],
,i7,) is the solution of problem (18), if for all admissible
curve (X, -+, X,, tly, ", il,,) of problem (18)

min 7(%1, .

i, (1), t)dt

subject to
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TG v Tty o ) <T (Ryy oo Ko gy 00 ). (19)

It is well know that, from Definition 2, the above inequality
holds if and only if
1 «! *" ! *" «! *7
J <x1 S XL 5 Xy s Xy s U S U S Uy, U

I ! r
<] (xpxla"'axwxn’ul)uls"‘au u t)“)a
1 r 1 r 1 r
7 L ® ® * * *
](xl,xl,---,xn,xn,ul,u1,~-- )
<]r I r Il 1 Tt
= xls-xly"'axnaxn:ulauly"';u u >y,

for all « € [0, 1], where the a — level set of fuzzy curves X*, %, i1*,
and i are characterized, respectively, by

ig(0)[o] = [u (1, 0), w1, ),

forj=1,2,--,nmand k=1,2,---,m

Definition 12 (fuzzy Hamiltonian function). We define fuzzy
Hamiltonian function as

I .r o 1l
lH(xl,xl, ey X Xy Ups U, 00y

1 r 1 I qr r
Upps Uy ALy o Ay AL o5 AL 8, oc)

(.1 .r I L ) r
=f (xl,xl,~--,x,,,xn,u1,u1,~--,um,um,t,¢x)

(0 I 1o 1 r
+f (-xp-x]: "':xn>xn7 U Ups oo Uy, ums L, 0()

n
Ioor 1 r
+ Z < gz(xl’xv' " Xppp Xy Uy U+

i=1

rorf 0 r Lo b 1
+)tigi<x1,x1,~~,xn,xn,ul,u1,~~,u um,t,(x)).

I
o5 Uyys U 1 a)

(22)

Theorem 13 (necessary conditions for problem (18)).
Assume that (X7 (t), .-+, X (t)) is a vector of admissible fuzzy
states and (i} (t), -, i, (t)) is a vector of admissible fuzzy
controls. Then, the necessary conditions for (X (t), ---, X, (t))

and (U1} (t), -+, i, (t)) to be optimal solutions for (18) are

- oH
I I I I
Aj (t, &) = ——(xl,xﬁ, ey Ky Xy Uy Uy ey Uy U

Ao M Ny M )
(23)
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).t*r(t &) =- oH (xl R Y Proof. Let us first consider the variation of u}, u}, x and x;
i A" oxf \TI T T S BT defined, respectively, by

[ 1
U, =up +0u,

(24) .
SH u, =u; +0up,
29)
0=—(xl,x’,'-uxl,x’,u’,u’,-'-,ul,u’, Il sl (
aui JERed| n> > Y % m> “m (25) xj = 'xj + (ij’
'A'lp“'sAln:A;)"')A;st7“)s X = 0%,
oH I r oo ) r . .
= —(x, X, XXl el ork=1,2,---,mand j=1,2, -+, n. Using Theorems 10 an
oar<,1 Lo b el for k=1,2 dj=1,2 Using Th 10 and
Uy (26) 11 and because the problem is a minimization problem, we
-)Lll,---,)t;,/\;,---,}t;, t,oc), can rewrite J as
¢! 9¢" . o _ W - N
Mty a) = (a—f, + ai) , Q1) D) = [ (TG0 500,00+ (0,0
j 1/ lt=t, o d /-~ . ~
| 4 (P 500.0) )
of°  0¢"
A(ty @) = (E)x’- + axr) (28) (30)
] 1/ lt=t,
forallae[0,1], tetyt,], j=1,2,nandk=12 -, m. The increment of 71, denoted by A71 is

tl ~ ~
47, =J (f(ic; 0%y, Xy + 0% 1] + Oy, i, + Oy ) + 1 ((E] + 0%, X + O, t)))dt

ty

o (FE 052050, 5300+ 5 (0E (0, 51(0.0)) )

tl ~ ~
=J (fpc; 8%y, ey Ko+ OX,, QLT+ Oy, -+, 017, + Ol ][] + % ((p[ic’f 0%, K+ 6in][a]))dt

ty

t /. d /-~
o] (i, e+ 5 (66, - 570 ) e

ty

where

~ ~ ~ ~ ~ ~ ~ ~ 1 r 1 r
[X] +6Xy, -, X}, + 0%, t] + Oty -+, ihy, + i, ][] = (x;‘ +0xh, x0T, x4 Ox, X+ 8,
wf +8ul ut UL, ut + Oul Ut + 8l t
uy +0up, uy +8ul, - u, +0u,,u;, +0ul,tal,
~ ~ 1 r
[X] +6X,, -, X, + 0%,,] (x +0xh, x4 Ox, e x4 8x, x7 +5x2,t,oc),
(32)
«! *7
xn , Uy ,ul ,-~-,um,um,t,oc),

x toc),

[%T’ X5,

=M

5, ity o] = ()
( 1 xl’

AL [A 1,AJ]



Using the gH-difference, and without sake of generality,

we consider
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tl
1 r 1 r 1 r 1 r
AT :J (fl(x;‘ + 0, X Ox, e x4+ Ox x4+ Ox ul + Sul ul U, e ul + Sul L ut Sl Lt 0()

ty

dt

5] d
1l s UL If ol o«
—J <f (xl,xl,---,xn,xn,ul,ul,u,um,u t,a +% ¢ xl,xl,-'-,x x

d r r
+ — <¢l (xfl +0xh, x + Oxl, ---,le +0x, % +0x0, 8, oc)) dt

)))dt

tl
1 r 1 r 1 r 1 r
AH:J (f'(xf +0xh, x0T, e xt + Ox x4+ Ox ul Sl ul  Sul, e ut, + Sul w8, t,oc)

dt

d r r
+ — (gbl (xfl +0xh, xt + 0x, ---,le +0x, % + 00, 8, oc)))dt

f d
rf xl s P ™ rf o« %" P
—J (f (xl,xl,---,xn,xn,ul,ul,--,um,u ta 7 O x],x] L%, %, Ha) ) |dt.
tO

Since J, (. -+ E i1 -r ) <y (10 B g o )
if and only if

TR oo X iy ooy ] [0] < T3[Ry oo By By T[],
TR o X g o i J[0] < Ty [Rys oo s g, oo thy [,

(34)

for all we [0,1], then [X],---, X, ), i, ][a] are optimal
solutions for the crisp functions ]’1 and J7. Suppose that 6] ’1
and 6] denote the first variation of J ll and J7, respectively.
From the classical theory of optimal control, we know that
" u;j: ,u’, are optimal, then it is necessary that &
J, and 8]’ are zero. In order to find the first variation of J|
and J7, we need to evaluate the derivatives in the integrand
of Jt and J! along the optimal trajectory; then, we obtain

Al = Jlli(afa +i15 ;>+;<§f5 +af,auk>
2( a_ )dt+o<(5u;’)2>

+ O (8u')?) o+ (( )>+ (@u)?),
- [z (gia Lo ) . z(g Y M)
;i( ) dt+O Sul))

o((au;f))+...+o< ol (o )(.)

. 1 r
if uj,uy, -

Subsequently, on optimal trajectories, the first variation
of ]! and J is zero, i.e.,

of of of f!
o = J[Z(a, a}ax]>+kzl<auka +az8uk>
i(a‘/’al afax;ﬂdt:o,
& (o d g
ool [t e ) z(éiza )
ar
+dtz<¢ 4 s

(36)

for all variations. Now, we are ready to introduce the fuzzy
Lagrange multiplier functions A, (¢), --+, A,,(¢) by considering

the integral

v= J (1) © (96 (0) s %y (1), (8), 18, (1),1) © ey (1) ),

ty

(37)
forj=1,2, -+, n. Using the gH-difference and without sake of
generality, we consider the « — level set of v, respectively, as

tl

Y= J -\ (xj - gj) dt, (38)
)
tl

v =Jt - A (xj —gj)dt, (39)

for j=1,2, -+, n. In the remainder of the proof, we will ignore
similar arguments. We start by computing the variation of (38):
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t . . Similarly, when we consider (39) with 6x(¢,) =0 for all
P=| (=M (&= gh) = 8(i =g )AL i=1,2, - A
oy Jt ( 84 (x] gf) S(x] g]) /‘1>dt’ forj=1,2,-n j=1,2,+--,n, and the same summation with small change

(40) (the right-hand functions of g, A instead of the left-hand
functions), we arrive at

on l 0
J [Z<Z <_}7 f gj&x) r N R r aglr ! agzr r
a2 o O ot 51//:J PP S I
4 v axj Bx]
m agl agl
+ Y M =Ly + =L Ao | d 5 (0g, 0g L\ S,
; 1<a ! du Z DI oo+ au,g&‘k + Y Aox | dt

0

k=1 i=1 k j=1
(41) "
= ) Aj(t)8x](t)).
It is clear that from the definition of gH-difference, the ]:zl (01)0x; (1)
first term of Equation (40) is zero. Integrating the last term
on the RHS of (41) by parts and because x;(t,) is specified, (45)

ie., 6x§(t0) =0 (and Sx;.(to) =0) for all j=1,2,---,n, then,

! Since ¥/ =0 and v" =0 for all u!, 4", -- ,u , then &
we arrive at v v B

¥! =0 and Sy = 0. Further, we can replace the condltlons
8/'=0 and 8J7=0 by 8, +8y' =0 and &J +8y" =0,

J [i <i N ( g] Ny ag}& respectively [10]. Then, we have
j Xt 5 r X
fo Lj=1 \i=1 t, [ n I I
' of 19g; 51\ s
m(dgh a4 n 8J’+5w’=J o+ Y A+ A |6
X (a—l g af£5“2>> + ZW?] at 1 & ey 2 )
k=1 k =1 1
of . < ,199;
n + + ) A= |6x]
- ZA (t)0x;(t) <ax§ ; ox; )
=1
&l (of < 10dh 5
(42) + ; [(8_% + zk"TI)‘S”"
- - 46
By considering the following summations, off &, 94 (46)
+ + Y A=t | Sup
) up, & 'ouy
Z(ZAj <zgfax + zgjsx )) do(od o
j=1 \i=1 i + az<ﬁ5x]+ axfax;>‘|dt
C S I i1 agi r = ! '
=Y (YA 9%t 505 | | SR
=1 \i=1 ] (43) - Z (t) x](tl)’
=1
L (99 g ]
Z(ZAj(a_;alkJra;au,:)) t
— — u n T n r
LN ¢ ¢ 8] + 8y u Zvagl ox!
m n ! ! axl ! axl /
- Z(ZA%(agfa L+ 295 k)) pLmbAm
—\ & "\ou Ju ’ o A
ke AT ¢ ¥ (g_ $ YN ‘39; )t]>6x]’]
WA=
we can rewrite 8y as m ron r
(L S a2 o
L[S (9950, 99 G\ o (47)
Sy’ = A ==6 L Ox);
v Jzo ;; i axj 7 9x” X r n r

J
u
o 1[99} <1 9gi I = k
+ZZAI<616k+aur6uk>+z/1]8x]]dt L s o
k=1i=1 k k j=1 +_Z ¢8l+ ¢6r dt
= ) Ai(t)0x;(ty)
J J n
= - z/\;(tl)ax;(tl)



Summing Equations (46) and (47) and using the def-
inition of the fuzzy Hamiltonian function, we have

of 51, 09 OF ¢
Jt [dtz(ax o Nt g +af5x)

oH . oH ., oH oH
+ —+A 8 + + A | OxT + — Ouk + —— Sul | dt
axﬁ ox; 1) gul our,

-3 (e

j=1

f) + ANt )sx;(tl)) =0.
(48)
Integrating the first term of (48) considering 8x§-(t0) =0

and 0x7(ty) =0 for all j=1,2, -

involving 8x§, 0x}, 0 ut, and 8uj, therefore, the necessary condi-

-, n and removing the terms

tions follow.

Note 1. It should be noted that in problem (18), if X(t;)

is specified, then ij(t) has no boundary conditions for all
j: 1) 2’ en

3.1. Isoperimetric Constraints. In this part, we turn our atten-
tion to a special type of fuzzy optimal control problem,
defined as

min T =30, 0) + [ TG00,

u

subject to ;c(t)

=g(x(t), u(t), 1),

(49)

This type of constraint is known as an isoperimetric
constraint, where f, g, and h are assumed to be functions
of class Cpi[ty, t;] with respect to all their arguments. To
establish the solution method for this type of problem,
we convert this problem to a more familiar form, the
fuzzy optimal control problem of several variables, by
introducing a second state variable y(¢), and let

Therefore, if we use Theorems 10 and 11, then we
have

(51)
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Subsequently, problem (49) is transformed into

.

min f(ﬁ)=<2>(5f(t1)>t1)+J f(x(t), u(t), t)dt

%(t) = g(x(0), () 1),
3(t) = h(E(t), (1), ),

subject to X(ty) =X,
JT’(to) =0, y(t) =A.
52

—~
~—

This problem can now be solved using Theorem 13,
i.e., the developed method for solving fuzzy optimal con-
trol problems of several variables.

3.2. Higher Order Differential Equations. Here, we deal with
problems involving higher order differential equations. Con-
sider the following problem:

e (i )

subject to

x(ty) = B 3V (ty) = By -+ X(tg) = Bya»

(53)

for n > 1. Theorem 13 does not directly deal with this type of
problem. But it is easy to convert this problem to the fuzzy
optimal control problem of several variables by introducing
n + 1 state variables defined, respectively, by

”’&n+l(t) :5C<n)(t)' <54)

Then, problem (53) is transformed into

min  J(@y, -, i)

iy, il

J T (E), s Ty (6 1y (£), -+ iy (£), D)

)

subject to icgl)(t) =X,(1), %, (tp) = Bl

(55)

which can be solved by using Theorem 13, i.e., the devel-
oped method for solving fuzzy optimal control problems
of several variables.
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3.3. The Strong (Fuzzy) and Weak Solutions. The devel-
oped method for solving the fuzzy optimal control prob-
lem of several variables provides the solutions of this
problem, optimal fuzzy controls and corresponding fuzzy
states, by solving the necessary conditions introduced in
Theorem 13. Meanwhile, to guarantee that the solutions
of the fuzzy optimal control problem of several variables
are always fuzzy functions, we propose the concepts of
strong (fuzzy) and weak solutions of this problem. In the
following definition, based on the conditions (1) and (2)
of Lemma 1, we introduce the definition of strong (fuzzy)
and weak solutions of the fuzzy optimal control problem
of several variables (18).

Definition 14 (strong (fuzzy) and weak solutions).

_Zuzr(t, 1) - uzl(t, a), up (t oc)] ,
(O] = [ (@) 20 (1. 1) - (1)
i (1 a),uf (1,a),
:Zx;‘r(t, 1)- x;"(t, oc),x;-"(t, (x)] ,
=4 [x w26 (6 1) -2, oc)], :
:ﬁﬁ&%ﬁwﬂm

forall t €[ty t,], 0€[0,1),k=1,2,---,m,and j=1,2, -+, n.

Note 2. In the next section, we will give three examples that
can serve to illustrate our main results, more specifically, a dis-
cussion on the strong solutions (fuzzy solutions) of our
problems.

4. Illustrative Examples

Example 1. Find the fuzzy control that

minimize

subject to X, (£) = X5, %, (0) = 0, %, (1) is free

Solution 1. First, without loss of generality, we formulate the
fuzzy Hamiltonian function as

(1) Strong (Fuzzy) Solution. We say that i (¢)[«] and

X;(t)[a] are strong(fuzzy) solutions of problem

(18) if u,’gl(t, a),uf (t,a), x]’-“’(t, «), and x]’f'(t, a),
for k=1,2,---,m and j=1,2,---,n, obtained from
(23), (24), (25), (26), (27), and (28) satisty their
related properties defined in the conditions (1) and
(2) of Lemma 1, for all f € [ty,#,] and a € [0, 1].

(2) Weak Solution. We say that u;(t)[a] and X (t)[a]

are weak solutions of problem (18) if u,’:](t, a),u;

(t, @), x]’.*l(t,oc), and x;.‘r(t,oc), for k=1,2,--,m
and j=1,2,---,n, obtained from (23), (24), (25),
(26), (27), and (28) do not satisty their related
properties in the conditions (1) and (2) of Lemma 1;

thus, we define u (t)[a] and X7 (t)[a] as

if uzl, u;’ are decreasing functions of a,
if u,’:l, u; areincreasing functions of a,
if uzl is a decreasing function and u} is an increasing function of a,
if x;" , x;-‘r are decreasing functions of a,
if x]’f‘l, x* are increasing functions of a,

if x; isa decreasing functionand x;" is an increasing function of a,

H=f'+ "+ Xigy + g5+ Aigh + Xy

= (xll +xb - ulz> + (xg +x5 — u'z) +Alxd + A (ocul)
+A1xh + A5 ((3 - 2a)u”).

(58)

In fact, $(%,(1), %,(1), 1) = 0, then

[ (¥ (1) %1 (1), 5(1), %5(1), 1), )

¢ (1), ¥ (1), x3(1), (1), 1)] = [0,0]

The necessary conditions for optimality of Theorem 13
with the initial conditions and the dynamical system of
(57) give

it =, %l (0) =0, (60)
x] = x5, x7(0) =0, (61)
i =, (0) =0, (62)
X, = (3 -2a)u’,x5(0) =0, (63)
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: H .
L T (64)
0x}
r OH 7 "
R R TUR &
‘1 oH .1 1\ 4!
Az:_a_xlz:,Azz_(nal),xz(n:o, (66)
o o0H o
Ny=—or =y =—(1+ M), 1(1) =0, (67)
0x}
o0H 1 1 1_ %
W:0=>—2u +a/\2=0$u=§/\2, (68)
0H 3-2
W:O:—Zu’+(3—2(x)/\£=0ﬁur=( “)/\2-
(69)

We solve Equations (60), (61), (62), (63), (64), (65),
(66), (67), (68), and (69) analytically; then, we obtain

Af(t,oc):l—t,
A (ta)=1-t,
i 2 —4t+3
A (ta)= ,
> (1) D
, 2 —4t+3
A ()= ,
2( a) 2
a(t? —4t+3
u*l(t,oc): ( ),
4
. 3-2a)(?—4t+3
4
A o (t* - 8t +18t%)
Xy ()= ,
48
, 3—2a)%(t* - 8% + 1842
7 (tay = C72 ),
48
o (P -6t +91)
x5 (ha) = —————,
, 3-2a)( - 6t2 + 9t
5 (= CT2T 200,

We can easily show that u* (¢, a), xI' (, &), and x3 (£, «)
are continuous increasing functions of &, and u* (t, ), x}’

(t,a), and x; (t, «) are continuous decreasing functions of
o. Furthermore,

; 2 —4t+3
w (1) =ut (1) = —
2
N o t*— 81> + 1812
X (61) =2 (61) = —— (71)
, 2 — 612 +9t
x5 (61) =% (61) = ———,
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for all t € [0, 1]. Therefore, the a-level set of optimal fuzzy
control #*(t) and optimal fuzzy states X} (t) and X} (t) is
characterized, respectively, by

i (1)[a] = [Oé(tz _;t+3)’ (3—2a)(i—4t+3)]’

. o (11— 817 +18£%) (3 —2a)*(t* - 81> +18¢2)
X1 (t) [(X] = 48 > 48 >

o =[P, e )
2

for all o, t € [0, 1]. Therefore, the above solutions are strong
(fuzzy) solutions of problem (57).

Example 2. Find the fuzzy control that

minimize J(in(t)) = Jl (x(t) © g ;ﬁz(t)> dt

0

subject to

a
—
~
~
I
™

(), x(0) =(0,1,2),x,(1) isfree
Jlic(t)dt =(2,4,6).
(73)

Solution 2. First, we introduce a second state variable y(¢) by

0= 56 (74)
then, problem (73) converts to
J(@a(t)) = L (%(t)@izlz(t))dt,
subjectto  x(t) = it(t), %(0) = (0, 1,2), X(1) is free
() =X(t),7(0) =0, 5(1) = (2, 4,6).
(75)

Second, without loss of generality, we formulate the fuzzy
Hamiltonian function as

H= xl—l
2

It is clear that

2 1 -
ul> + <xr— Eur ) + A A AT AL

(76)

(77)
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Now, applying Theorem 13, we find the following neces-
sary conditions:

=i, K 0)=a (78)
K=, x(0)=2-a, (79)
i =+, (0) =0, (80)
}'}r — xr’ yr(o) — 0) (81)
.l 0H .1
Al:_@:ml:—(u;u;),)qu):o, (82)
r OH T - 83
h=-as =M =-(1+ ). X (1) =0, (83)
. OH
AIZ =-og= 0— }UZ =K,, forsome constantK,,  (84)
y
7 OH ,
A, = o =0= A} = K,, forsome constantK,,  (85)
o0H
w=0=>—ul+/\ll=0=>ul=/\lz, (86)
a_H:0:>—ur+A§:0:ur:A;. (87)
ou’

In the rest of the solution, we will ignore the similar cases;
we only consider the left-hand functions of a — level set.

We begin by substituting (84) into differential Equation
(82), and then, by solving the differential equation, we obtain

AM(ta)=(1+K,)(1-1). (88)
Substituting Al (¢, «) into (86) gives
d(t,a)=(1+K,)(1-1). (89)

After that, we substitute /(t, a) into Equation (78), then
solve it with the appropriate condition, we obtain

xl(t,a)=(l+K1)(t— g) +a. (90)

By the same manner, we substitute x'(t, @) into Equa-
tion (80) and solve it with the appropriate condition; then,
we have

Yt a)=(1+K)) (% - %) +at. (91)

To find the value of constant of integration K,, we use

the condition y/(1, &) =2+ 2a; thus,

1 1
(1+K1)(E _E> +ta=2+2a= (1+K,)=6+3a. (92)

11
Therefore, for all a,t € [0, 1], we arrive at
' (t, @) = (6+3a)(1-1),
“(t,a) = (6+3a)( t - : +
x*(ta)=( o) 5 o, (93)
“(t,a) = (6 +3a tz—t3 +at
y(ha)=( ) 2 6 :

Similarly, if we consider the right-hand functions of
a —level set and for all «, €0, 1], we arrive at

u” (t,a) = (12 - 3a)(1 - t),

x*r(t,oc):(12—3oc)<t—%) +2—qa, (94)
2 B

y (ta) = (12 - 3a) (5 - g) +(2-a)t.

We can easily show that u* (t, a), x* (t, @), and v (£, )
are continuous increasing functions of « and u* (t, a), x*
(t,«), and y*'(t, ) are continuous decreasing functions
of a. Moreover,

w (1) =u (1) =9(1 - 1),

9<t— t2—2> +1, (95)

! ; 2 £
x5 (1) =x] (t,1)=9(5 - E) +1,

x} (1) =7 (6.1)

for all t € [0,1]. Therefore, the a-level set of optimal fuzzy
control #"(t) and optimal fuzzy states x;(t) and X;(¢) is
characterized, respectively, by

i (£)[o] = [(6 + 3a)(1 - 1), (12 = 3a) (1 - £)],

% (t)[o] [(6+30c)(t— t;) +a, (12 - 3a) (t— t;) +z-a}

7 (t)[a] = [(6+3o¢) (; - g) +at, (12) (g - 2) + (2—oc)t],
(96)

for all a, t € [0, 1]. Therefore, the above solutions are strong
(fuzzy) solutions of problem (73).

Example 3. Find the fuzzy control that

minimize

subject to
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Solution 3. We let x,(t)=%(t) and %,(t)=x"(t), then
problem (97) converted to problem (57) in Example 1,
i.e,, problem (97) has the same solutions of problem (57).

5. Conclusion

In summary, we proved the necessary conditions for opti-
mality of the fuzzy optimal control problem of several vari-
ables. Also, fuzzy optimal control problems involving
isoperimetric constraint and higher order differential equa-
tion have been considered. By introducing new variables,
we transformed these problems into fuzzy optimal control
problems of several variables in order to use the developed
method to solve these problems. The definitions of strong
(fuzzy) and weak solutions of our problems have been intro-
duced. By three examples, we discussed and summarized the
applicability of our main results of this paper.
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