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The purpose of this paper is to establish the necessary conditions for a fuzzy optimal control problem of several variables. Also, we
define fuzzy optimal control problems involving isoperimetric constraints and higher order differential equations. Then, we convert
these problems to fuzzy optimal control problems of several variables in order to solve these problems using the same solution
method. The main results of this paper are illustrated throughout three examples, more specifically, a discussion on the strong
solutions (fuzzy solutions) of our problems.

1. Introduction

Optimal control theory is considered as a modern extension
of the classical calculus of variations; however, it differs from
calculus of variations in that it uses control variables to opti-
mize the function. The development of the mathematical the-
ory for optimal control began in the early 1950’s, partially in
response to problems in various branches of engineering and
economics. The study of classical optimal control theory
from different viewpoints greatly attracted the attention of
many mathematicians, and the detailed arguments can be
found in many textbooks, for instance, [1], and references
therein. Moreover, optimal control strategy, i.e., solving nec-
essary conditions for optimality, can be applied in several
fields, such as economy, biology, and process engineering
(for more details, see [1–5]).

On the other hand, uncertainty is inherent in most
dynamical systems in its input, output, and manner, and
fuzziness is a kind of uncertainty very common in real-
world problems [6]. In 1965, Zadeh introduced the concepts
of fuzzy sets and fuzzy numbers in [7], followed up in 1972 by
Chang and Zadeh when they proposed the concept of the
fuzzy derivative in [8]. A large number of researches have
been studied in various aspects of the theory and applications
of these notions; one of these research lines has been the
fuzzy optimal control problem. In the past few decades, the

fuzzy optimal control problem has received growing atten-
tion, and many results of researches have been reported in
the literature ([9–19] and references therein).

Recently, a lot of works done in the field of the fuzzy opti-
mal control problem have only examined problems with one
control and one dependent state variable; however, many
times, we will wish to examine fuzzy optimal control problems
which arise in a wide variety of scientific and engineering
applications such as physics, chemical engineering, and econ-
omy, with more variables (more controls and more states). It
seems that it is a good idea to consider fuzzy optimal control
problems of several variables and discuss how to handle such
problems. Further, treating a special type of fuzzy optimal
control problems such as problems having a type of constraint
known as an isoperimetric constraint and problems involving
higher order differential equations has been presented. In [11],
the modified fuzzy Euler-Lagrange condition was established
for the fuzzy Isoperimetric Variational Problem (IVP), which
is considered as a fuzzy constrained variational problem, but,
in this paper, we overcome the fuzzy optimal control problem
involving the isoperimetric constraint, which is considered as
a fuzzy constrained optimal control problem.

The main aim of this paper is to derive the necessary
conditions of the fuzzy optimal control problem of several var-
iables based on the concepts of differentiability and integrabil-
ity of a fuzzy valued function parameterized by the left- and
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right-hand functions of its α-level set and variational
approaches, in order to provide the solutions of this problem.
However, the solutions of the fuzzy optimal control problem
of several variables, optimal controls, and corresponding opti-
mal states are not always fuzzy functions. Thus, to guarantee
that the solutions of the fuzzy optimal control problem of sev-
eral variables are always fuzzy functions, we will introduce the
concepts of strong (fuzzy) and weak solutions of this problem.

The rest of this paper is organized as follows: In Section 2,
we recall some basic terminologies and definitions used in the
present paper. In Section 3, we establish our main results
concerning the necessary conditions of the fuzzy optimal
control problem of several variables and treating two special
cases of the fuzzy optimal control problem. Additionally, we
propose the definitions of strong (fuzzy) and weak solutions
of our problem. In Section 4, we give three examples that
can serve to illustrate our main results. In Section 5, we pres-
ent some concluding remarks.

2. Preliminaries

Throughout this paper, FðRÞ denotes the class of fuzzy
subsets of the real axis. A fuzzy set ~v on R is a mapping
~v : R⟶ ½0, 1�. For each fuzzy set ~v, we denote its α-level
set by ~v½α� and defined by ~v½α� = ½vlðαÞ, vrðαÞ� = fx ∈ R : ~v
ðxÞ ≥ αg for any α ∈ ð0, 1�. The support of ~v we denote
by suppð~vÞ, where supp ~v = fx ∈ R : ~vðxÞ > 0g. The closure
of supp~v defines the 0-level set of ~v; thus,

~v α½ � =
x ∈ R : ~v xð Þ ≥ αf g, if 0 < α ≤ 1,

cl supp ~vð Þ, if α = 0,

(
ð1Þ

where clðMÞ denotes the closure of set M. Fuzzy set ~v ∈
FðRÞ is called a fuzzy number if

(1) ~v is a normal fuzzy set, i.e., there exists an x0 ∈ R such
that ~vðx0Þ = 1

(2) ~v is a convex fuzzy set, i.e., ~vðrx + ð1 − rÞyÞ ≥min f~v
ðxÞ, ~vðyÞg for any x, y ∈ R and r ∈ ½0, 1�

(3) ~v is upper semicontinuous on R

(4) ~v½0� = clðsupp ~vÞ = clðSα∈ð0,1� ~v½α�Þ is compact

In the rest of this paper, we use E1 to denote the fuzzy
number space.

It is clear that the α − level set ~v½α� = ½vlðαÞ, vrðαÞ� is
bounded closed interval in R for all α ∈ ½0, 1�, where vlðαÞ
and vrðαÞ denote the left-hand and right-hand endpoints of
~v½α�, respectively. Obviously, any v ∈ R can be regarded as a
fuzzy number ~v defined by

~v xð Þ =
1, x = v,
0, x ≠ v:

(
ð2Þ

In particular, fuzzy zero is defined as ~0ðxÞ = 1 if x = 0 and
~0ðxÞ = 0 otherwise.

Let ~a, ~b ∈ E1 and k ∈ R. For any x ∈ R, we can define
the addition ~a + ~b and scalar multiplication k~a, respec-
tively, as

~a + ~b
� �

xð Þ = sup
s+t=x

min ~a sð Þ, ~b tð Þ
n o

,

k~að Þ xð Þ = ~a
x
k

� �
, k ≠ 0,

0~að Þ xð Þ =
1, x = 0,
0, x ≠ 0:

( ð3Þ

Using α − level set, we can also define the addition ~a + ~b
and scalar multiplication k~a, respectively, as

~a + ~b
� �

α½ � = ~a α½ � + ~b α½ � = s + t : s ∈ ~a α½ �, t ∈ ~b α½ �
n o

,

k~að Þ α½ � = k~a α½ � = kx : x ∈ ~a α½ �f g:
ð4Þ

Let ~a be a fuzzy number, the opposite of ~a is denoted
by −~a and characterized by −~aðxÞ = ~að−xÞ [20]. In the case
that ~a½α� = ½alðαÞ, arðαÞ�, we have −~a½α� = ½−arðαÞ,−alðαÞ�
for all α ∈ ½0, 1�.

The binary operation “.” in R can be extended to the
binary operation “⨀” of two fuzzy numbers by using the
extension principle. Let ~a and ~b be fuzzy numbers, then

~α ⊙ ~b
� �

zð Þ = sup
s⋅t=z

min ~α sð Þ, ~b tð Þ
n o

: ð5Þ

Using α-level set, the product ð~α ⊙ ~bÞ is defined by

~α ⊙ ~b
� �

α½ � = min αl αð Þbl αð Þ, αl αð Þbr αð Þ, αr αð Þbl αð Þ, αr αð Þbr αð Þ
n o

,
h
max αl αð Þbl αð Þ, αl αð Þbr αð Þ, αr αð Þbl αð Þ, αr αð Þbr αð Þ

n oi
,

ð6Þ

in the case that ~a½α� = ½alðαÞ, arðαÞ� and ~b½α� = ½blðαÞ, brðαÞ�.

Lemma 1 (see [21]). If al : ½0, 1�⟶ R and ar : ½0, 1�⟶ R
satisfy the following conditions:

(1) al is a bounded increasing function

(2) ar is a bounded decreasing function

(3) alð1Þ ≤ arð1Þ
(4) lim

α→k−
alðαÞ = alðkÞ and lim

α→k−
arðαÞ = arðkÞ, for all

0 < k ≤ 1

(5) lim
α→0+

alðαÞ = alð0Þ and lim
α→0+

arðαÞ = arð0Þ

then ~a : R⟶ ½0, 1� defined by ~aðxÞ = sup fα ∣ alðαÞ ≤ x ≤ ar

ðαÞg is a fuzzy number with ~a½α� = ½alðαÞ, arðαÞ�. Conversely,
if ~a : R⟶ ½0, 1� is a fuzzy number with ~a½α� = ½alðαÞ, arðαÞ�,
then the functions alðαÞ and arðαÞ satisfy conditions (1)-(5).
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Define D : E1 × E1 ⟶ R+ ∪ f0g by

D ~a, ~b
� �

= sup
α∈ 0,1½ �

max ∣al αð Þ − bl αð Þ∣,∣ar αð Þ − br αð Þ ∣
n o

,

ð7Þ

where ~a½α� = ½alðαÞ, arðαÞ� and ~b½α� = ½blðαÞ, brðαÞ�. Dð~a, ~bÞ is
called the distance between fuzzy numbers ~a and ~b.

It should be noted that D satisfies the following
properties:

(1) ðE1,DÞ is a complete metric space

(2) Dð~a +~c, ~b +~cÞ =Dð~a, ~bÞ
(3) Dðk~a, k~bÞ = ∣k∣Dð~a, ~bÞ, where ~a, ~b,~c ∈ E1 and k ∈ R

A special class of fuzzy numbers is the class of triangular
fuzzy numbers. We say that the fuzzy number ~a is triangular
if alð1Þ = arð1Þ, alðαÞ = alð1Þ − ð1 − αÞðalð1Þ − alð0ÞÞ, and ar

ðαÞ = alð1Þ + ð1 − αÞðarð0Þ − alð1ÞÞ. The triangular fuzzy
number ~a is generally denoted by ~a = ðalð0Þ, alð1Þ, arð0ÞÞ.

Definition 2 (partial ordering [9]). Let ~a, ~b ∈ E1, we write ~a≺~b,
if alðαÞ ≤ blðαÞ and arðαÞ ≤ brðαÞ for all α ∈ ½0, 1�. We also
write ~a ≺ ~b, if ~a≺~b and there exists α0 ∈ ½0, 1� such that al

ðα0Þ < blðα0Þ or arðα0Þ < brðα0Þ. Furthermore, ~a = ~b, if ~a≺~b
and ~a≻~b. In other words, ~a = ~b, if ~a½α� = ~b½α� for all α ∈ ½0, 1�.

In the sequel, we say that ~a, ~b ∈ E1 are comparable if either
~a≺~b or ~a≻~b and noncomparable otherwise.

Definition 3 (gH-difference [22]). Suppose that ~a, ~b ∈ E1,
where ~a½α� = ½alðαÞ, arðαÞ� and ~b½α� = ½blðαÞ, brðαÞ� for all α
∈ ½0, 1�, the generalized Hukuhara difference of two fuzzy
numbers ~a and ~b (gH-difference for short) is defined by

~α ⊖ gH
~b =~c⟺

1ð Þ~α = ~b +~c,

or 2ð Þ~b = ~α + −1ð Þ~c:

(
ð8Þ

If~c = ~α ⊖ gH
~b exists as a fuzzy number, then its α-level set is

cl αð Þ =min al αð Þ − bl αð Þ, ar αð Þ − br αð Þ
n o

,

cr αð Þ =max al αð Þ − bl αð Þ, ar αð Þ − br αð Þ
n o

,
ð9Þ

for all α ∈ ½0, 1�.

Definition 4 (fuzzy valued function [9]). The function ~f : ½t0,
t1�⟶ E1 is called a fuzzy valued function if ~f ðtÞ is assigned
a fuzzy number for any t ∈ ½t0, t1�. We also denote ~f ðtÞ½α� =
½ f lðt, αÞ, f rðt, αÞ�, where f lðt, αÞ = ð~f ðtÞÞlðαÞ =min f~f ðtÞ½α�g
and f rðt, αÞ = ð~f ðtÞÞrðαÞ =max f~f ðtÞ½α�g. Therefore, any
fuzzy valued function ~f may be understood by f lðt, αÞ
and f rðt, αÞ being, respectively, a bounded increasing

function of α and a bounded decreasing function of α for
α ∈ ½0, 1�. Also, it holds f lðt, αÞ ≤ f rðt, αÞ for any α ∈ ½0, 1�.

Definition 5 (continuity of a fuzzy valued function [23]). We
say that ~f : ½t0, t1�⟶ E1 is continuous at t ∈ ½t0, t1�, if both
f lðt, αÞ and f rðt, αÞ are continuous functions at t ∈ ½t0, t1�
for all α ∈ ½0, 1�.

Definition 6 (gH-differentiability of a fuzzy valued function
[24]). Let t̂ ∈ ðt0, t1Þ and h be such that t̂ + h ∈ ðt0, t1Þ, then
the gH-derivative of a fuzzy valued function ~xðtÞ: ðt0, t1Þ
⟶ E1 at t̂ ∈ ðt0, t1Þ is defined as

~_x t̂
� �

= lim
h→0

~x t̂ + h
� �

⊖ gH~x t̂
� �

h
: ð10Þ

If ~_xð̂tÞ ∈ E1, we say that ~x is generalized Hukuhara dif-
ferentiable (gH-differentiable for short) at t̂. Also, we say
that ~x is ð1Þ-gH-differentiable at t̂ if

1ð Þ ~_x t̂
� �

α½ � = _xl t̂, α
� �

, _xr t̂, α
� �h i

, for α ∈ 0, 1½ �, ð11Þ

and ~x is ð2Þ-gH-differentiable at t̂ if

2ð Þ ~_x t̂
� �

α½ � = _xr t̂, α
� �

, _xl t̂, α
� �h i

, for α ∈ 0, 1½ �: ð12Þ

Definition 7 (nth order gH-differentiability of a fuzzy val-
ued function [25]). Let ~xðtÞ: ðt0, t1Þ⟶ E1. We say that
~xðtÞ is nth order gH-differentiable at t̂ whenever the func-
tion ~xðtÞ is gH-differentiable of the order i, i = 1, 2,⋯,
n − 1, at t̂ and if there exist ~_x

ðnÞð̂tÞ ∈ E1 such that

~_x
nð Þ

t̂
� �

= lim
h→0

~_x
n−1ð Þ

t̂ + h
� �

⊖ gH~_x
n−1ð Þ

t̂
� �

h
: ð13Þ

Definition 8 (switching point [26]). We say that a point
t̂0 ∈ ðt0, t1Þ is a switching point for the differentiability of
~xðtÞ if in any neighborhood N of t̂0 there exist points
t̂1 < t̂0 < t̂2 such that

(i) type(I): at t̂1 (11) holds while (12) does not hold and
at t̂2 (12) holds while (12) does not hold or

(ii) type(II): at t̂1 (12) holds while (12) does not hold and
at t̂2 (11) holds while (12) does not hold

Definition 9 (see [21]). Let ~f : ½t0, t1�⟶ E1. We say that ~f is
fuzzy-Riemann integrable to I ∈ E1 if for any ε > 0, there
exists δ > 0 such that for any division P = f½i, j� ; ξg of ½t0, t1�
with the norms ΔðpÞ < δ, we have

D 〠
∗

P

i − jð Þ ⊙ ~f ξð Þ ; I
 !

< є, ð14Þ
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where Σ∗ denotes the fuzzy summation. We choose to write
I ≔
Ð t1
t0
~f ðtÞdt. Furthermore, for any α ∈ ½0, 1�,

ðt1
t0

~f tð Þ α½ �dt =
ðt1
t0

f l t, αð Þdt,
ðt1
t0

f r t, αð Þdt
" #

: ð15Þ

Theorem10 (see [24]). If ~f ðtÞ: ½t0, t1�⟶ E1 is gH-differentiable
with no switching point in the interval ½t0, t1�, then we have

~F tð Þ =
ðt1
t0

~_f xð Þdx = ~f t1ð Þ ⊖ gH
~f t0ð Þ: ð16Þ

Theorem 11 (see [24]). Let ~f ðtÞ: ½t0, t1�⟶ E1 be a contin-
uous fuzzy valued function. Then,

~F tð Þ =
ðt
t0

~f xð Þdx, t ∈ t0, t1½ �, ð17Þ

is gH-differentiable and ~_FðtÞ = ~f ðtÞ.

From now, we use CE1 ½t0, t1� to denote the space of all
fuzzy valued functions that have continuous gH-derivatives
on ½t0, t1� andCn

E1 ½t0, t1� to denote the space of all fuzzy valued
functions that have nth continuous gH-derivatives on ½t0, t1�.

3. Fuzzy Optimal Control of Several Variables

This section is aimed at deriving the necessary conditions for
the fuzzy optimal control problem of several variables. For
this purpose, the fuzzy optimal control problem of several
variables is introduced at first, then using fuzzy variational
approaches, the problem is solved.

Consider the following fuzzy optimal control problem of
several variables:

min
~u1,⋯,~um

~J ~x1,⋯, ~xn, ~u1,⋯, ~umð Þ
= ~ϕ ~x1 t1ð Þ,⋯, ~xn t1ð Þ, t1ð Þ
+
Ð t1
t0
~f ~x1 tð Þ,⋯, ~xn tð Þ, ~u1 tð Þ,⋯, ~um tð Þ, tð Þdt

subject to ~_xj tð Þ = ~gj ~x1 tð Þ,⋯, ~xn tð Þ, ~u1 tð Þ,⋯, ~um tð Þ, tð Þ
~xj t0ð Þ = ~xj0, ~xj t1ð Þ is free, for j = 1, 2,⋯, n,

ð18Þ
where ~f , ~g : En × Em × R⟶ E1 are assumed to be functions
of class CE1 ½t0, t1� with respect to all their arguments. The
fuzzy states ~xjðtÞ for j = 1, 2,⋯, n and the fuzzy controls
~ukðtÞ for k = 1, 2,⋯,m are functions of t ∈ ½t0, t1� ⊆ R. Fur-
thermore, ~xjðtÞ are assumed to be ð1Þ-gH-differentiable
functions for all j = 1, 2,⋯, n. In problem (18), we make
no requirements on n and m. In other words, n >m, n =
m, or n <m are all acceptable.

We say that an admissible fuzzy curve ð~x∗1 ,⋯, ~x∗n , ~u∗1 ,
⋯, ~u∗mÞ is the solution of problem (18), if for all admissible
curve ð~x1,⋯, ~xn, ~u1,⋯, ~umÞ of problem (18)

~J ~x∗1 ,⋯, ~x∗n , ~u∗1 ,⋯, ~u∗mð Þ≺~J ~x1,⋯, ~xn, ~u1,⋯, ~umð Þ: ð19Þ

It is well know that, fromDefinition 2, the above inequality
holds if and only if

J l x∗
l

1 , x∗
r

1 ,⋯, x∗l

n , x∗
r

n , u∗
l

1 , u∗
r

1 ,⋯, u∗l

m , u∗
r

m , t, α
� �
≤ J l xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm, t, α
� �

,

Jr x∗
l

1 , x∗
r

1 ,⋯, x∗l

n , x∗
r

n , u∗
l

1 , u∗
r

1 ,⋯, u∗l

m , u∗
r

m , t, α
� �
≤ Jr xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm, t, α
� �

,

ð20Þ

for all α ∈ ½0, 1�, where the α − level set of fuzzy curves ~x∗, ~x, ~u∗,
and ~u are characterized, respectively, by

~x∗j tð Þ α½ � = x∗
l

j t, αð Þ, x∗r

j t, αð Þ
h i

,

~xj tð Þ α½ � = xlj t, αð Þ, xrj t, αð Þ
h i

,

~u∗k tð Þ α½ � = u∗
l

k t, αð Þ, u∗r

k t, αð Þ
h i

,

~uk tð Þ α½ � = ulk t, αð Þ, urk t, αð Þ
h i

,

ð21Þ

for j = 1, 2,⋯, n and k = 1, 2,⋯,m.

Definition 12 (fuzzy Hamiltonian function). We define fuzzy
Hamiltonian function as

ℍ xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm, λl1,⋯, λln, λr1,⋯, λrn, t, α
� �
= f l xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm, t, α
� �
+ f r xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm, t, α

� �
+ 〠

n

i=1
λlig

l
i xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm, t, α
� ��

+ λri g
r
i xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm, t, α
� ��

:

ð22Þ

Theorem 13 (necessary conditions for problem (18)).
Assume that ð~x∗1 ðtÞ,⋯, ~x∗nðtÞÞ is a vector of admissible fuzzy
states and ð~u∗1 ðtÞ,⋯, ~u∗mðtÞÞ is a vector of admissible fuzzy
controls. Then, the necessary conditions for ð~x∗1 ðtÞ,⋯, ~x∗nðtÞÞ
and ð~u∗1 ðtÞ,⋯, ~u∗mðtÞÞ to be optimal solutions for (18) are

_λ
∗l

j t, αð Þ = −
∂ℍ
∂xlj

xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm,
�

� λl1,⋯, λln, λr1,⋯, λrn, t, α
�
,

ð23Þ
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_λ
∗r

j t, αð Þ = −
∂ℍ
∂xrj

xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm, λl1,⋯,
�

� λln, λr1,⋯, λrn, t, α
�
,

ð24Þ

0 = ∂ℍ
∂ulk

xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm,
�

� λl1,⋯, λln, λr1,⋯, λrn, t, α
�
,

ð25Þ

0 = ∂ℍ
∂urk

xl1, xr1,⋯, xln, xrn, ul1, ur1,⋯, ulm, urm,
�

� λl1,⋯, λln, λr1,⋯, λrn, t, α
�
,

ð26Þ

λlj t1, αð Þ = ∂ϕl

∂xlj
+ ∂ϕr

∂xlj

 !�����
t=t1

, ð27Þ

λrj t1, αð Þ = ∂ϕl

∂xrj
+ ∂ϕr

∂xrj

 !�����
t=t1

, ð28Þ

for all α ∈ ½0, 1�, t ∈ ½t0, t1�, j = 1, 2,⋯, n, and k = 1, 2,⋯,m.

Proof. Let us first consider the variation of ulk, u
r
k, x

l
j, and xrj

defined, respectively, by

ulk = u∗
l

k + δulk,
urk = u∗

r

k + δurk,

xlj = x∗
l

j + δxlj,

xrj = x∗
r

j + δxrj ,

ð29Þ

for k = 1, 2,⋯,m and j = 1, 2,⋯, n. Using Theorems 10 and
11 and because the problem is a minimization problem, we
can rewrite ~J as

~J1 ~x1,⋯, ~xn, ~u1,⋯, ~umð Þ =
ðt1
t0

�
~f ~x1 tð Þ,⋯, ~xn tð Þ, ~u1 tð Þ,⋯, ~um tð Þ, tð Þ

+ d
dt

~ϕ ~x1 tð Þ,⋯, ~xn tð Þ, tð Þ
� ��

dt:

ð30Þ

The increment of ~J1, denoted by Δ~J1 is

where

Δ~J1 =
ðt1
t0

~f ~x∗1 + δ~x1,⋯, ~x∗n + δ~xn, ~u∗1 + δ~u1,⋯, ~u∗m + δ~um, tð Þ + d
dt

~ϕ ~x∗1 + δ~x1,⋯, ~x∗n + δ~xn, tð Þ
� �� �

dt

� ⊖ gH

ðt1
t0

~f ~x∗1 tð Þ,⋯, ~x∗n tð Þ, ~u∗1 tð Þ,⋯, ~u∗m tð Þ, tð Þ + d
dt

~ϕ ~x∗1 tð Þ,⋯, ~x∗n tð Þ, tð Þ
� �� �

dt

=
ðt1
t0

~f ~x∗1 + δ~x1,⋯, ~x∗n + δ~xn, ~u∗1 + δ~u1,⋯, ~u∗m + δ~um½ � α½ � + d
dt

~ϕ ~x∗1 + δ~x1,⋯, ~x∗n + δ~xn½ � α½ �
� �� �

dt

� ⊖ gH

ðt1
t0

~f ~x∗1 ,⋯, ~x∗n , ~u∗1 ,⋯, ~u∗m½ � α½ � + d
dt

~ϕ ~x∗1 ,⋯, ~x∗n½ � α½ �
� �� �

dt,

ð31Þ

~x∗1 + δ~x1,⋯, ~x∗n + δ~xn, ~u∗1 + δ~u1,⋯, ~u∗m + δ~um½ � α½ � =
�
x∗

l

1 + δxl1, x∗
r

1 + δxr1,⋯, x∗l

n + δxln, x∗
r

n + δxrn,

�u∗l

1 + δul1, u∗
r

1 + δur1,⋯, u∗l

m + δulm, u∗
r

m + δurm, t, α
�
,

~x∗1 + δ~x1,⋯, ~x∗n + δ~xn½ � α½ � = x∗
l

1 + δxl1, x∗
r

1 + δxr1,⋯, x∗l

n + δxln, x∗
r

n + δxrn, t, α
� �

,

~x∗1 ,⋯, ~x∗n , ~u∗1 ,⋯,~u∗m½ � α½ � = x∗
l

1 , x∗
r

1 ,⋯, x∗l

n , x∗
r

n , u∗
l

1 , u∗
r

1 ,⋯, u∗l

m , u∗
r

m , t, α
� �

,

~x∗1 ,⋯, ~x∗n½ � α½ � = x∗
l

1 , x∗
r

1 ,⋯, x∗l

n , x∗
r

n , t, α
� �

,

Δ~J1 α½ � = ΔJ l1, ΔJr1
h i

:

ð32Þ
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Using the gH-difference, and without sake of generality,
we consider

Since ~J1ð~x∗1 ,⋯, ~x∗n , ~u∗1 ,⋯, ~u∗mÞ ≤ ~J1ð~x1,⋯, ~xn, ~u1,⋯, ~umÞ
if and only if

J l1 ~x
∗
1 ,⋯, ~x∗n , ~u∗1 ,⋯, ~u∗m½ � α½ � ≤ Jl1 ~x1,⋯, ~xn, ~u1,⋯, ~um½ � α½ �,

Jr1 ~x
∗
1 ,⋯, ~x∗n , ~u∗1 ,⋯, ~u∗m½ � α½ � ≤ Jr1 ~x1,⋯, ~xn, ~u1,⋯, ~um½ � α½ �,

ð34Þ

for all α ∈ ½0, 1�, then ½~x∗1 ,⋯, ~x∗n , ~u∗1 ,⋯, ~u∗m�½α� are optimal
solutions for the crisp functions J l1 and Jr1. Suppose that δJ

l
1

and δJr1 denote the first variation of J l1 and Jr1, respectively.
From the classical theory of optimal control, we know that
if u∗

l

1 , u∗
r

1 ,⋯, u∗l

m , u∗
r

m are optimal, then it is necessary that δ
J l1 and δJr1 are zero. In order to find the first variation of J l1
and Jr1, we need to evaluate the derivatives in the integrand
of J l1 and Jr1 along the optimal trajectory; then, we obtain

ΔJ l1 =
ðt1
t0

〠
n

j=1

∂f l

∂xlj
δxlj +

∂f l

∂xrj
δxrj

 !
+ 〠

m

k=1

∂f l

∂ulk
δulk +

∂f l

∂urk
δurk

 !"

+ d
dt

〠
n

j=1

∂ϕl

∂xlj
δxlj +

∂ϕl

∂xrj
δxrj

 !#
dt +O δu∗

l

1

� �2� �

+O δu∗
r

1
� �2� �

+⋯+O δu∗
l

m

� �2� �
+O δu∗

r

m

� �2� �
,

ΔJr1 =
ðt1
t0

〠
n

j=1

∂f r

∂xlj
δxlj +

∂f r

∂xrj
δxrj

 !
+ 〠

m

k=1

∂f r

∂ulk
δulk +

∂f r

∂urk
δurk

 !"

+ d
dt

〠
n

j=1

∂ϕr

∂xlj
δxlj +

∂ϕr

∂xrj
δxrj

 !#
dt +O δu∗

l

1

� �2� �

+O δu∗
r

1

� �2� �
+⋯+O δu∗

l

m

� �2� �
+O δu∗

r

m

� �2� �
:

ð35Þ

Subsequently, on optimal trajectories, the first variation
of J l1 and Jr1 is zero, i.e.,

δJ l1 =
ðt1
t0

〠
n

j=1

∂f l

∂xlj
δxlj +

∂f l

∂xrj
δxrj

 !
+ 〠

m

k=1

∂f l

∂ulk
δulk +

∂f l

∂urk
δurk

 !"

+ d
dt

〠
n

j=1

∂ϕl

∂xlj
δxlj +

∂ϕl

∂xrj
δxrj

 !#
dt = 0,

δJr1 =
ðt1
t0

〠
n

j=1

∂f r

∂xlj
δxlj +

∂f r

∂xrj
δxrj

 !
+ 〠

m

k=1

∂f r

∂ulk
δulk +

∂f r

∂urk
δurk

 !"

+ d
dt

〠
n

j=1

∂ϕr

∂xlj
δxlj +

∂ϕr

∂xrj
δxrj

 !#
dt = 0,

ð36Þ

for all variations. Now, we are ready to introduce the fuzzy
Lagrange multiplier functions ~λ1ðtÞ,⋯, ~λnðtÞ by considering
the integral

~ψ =
ðt1
t0

~λ tð Þ ⊙ ~gj ~x1 tð Þ,⋯, ~xn tð Þ, ~u1 tð Þ,⋯, ~um tð Þ, tð Þ ⊖ gH~_xj tð Þ
� �

dt,

ð37Þ

for j = 1, 2,⋯, n. Using the gH-difference and without sake of
generality, we consider the α − level set of ~ψ, respectively, as

ψl =
ðt1
t0

− λlj _xlj − glj
� �

dt, ð38Þ

ψr =
ðt1
t0

− λrj _xrj − gr
j

� �
dt, ð39Þ

for j = 1, 2,⋯, n. In the remainder of the proof, we will ignore
similar arguments. We start by computing the variation of (38):

ΔJl1 =
ðt1
t0

f l x∗
l

1 + δxl1, x∗
r

1 + δxr1,⋯, x∗l

n + δxln, x∗
r

n + δxrn, u∗
l

1 + δul1, u∗
r

1 + δur1,⋯, u∗l

m + δulm, u∗
r

m + δurm, t, α
� ��

+ d
dt

ϕl x∗
l

1 + δxl1, x∗
r

1 + δxr1,⋯, x∗l

n + δxln, x∗
r

n + δxrn, t, α
� �� ��

dt

−
ðt1
t0

f l x∗
l

1 , x∗
r

1 ,⋯, x∗l

n , x∗
r

n , u∗
l

1 , u∗
r

1 ,⋯, u∗l

m , u∗
r

m , t, α
� �

+ d
dt

ϕl x∗
l

1 , x∗
r

1 ,⋯, x∗l

n , x∗
r

n , t, α
� �� �� �

dt,

ΔJr1 =
ðt1
t0

f r x∗
l

1 + δxl1, x∗
r

1 + δxr1,⋯, x∗l

n + δxln, x∗
r

n + δxrn, u∗
l

1 + δul1, u∗
r

1 + δur1,⋯, u∗l

m + δulm, u∗
r

m + δurm, t, α
� ��

+ d
dt

ϕl x∗
l

1 + δxl1, x∗
r

1 + δxr1,⋯, x∗l

n + δxln, x∗
r

n + δxrn, t, α
� �� ��

dt

−
ðt1
t0

f r x∗
l

1 , x∗
r

1 ,⋯, x∗l

n , x∗
r

n , u∗
l

1 , u∗
r

1 ,⋯, u∗l

m , u∗
r

m , t, α
� �

+ d
dt

ϕr x∗
l

1 , x∗
r

1 ,⋯, x∗l

n , x∗
r

n , t, α
� �� �� �

dt:

ð33Þ

6 Advances in Mathematical Physics



δψl =
ðt1
t0

−δλlj _xlj − gl
j

� �
− δ _xlj − glj
� �

λlj

� �
dt, for j = 1, 2,⋯, n

ð40Þ

=
ðt1
t0

〠
n

j=1
〠
n

i=1
λlj

∂glj
∂xli

δxli +
∂glj
∂xri

δxri

 ! "

+ 〠
m

k=1
λlj

∂glj
∂ulk

δulk +
∂glj
∂urk

δurk

 !!
− 〠

n

j=1
λljδ _x

l
j

#
dt:

ð41Þ
It is clear that from the definition of gH-difference, the

first term of Equation (40) is zero. Integrating the last term
on the RHS of (41) by parts and because ~xjðt0Þ is specified,
i.e., δxljðt0Þ = 0 (and δxrjðt0Þ = 0) for all j = 1, 2,⋯, n, then,
we arrive at

δψl =
ðt1
t0

〠
n

j=1
〠
n

i=1
λlj

∂glj
∂xli

δxli +
∂glj
∂xri

δxri

 ! "

+ 〠
m

k=1
λlj

∂glj
∂ulk

δulk +
∂glj
∂urk

δurk

 !!
+ 〠

n

j=1
_λ
l
jδx

l
j

#
dt

− 〠
n

j=1
λlj t1ð Þδxlj t1ð Þ:

ð42Þ

By considering the following summations,

〠
n

j=1
〠
n

i=1
λlj

∂glj
∂xli

δxli +
∂glj
∂xri

δxri

 ! !

= 〠
n

j=1
〠
n

i=1
λli

∂gli
∂xlj

δxlj +
∂gli
∂xrj

δxrj

 ! !
,

〠
n

j=1
〠
m

k=1
λlj

∂glj
∂ulk

δulk +
∂gl

j

∂urk
δurk

 ! !

= 〠
m

k=1
〠
n

i=1
λli

∂gli
∂ulk

δulk +
∂gli
∂urk

δurk

 ! !
,

ð43Þ

we can rewrite δψl as

δψl =
ðt1
t0

〠
n

j=1
〠
n

i=1
λli

∂gl
i

∂xlj
δxlj +

∂gl
i

∂xrj
δxrj

 !"

+ 〠
m

k=1
〠
n

i=1
λli

∂gli
∂ulk

δulk +
∂gli
∂urk

δurk

 !
+ 〠

n

j=1
_λ
l
jδx

l
j

#
dt

− 〠
n

j=1
λlj t1ð Þδxlj t1ð Þ:

ð44Þ

Similarly, when we consider (39) with δxrjðt0Þ = 0 for all
j = 1, 2,⋯, n, and the same summation with small change
(the right-hand functions of ~g, ~λ instead of the left-hand
functions), we arrive at

δψr =
ðt1
t0

〠
n

j=1
〠
n

i=1
λri

∂gri
∂xlj

δxlj +
∂gri
∂xrj

δxrj

 !"

+ 〠
m

k=1
〠
n

i=1
λri

∂gri
∂ulk

δulk +
∂gr

i

∂urk
δurk

 !
+ 〠

n

j=1

_λ
r
jδx

r
j

#
dt

− 〠
n

j=1
λrj t1ð Þδxrj t1ð Þ:

ð45Þ

Since ψl = 0 and ψr = 0 for all ul1, ur1,⋯, ulm, urm, then δ
ψl = 0 and δψr = 0. Further, we can replace the conditions
δJ l1 = 0 and δJr1 = 0 by δJ l1 + δψl = 0 and δJr1 + δψr = 0,
respectively [10]. Then, we have

δJl1 + δψl =
ðt1
t0

〠
n

j=1

∂f l

∂xlj
+ 〠

n

i=1
λli
∂gli
∂xlj

+ _λ
l
j

 !
δxlj

""

+ ∂f l

∂xrj
+ 〠

n

i=1
λli
∂gl

i

∂xrj

 !
δxrj

#

+ 〠
m

k=1

∂f l

∂ulk
+ 〠

n

i=1
λli

∂gli
∂ulk

 !
δulk

"

+ ∂f l

∂urk
+ 〠

n

i=1
λli

∂gli
∂urk

 !
δurk

#

+ d
dt

〠
n

j=1

∂ϕl

∂xlj
δxlj +

∂ϕl

∂xrj
δxrj

 !#
dt

− 〠
n

j=1
λlj t1ð Þδxlj t1ð Þ,

ð46Þ

δJr1 + δψr =
ðt1
t0

〠
n

j=1

∂f r

∂xlj
+ 〠

n

i=1
λri

∂gri
∂xlj

 !
δxlj

""

+ ∂f r

∂xrj
+ 〠

n

i=1
λri

∂gri
∂xrj

+ _λ
r
j

 !
δxrj

#

+ 〠
m

k=1

∂f r

∂ulk
+ 〠

n

i=1
λri

∂gri
∂ulk

 !
δulk

"

+ ∂f r

∂urk
+ 〠

n

i=1
λri

∂gri
∂urk

 !
δurk

#

+ d
dt

〠
n

j=1

∂ϕr

∂xlj
δxlj +

∂ϕr

∂xrj
δxrj

 !#
dt

− 〠
n

j=1
λrj t1ð Þδxrj t1ð Þ:

ð47Þ
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Summing Equations (46) and (47) and using the def-
inition of the fuzzy Hamiltonian function, we have

ðt1
t0

d
dt

〠
n

j=1

∂ϕl

∂xlj
δxlj +

∂ϕl

∂xrj
δxrj +

∂ϕr

∂xlj
δxlj +

∂ϕr

∂xrj
δxrj

 !"

+ ∂ℍ
∂xlj

+ _λ
l
j

 !
δxlj +

∂ℍ
∂xrj

+ _λ
r
j

 !
δxrj +

∂ℍ
∂ulk

δulk +
∂ℍ
∂urk

δurk

#
dt

− 〠
n

j=1
λlj t1ð Þδxlj t1ð Þ + λrj t1ð Þδxrj t1ð Þ
� �

= 0:

ð48Þ

Integrating the first term of (48) considering δxljðt0Þ = 0
and δxrjðt0Þ = 0 for all j = 1, 2,⋯, n and removing the terms

involving δxlj, δxrj , δulk, and δurk, therefore, the necessary condi-
tions follow.

Note 1. It should be noted that in problem (18), if ~xjðt1Þ
is specified, then ~λjðtÞ has no boundary conditions for all
j = 1, 2,⋯, n.

3.1. Isoperimetric Constraints. In this part, we turn our atten-
tion to a special type of fuzzy optimal control problem,
defined as

min
~u

~J ~uð Þ = ~ϕ ~x t1ð Þ, t1ð Þ +
ðt1
t0

~f ~x tð Þ, ~u tð Þ, tð Þdt

subject to ~_x tð Þ = ~g ~x tð Þ, ~u tð Þ, tð Þ, ~x t0ð Þ = ~x0ðt1
t0

~h ~x tð Þ, ~u tð Þ, tð Þdt = ~A:

ð49Þ

This type of constraint is known as an isoperimetric
constraint, where ~f , ~g, and ~h are assumed to be functions
of class CE1 ½t0, t1� with respect to all their arguments. To
establish the solution method for this type of problem,
we convert this problem to a more familiar form, the
fuzzy optimal control problem of several variables, by
introducing a second state variable ~yðtÞ, and let

~y tð Þ =
ðt
t0

~h ~x sð Þ, ~u sð Þ, sð Þds: ð50Þ

Therefore, if we use Theorems 10 and 11, then we
have

~_y tð Þ = ~h ~x tð Þ, ~u tð Þ, tð Þ,
~y t0ð Þ = ~0, ~y t1ð Þ = ~A:

ð51Þ

Subsequently, problem (49) is transformed into

min
~u

~J ~uð Þ = ~ϕ ~x t1ð Þ, t1ð Þ +
ðt1
t0

~f ~x tð Þ, ~u tð Þ, tð Þdt

subject to ~_x tð Þ = ~g ~x tð Þ, ~u tð Þ, tð Þ, ~x t0ð Þ = ~x0

~_y tð Þ = ~h ~x tð Þ, ~u tð Þ, tð Þ, ~_y t0ð Þ = ~0, ~y t1ð Þ = ~A:

ð52Þ

This problem can now be solved using Theorem 13,
i.e., the developed method for solving fuzzy optimal con-
trol problems of several variables.

3.2. Higher Order Differential Equations. Here, we deal with
problems involving higher order differential equations. Con-
sider the following problem:

min
~u1,⋯,~um

~J ~u1,⋯, ~umð Þ

=
ðt1
t0

~f ~x tð Þ, ~x 1ð Þ tð Þ,⋯, ~xn tð Þ, ~u1 tð Þ,⋯, ~um tð Þ, t
� �

dt

subject to ~x n+1ð Þ tð Þ = ~g ~x tð Þ, ~x 1ð Þ tð Þ,⋯, ~xn tð Þ, ~u1 tð Þ,⋯, ~um tð Þ, t
� �

~x t0ð Þ = ~β1, ~x 1ð Þ t0ð Þ = ~β2,⋯, ~xn t0ð Þ = ~βn+1,
ð53Þ

for n > 1. Theorem 13 does not directly deal with this type of
problem. But it is easy to convert this problem to the fuzzy
optimal control problem of several variables by introducing
n + 1 state variables defined, respectively, by

~x1 tð Þ = ~x tð Þ,
~x2 tð Þ = ~x 1ð Þ tð Þ,⋯, ~xn+1 tð Þ = ~x nð Þ tð Þ:

ð54Þ

Then, problem (53) is transformed into

min
~u1,⋯,~um

~J ~u1,⋯, ~umð Þ

=
ðt1
t0

~f ~x1 tð Þ, ~x2 tð Þ,⋯, ~xn+1 tð Þ, ~u1 tð Þ,⋯, ~um tð Þ, tð Þdt

subject to ~x 1ð Þ
1 tð Þ = ~x2 tð Þ, ~x1 t0ð Þ = ~β1

~x 1ð Þ
2 tð Þ = ~x3 tð Þ, ~x2 t0ð Þ = ~β2

⋮

~x 1ð Þ
n tð Þ = ~xn+1 tð Þ, ~xn t0ð Þ = ~βn

~x 1ð Þ
n+1 tð Þ = ~g ~x1 tð Þ, ~x2 tð Þ,⋯, ~xn+1 tð Þ, ~u1 tð Þ,⋯,ð
~um tð Þ, tÞ, ~xn+1 t0ð Þ = ~βn+1,

ð55Þ

which can be solved by using Theorem 13, i.e., the devel-
oped method for solving fuzzy optimal control problems
of several variables.
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3.3. The Strong (Fuzzy) and Weak Solutions. The devel-
oped method for solving the fuzzy optimal control prob-
lem of several variables provides the solutions of this
problem, optimal fuzzy controls and corresponding fuzzy
states, by solving the necessary conditions introduced in
Theorem 13. Meanwhile, to guarantee that the solutions
of the fuzzy optimal control problem of several variables
are always fuzzy functions, we propose the concepts of
strong (fuzzy) and weak solutions of this problem. In the
following definition, based on the conditions (1) and (2)
of Lemma 1, we introduce the definition of strong (fuzzy)
and weak solutions of the fuzzy optimal control problem
of several variables (18).

Definition 14 (strong (fuzzy) and weak solutions).

(1) Strong (Fuzzy) Solution. We say that ~u∗k ðtÞ½α� and
~x∗j ðtÞ½α� are strong(fuzzy) solutions of problem

(18) if u∗
l

k ðt, αÞ, u∗
r

k ðt, αÞ, x∗
l

j ðt, αÞ, and x∗
r

j ðt, αÞ,
for k = 1, 2,⋯,m and j = 1, 2,⋯, n, obtained from
(23), (24), (25), (26), (27), and (28) satisfy their
related properties defined in the conditions (1) and
(2) of Lemma 1, for all t ∈ ½t0, t1� and α ∈ ½0, 1�.

(2) Weak Solution. We say that ~u∗k ðtÞ½α� and ~x∗j ðtÞ½α�
are weak solutions of problem (18) if u∗

l

k ðt, αÞ, u∗
r

k

ðt, αÞ, x∗
l

j ðt, αÞ, and x∗
r

j ðt, αÞ, for k = 1, 2,⋯,m
and j = 1, 2,⋯, n, obtained from (23), (24), (25),
(26), (27), and (28) do not satisfy their related
properties in the conditions (1) and (2) of Lemma 1;
thus, we define ~u∗k ðtÞ½α� and ~x∗j ðtÞ½α� as

for all t ∈ ½t0, t1�, α ∈ ½0, 1�, k = 1, 2,⋯,m, and j = 1, 2,⋯, n.

Note 2. In the next section, we will give three examples that
can serve to illustrate our main results, more specifically, a dis-
cussion on the strong solutions (fuzzy solutions) of our
problems.

4. Illustrative Examples

Example 1. Find the fuzzy control that

minimize ~J ~u tð Þð Þ =
ð1
0
~x1 tð Þ + ~x2 tð Þ ⊖ gH~u

2 tð Þ� �
dt

subject to ~_x1 tð Þ = ~x2, ~x1 0ð Þ = ~0, ~x1 1ð Þ is free
~_x2 tð Þ = 0, 1, 3ð Þ~u tð Þ, ~x2 0ð Þ = ~0, ~x2 1ð Þ is free:

ð57Þ

Solution 1. First, without loss of generality, we formulate the
fuzzy Hamiltonian function as

H = f l + f r + λl1g
l
1 + λl2g

l
2 + λr1g

r
1 + λr2g

r
2

= xl1 + xl2 − ul
2� �

+ xr1 + xr2 − ur
2

� �
+ λl1x

l
2 + λl2 αul

� �
+ λr1x

r
2 + λr2 3 − 2αð Þurð Þ:

ð58Þ

In fact, ~ϕð~x1ð1Þ, ~x2ð1Þ, 1Þ = ~0, then

ϕl xl1 1ð Þ, xr1 1ð Þ, xl2 1ð Þ, xr2 1ð Þ, 1
� �

,
h

� ϕr xl1 1ð Þ, xr1 1ð Þ, xl2 1ð Þ, xr2 1ð Þ, 1
� �

� = 0, 0½ �:
ð59Þ

The necessary conditions for optimality of Theorem 13
with the initial conditions and the dynamical system of
(57) give

_xl1 = xl2, xl1 0ð Þ = 0, ð60Þ

_xr1 = xr2, xr1 0ð Þ = 0, ð61Þ

_xl2 = αul, xl2 0ð Þ = 0, ð62Þ
_xr2 = 3 − 2αð Þur , xr2 0ð Þ = 0, ð63Þ

~u∗k tð Þ α½ � =

2u∗r

k t, 1ð Þ − u∗
l

k t, αð Þ, u∗r

k t, αð Þ
h i

, if u∗l

k , u∗
r

k are decreasing functions of α,

u∗
l

k t, αð Þ, 2u∗l

k t, 1ð Þ − u∗
r

k t, αð Þ
h i

, if u∗l

k , u∗
r

k are increasing functions of α,

u∗
r

k t, αð Þ, u∗l

k t, αð Þ
h i

, if u∗l

k is a decreasing function and u∗r

k is an increasing function of α,

8>>>>><
>>>>>:

~x∗j tð Þ α½ � =

2x∗r

j t, 1ð Þ − x∗
l

j t, αð Þ, x∗r

j t, αð Þ
h i

, if x∗l

j , x∗
r

j are decreasing functions of α,

x∗
l

j t, αð Þ, 2x∗l

j t, 1ð Þ − x∗
r

j t, αð Þ
h i

, if x∗l

j , x∗
r

j are increasing functions of α,

x∗
r

j t, αð Þ, x∗l

j t, αð Þ
h i

, if x∗l

j is a decreasing function and x∗r

j is an increasing function of α,

8>>>>><
>>>>>:

ð56Þ
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_λ
l
1 = −

∂H
∂xl1

⟹ _λ
l
1 = −1, λl1 1ð Þ = 0, ð64Þ

_λ
r
1 = −

∂H
∂xr1

⟹ _λ
r
1 = −1, λr1 1ð Þ = 0, ð65Þ

_λ
l
2 = −

∂H
∂xl2

⟹ _λ
l
2 = − 1 + λl1

� �
, λl2 1ð Þ = 0, ð66Þ

_λ
r
2 = −

∂H
∂xr2

⟹ _λ
r
2 = − 1 + λr1ð Þ, λr2 1ð Þ = 0, ð67Þ

∂H
∂ul

= 0⟹ −2ul + αλl2 = 0⟹ ul = α

2 λ
l
2, ð68Þ

∂H
∂ur

= 0⟹ −2ur + 3 − 2αð Þλr2 = 0⟹ ur = 3 − 2αð Þ
2 λr2:

ð69Þ
We solve Equations (60), (61), (62), (63), (64), (65),

(66), (67), (68), and (69) analytically; then, we obtain

λ∗
l

1 t, αð Þ = 1 − t,

λ∗
r

1 t, αð Þ = 1 − t,

λ∗
l

2 t, αð Þ = t2 − 4t + 3
2 ,

λ∗
r

2 t, αð Þ = t2 − 4t + 3
2 ,

u∗
l
t, αð Þ = α t2 − 4t + 3

� �
4 ,

u∗
r
t, αð Þ = 3 − 2αð Þ t2 − 4t + 3

� �
4 ,

x∗
l

1 t, αð Þ = α2 t4 − 8t3 + 18t2
� �

48 ,

x∗
r

1 t, αð Þ = 3 − 2αð Þ2 t4 − 8t3 + 18t2
� �
48 ,

x∗
l

2 t, αð Þ = α2 t3 − 6t2 + 9t
� �

12 ,

x∗
r

2 t, αð Þ = 3 − 2αð Þ2 t3 − 6t2 + 9t
� �
12 :

ð70Þ

We can easily show that u∗
lðt, αÞ, x∗l

1 ðt, αÞ, and x∗
l

2 ðt, αÞ
are continuous increasing functions of α, and u∗

r ðt, αÞ, x∗r

1
ðt, αÞ, and x∗

r

2 ðt, αÞ are continuous decreasing functions of
α. Furthermore,

u∗
l
t, 1ð Þ = u∗

r
t, 1ð Þ = t2 − 4t + 3

2 ,

x∗
l

1 t, 1ð Þ = x∗
r

1 t, 1ð Þ = t4 − 8t3 + 18t2
48 ,

x∗
l

2 t, 1ð Þ = x∗
r

2 t, 1ð Þ = t3 − 6t2 + 9t
12 ,

ð71Þ

for all t ∈ ½0, 1�. Therefore, the α-level set of optimal fuzzy
control ~u∗ðtÞ and optimal fuzzy states ~x∗1 ðtÞ and ~x∗2 ðtÞ is
characterized, respectively, by

~u∗ tð Þ α½ � = α t2 − 4t + 3
� �

4 , 3 − 2αð Þ t2 − 4t + 3
� �
4

	 

,

~x∗1 tð Þ α½ � = α2 t4 − 8t3 + 18t2
� �

48 , 3 − 2αð Þ2 t4 − 8t3 + 18t2
� �
48

" #
,

~x∗2 tð Þ a½ � = α2 t3 − 6t2 + 9t
� �

12 , 3 − 2αð Þ2 t3 − 6t2 + 9t
� �
12

" #
,

ð72Þ

for all α, t ∈ ½0, 1�. Therefore, the above solutions are strong
(fuzzy) solutions of problem (57).

Example 2. Find the fuzzy control that

minimize ~J ~u tð Þð Þ =
ð1
0

~x tð Þ ⊖ gH
1
2 ~u

2 tð Þ
� �

dt

subject to ~_x tð Þ = ~u tð Þ, ~x 0ð Þ = 0, 1, 2ð Þ, ~x1 1ð Þ is freeð1
0
~x tð Þdt = 2, 4, 6ð Þ:

ð73Þ

Solution 2. First, we introduce a second state variable ~yðtÞ by

~y tð Þ =
ðt
0
~x sð Þds ; ð74Þ

then, problem (73) converts to

~J ~u tð Þð Þ =
ð1
0

~x tð Þ⊝ 1
2 ~u

2 tð Þ
� �

dt,

subject to ~_x tð Þ = ~u tð Þ, ~x 0ð Þ = 0, 1, 2ð Þ, ~x 1ð Þ is free
~_y tð Þ = ~x tð Þ, ~y 0ð Þ = ~0, ~y 1ð Þ = 2, 4, 6ð Þ:

ð75Þ

Second, without loss of generality, we formulate the fuzzy
Hamiltonian function as

H = xl −
1
2 u

l2
� �

+ xr −
1
2 u

r2
� �

+ λl1u
l + λl2x

l + λr1u
r + λr2x

r:

ð76Þ

It is clear that

~ϕ ~x 1ð Þ, 1ð Þ α½ � = 0, 0½ �,
0, 1, 2ð Þ α½ � = α, 2 − α½ �,
2, 4, 6ð Þ α½ � = 2 + 2α, 6 − 2α½ �:

ð77Þ
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Now, applying Theorem 13, we find the following neces-
sary conditions:

_xl = ul, xl 0ð Þ = α, ð78Þ

_xr = ur , xr 0ð Þ = 2 − α, ð79Þ

_yl = xl, yl 0ð Þ = 0, ð80Þ

_yr = xr , yr 0ð Þ = 0, ð81Þ

_λ
l
1 = −

∂H
∂xl

⟹ _λ
l
1 = − 1 + λl2

� �
, λl1 1ð Þ = 0, ð82Þ

_λ
r
1 = −

∂H
∂xr

⟹ _λ
r
1 = − 1 + λr2ð Þ, λr1 1ð Þ = 0, ð83Þ

_λ
l
2 = −

∂H
∂yl

= 0⟹ λl2 = K1, for some constantK1, ð84Þ

_λ
r
2 = −

∂H
∂yr

= 0⟹ λr2 = K2, for some constantK2, ð85Þ

∂H
∂ul

= 0⟹ −ul + λl1 = 0⟹ ul = λl2, ð86Þ

∂H
∂ur

= 0⟹ −ur + λr1 = 0⟹ ur = λr2: ð87Þ

In the rest of the solution, we will ignore the similar cases;
we only consider the left-hand functions of α − level set.

We begin by substituting (84) into differential Equation
(82), and then, by solving the differential equation, we obtain

λl1 t, αð Þ = 1 + K1ð Þ 1 − tð Þ: ð88Þ

Substituting λl1ðt, αÞ into (86) gives

ul t, αð Þ = 1 + K1ð Þ 1 − tð Þ: ð89Þ

After that, we substitute ulðt, αÞ into Equation (78), then
solve it with the appropriate condition, we obtain

xl t, αð Þ = 1 + K1ð Þ t −
t2

2

� �
+ α: ð90Þ

By the same manner, we substitute xlðt, αÞ into Equa-
tion (80) and solve it with the appropriate condition; then,
we have

yl t, αð Þ = 1 + K1ð Þ t2

2 −
t3

6

� �
+ αt: ð91Þ

To find the value of constant of integration K1, we use
the condition ylð1, αÞ = 2 + 2α; thus,

1 + K1ð Þ 1
2 −

1
6

� �
+ α = 2 + 2α⟹ 1 + K1ð Þ = 6 + 3α: ð92Þ

Therefore, for all α, t ∈ ½0, 1�, we arrive at

u∗
l
t, αð Þ = 6 + 3αð Þ 1 − tð Þ,

x∗
l
t, αð Þ = 6 + 3αð Þ t −

t2

2

� �
+ α,

y∗
l
t, αð Þ = 6 + 3αð Þ t2

2 −
t3

6

� �
+ αt:

ð93Þ

Similarly, if we consider the right-hand functions of
α − level set and for all α, t ∈ ½0, 1�, we arrive at

u∗
r
t, αð Þ = 12 − 3αð Þ 1 − tð Þ,

x∗
r
t, αð Þ = 12 − 3αð Þ t −

t2

2

� �
+ 2 − α,

y∗
r
t, αð Þ = 12 − 3αð Þ t2

2 −
t3

6

� �
+ 2 − αð Þt:

ð94Þ

We can easily show that u∗
lðt, αÞ, x∗lðt, αÞ, and y∗

lðt, αÞ
are continuous increasing functions of α and u∗

rðt, αÞ, x∗r

ðt, αÞ, and y∗
rðt, αÞ are continuous decreasing functions

of α. Moreover,

u∗
l
t, 1ð Þ = u∗

r
t, 1ð Þ = 9 1 − tð Þ,

x∗
l

1 t, 1ð Þ = x∗
r

1 t, 1ð Þ = 9 t −
t2

2

� �
+ 1,

x∗
l

2 t, 1ð Þ = x∗
r

2 t, 1ð Þ = 9 t2

2 −
t3

6

� �
+ t,

ð95Þ

for all t ∈ ½0, 1�. Therefore, the α-level set of optimal fuzzy
control ~u∗ðtÞ and optimal fuzzy states ~x∗1 ðtÞ and ~x∗2 ðtÞ is
characterized, respectively, by

~u∗ tð Þ α½ � = 6 + 3αð Þ 1 − tð Þ, 12 − 3αð Þ 1 − tð Þ½ �,

~x∗ tð Þ α½ � = 6 + 3αð Þ t −
t2

2

� �
+ α, 12 − 3αð Þ t −

t2

2

� �
+ 2 − α

	 

,

~y∗ tð Þ a½ � = 6 + 3αð Þ t2

2 −
t3

6

� �
+ αt, 12ð Þ t2

2 −
t3

6

� �
+ 2 − αð Þt

	 

,

ð96Þ

for all α, t ∈ ½0, 1�. Therefore, the above solutions are strong
(fuzzy) solutions of problem (73).

Example 3. Find the fuzzy control that

minimize ~J ~u tð Þð Þ =
ð1
0
~x tð Þ + ~x 1ð Þ tð Þ ⊖ gH~u

2 tð Þ
� �

dt

subject to ~x 2ð Þ tð Þ = 0, 1, 3ð Þ~u, ~x 0ð Þ = ~0, ~x 1ð Þ 0ð Þ = ~0:
ð97Þ
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Solution 3. We let ~x1ðtÞ = ~xðtÞ and ~x2ðtÞ = ~xð1ÞðtÞ, then
problem (97) converted to problem (57) in Example 1,
i.e., problem (97) has the same solutions of problem (57).

5. Conclusion

In summary, we proved the necessary conditions for opti-
mality of the fuzzy optimal control problem of several vari-
ables. Also, fuzzy optimal control problems involving
isoperimetric constraint and higher order differential equa-
tion have been considered. By introducing new variables,
we transformed these problems into fuzzy optimal control
problems of several variables in order to use the developed
method to solve these problems. The definitions of strong
(fuzzy) and weak solutions of our problems have been intro-
duced. By three examples, we discussed and summarized the
applicability of our main results of this paper.
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