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This paper considers a 𝑑-dimensional stochastic optimization problem in neuroscience. Suppose the arm’s movement trajectory is
modeled by high-order linear stochastic differential dynamic system in 𝑑-dimensional space, the optimal trajectory, velocity, and
variance are explicitly obtained by using stochastic control method, which allows us to analytically establish exact relationships
between various quantities. Moreover, the optimal trajectory is almost a straight line for a reaching movement; the optimal velocity
bell-shaped and the optimal variance are consistent with the experimental Fitts law; that is, the longer the time of a reaching
movement, the higher the accuracy of arriving at the target position, and the results can be directly applied to designing a reaching
movement performed by a robotic arm in a more general environment.

1. Introduction

The effective control of neuronal activity is one of the most
exciting topics in theoretical neuroscience, with great poten-
tial for applications in healthcare. Nowadays, the application
of stochastic control methods in neuroscience is becoming a
significant portion of themainstream research. Amongmany
researches, for example, we refer to Holden (1976) for the
models of the stochastic activity of neural aggregates, Iolov
et al. [1] with respect to the optimal control of single neuron
spike trains, and Roberts et al. [2] with respect to the review
of the application of the stochastic models of brain activity.

In this paper, we study trajectory planning and control
in human arm movements. When a hand is moved to a
target, the central nervous system must select one specific
trajectory among an infinite number of possible trajectories
that lead to the target position. The content of this paper
includes two parts: the first part is modeling the activities
incorporating stochastic process, and the second part is

quantifying task goals as cost functions and applying the
sophisticated tools of optimal control theory to obtain the
optimal behavior. Feng et al. [3] reviewed two optimal control
problems at a different levels, neuronal activity control and
movement control. They also derived the optimal signals
for these two control problems. Li et al. [4] considered the
robust control of human arm movements. Based on the
fuzzy interpolation of an nonlinear stochastic arm system,
they simplified the complex noise-tolerant robust control of
the human arm tracking problem by solving a set of linear
matrix inequalities using Newton’s iterative method via an
interior point scheme for convex optimization. Singh et al.
[5] modeled reachingmovements in the presence of obstacles
and solved a stochastic optimal control problem that consists
of probabilistic collision avoidance constraints and a cost
function that trades off between effort and end-state variance
in the presence of a signal-dependent noise. For more details,
we refer the reader to Campos and Calado [6], Berret et al.
[7], and Mainprice et al. [8].
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Yet, all the above studies discussed 1-dimensional or
lower-dimension space, and the neuronal activity or move-
ment trajectory would be involved in a higher dimension
space. In this paper, motivated by Feng et al. [3], we consider
a stochastic control problem for arm movement within
the framework of 𝑑-dimensional control space. Applying
stochastic control theory, we solved the optimization problem
explicitly and obtained the exact solution of the optimal
trajectory, velocity, and the optimal variance.

The remainder of this paper is organized as follows.
Section 2 introduces the basic model setup of the high-
order linear stochastic dynamical systems for movement
trajectory. In Section 3, we derive the explicit expressions for
the optimal trajectory, velocity, and variance. In Section 4,
we provided a 3-dimensional optimization example, and
concluding remarks are given in Section 5.

2. Model Setup

2.1. The Integrate-and-Fire Model. In this subsection, we give
the classical I & F (integrated-and-fire) model followed by
Feng et al. [3], which describe the neuron activity.𝑑𝐾 (𝑡) = − [𝐾 (𝑡) − 𝐾rest

]
] 𝑑𝑡 − 𝑑𝐼syn (𝑡) , 𝑡 > 0, (1)

with𝐾(0) = 𝐾rest < 𝐾thres and where ] is the decay time con-
stant. The synaptic input current is𝐼syn (𝑡) = 𝑎 𝑝∑

𝑖=1

𝐸𝑖 (𝑡) − 𝑏 𝑞∑
𝑖=1

𝐼𝑖 (𝑡) (2)

with 𝐸𝑖 = 𝐸𝑖(𝑡), 𝑡 ≥ 0 and 𝐼𝑗 = 𝐼𝑗(𝑡), 𝑡 ≥ 0 as Poisson proc-
esses with rates 𝜆𝐸,𝑖(𝑡) and 𝜆𝐼,𝑗(𝑡), 𝑎 > 0 and 𝑏 > 0 being the
magnitude of each excitatory postsynaptic potential (EPSP)
and inhibitory postsynaptic potential (IPSP); a cell receives
excitatory postsynaptic potentials (EPSPs) at 𝑝 synapses and
inhibitory postsynaptic potentials (IPSPs) at 𝑞 inhibitory
synapses. Once 𝐾(𝑡) crosses 𝐾thre from below, a spike is
generated and 𝐾 is reset to 𝐾rest. This model is termed as the
IF model.

Let 𝐾rest = 0, 𝑎 = 𝑏, 𝑝 = 𝑞, and use the usual approx-
imation to approximate the IF models (see Feng et al. [3] and
Zhang and Feng [9]); then (1) can rewriten as𝑑𝐾 (𝑡) = −1

]
𝐾 (𝑡) 𝑑𝑡 + 𝑎𝜆 (𝑡) 𝑑𝑡 + 𝑎𝜆𝛼 (𝑡) 𝑑𝑊 (𝑡) , (3)

where {𝑊(𝑡)}𝑡≥0 is a standard Brownian motion, 𝛼 > 0 is a
constant, and if 𝛼 = 0.5, it implies that the input is derived
from aPoisson process. If𝛼 > 0.5, it is the so-called the supra-
Poisson inputs, and the other is the so-called sub-Poisson
inputs if 𝛼 < 0.5. In addition, a larger 𝛼 leads to more
randomness for the synaptic inputs.

2.2. General Linear Stochastic Differential Equation. In this
subsection, we extend the one-dimensional I & F model (3)
to 𝑛-dimensional stochastic differential equations in which
the solution process enters linearly. Such processes arise

in estimation and control of linear systems, in systems, in
economics, and in various other fields (see Liu [10]), as𝑑𝑋 (𝑡) = [𝐴 (𝑡)𝑋 (𝑡) + Λ (𝑡)] 𝑑𝑡 + Σ (𝑡) 𝑑𝑊𝑡,𝑋 (0) = 𝜉, (4)

where 𝑊 is an 𝑟-dimensional Brown motion independent of
the 𝑛-dimensional initial vector 𝜉, and 𝑛 × 𝑛, 𝑛 × 1, and 𝑛 ×𝑟 matrices 𝐴(𝑡), Λ(𝑡), and Σ(𝑡) are nonrandom, measurable,
and locally bounded, respectively.

Now we define an 𝑛 × 𝑛 matrix function Φ(𝑡), satisfying
the following matrix differential equation:Φ̇ (𝑡) = 𝐴 (𝑡)Φ (𝑡) ,Φ (0) = 𝐼, (5)

where 𝐼 is the 𝑑 × 𝑑 identity matrix. We know that (3) has
unique (absolutely continuous) solution defined for 0 ≤ 𝑡 <∞, and, for each 𝑡 ≥ 0, the matrixΦ(𝑡) is nonsingular.

By Itô’s rule, it is easily verified that𝑋(𝑡) = Φ (𝑡)⋅ [𝜉 + ∫𝑡
0
Φ−1 (𝑠) Λ (𝑠) 𝑑𝑠 + ∫𝑡

0
Φ−1 (𝑠) Σ (𝑠) 𝑑𝑊𝑠] ;0 ≤ 𝑡 < ∞ (6)

solves (4).
We suppose that 𝐸‖𝜉‖2 < ∞ and introduce the mean

vector and covariance matrix functions as follows:𝑚(𝑡) = 𝐸𝑋 (𝑡) ,𝜌 (𝑠, 𝑡) = 𝐸 [(𝑋 (𝑡) − 𝑚 (𝑠)) (𝑋 (𝑡) − 𝑚 (𝑡))𝑇] ,𝑉 (𝑡) = 𝜌 (𝑡, 𝑡) . (7)

From (4), we can show that𝑚(𝑡) = Φ (𝑡) [𝑚 (0) + ∫𝑡
0
Φ−1 (𝑠) Λ (𝑠) 𝑑𝑠] , (8)𝜌 (𝑠, 𝑡) = Φ (𝑠)⋅ [𝑉 (0) + ∫𝑠∧𝑡

0
Φ−1 (𝑢) Σ (𝑢) (Σ (𝑢)Φ−1 (𝑢))󸀠 𝑑𝑢]⋅ Φ󸀠 (𝑡) (9)

hold for every 0 ≤ 𝑠, 𝑡 < ∞. In particular, 𝑚(𝑡) and 𝑉(𝑡)
solve the linear equations:𝑚̇ (𝑡) = 𝐴 (𝑡)𝑚 (𝑡) + Λ (𝑡) ,𝑉̇ (𝑡) = 𝐴 (𝑡) Λ (𝑡) + Λ (𝑡) 𝐴󸀠 (𝑡) + Σ (𝑡) Σ󸀠 (𝑡) . (10)

3. Optimization Problem Formulation

We consider a simple model of high-order linear stochastic
dynamical system in 𝑑-dimensional space. For simplicity
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of notation, we suppose that each component of trajectory
in 𝑑-dimensional space satisfies the following stochastic
differential equation (SDE):𝑥(𝑛) (𝑡) = 𝑎𝑛𝑥(𝑛−1) (𝑡) + 𝑎𝑛−1𝑥(𝑛−2) (𝑡) + ⋅ ⋅ ⋅ + 𝑎1𝑥 (𝑡)+ 𝑐 [𝜆 (𝑡) 𝑑𝑡 + |𝜆 (𝑡)|𝛼 𝑑𝑤𝑡] , (11)

where 𝑤𝑡 is a 1-dimensional Brown motion, and 𝑐 > 0, 𝛼 >0, 𝑎1, . . . , 𝑎𝑛 are constants. Generallywe call𝜆(𝑡) as the control
signal. Now let 𝑥1 (𝑡) = 𝑥 (𝑡)𝑥2 (𝑡) = 𝑥̇ (𝑡)...𝑥𝑛 (𝑡) = 𝑥(𝑛−1) (𝑡) .

(12)

Then we have𝑑𝑥1 (𝑡) = 𝑥2 (𝑡) 𝑑𝑡𝑑𝑥2 (𝑡) = 𝑥3 (𝑡) 𝑑𝑡 ...𝑑𝑥𝑛 (𝑡) = [𝑎1𝑥1 + 𝑎2𝑥2 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑥𝑛] 𝑑𝑡+ 𝑐 [𝜆 (𝑡) 𝑑𝑡 + |𝜆 (𝑡)|𝛼 𝑑𝑤𝑡] .
(13)

Thus, 𝑥1(𝑡) is the position along some direction in space; the(𝑛 × 𝑛)matrix 𝐴(𝑡) is a constant matrix:

𝐴 = (0 1 0 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0... ... ... ... ...𝑎1 𝑎2 𝑎3 ⋅ ⋅ ⋅ 𝑎𝑛) (14)

Λ(𝑡) = 𝑐(0, 0, . . . , 𝜆(𝑡))󸀠 is the control signal vector, andΣ(𝑡) =𝑐(0, 0, . . . , |𝜆(𝑡)|𝛼)󸀠 is a 𝑛 × 1 vector.
Optimization Problem. For simplicity of notations, we let 𝜉 =
0. For a point 𝑑𝑥 ∈ R1 (in fact, 𝑑𝑥 expresses the arriving
position component of the trajectory in the direction of
component 𝑥(𝑡)) and two positive numbers 𝑇, 𝑅, we intend
to find a control signal 𝜆∗(𝑡) which satisfies the constrained
condition: ⟨𝑥1 (𝑡)⟩ = 𝑑𝑥, for 𝑡 ∈ [𝑇, 𝑇 + 𝑅] (15)

and such that the variance of 𝑥1(𝑡) arrives the minimum in[𝑇, 𝑇 + 𝑅]; that is,𝐼 (𝜆∗) = min
𝜆∈𝐿2𝛼[𝑇,𝑇+𝑅]

𝐼 (𝜆)
= min
𝜆∈𝐿2𝛼[𝑇,𝑇+𝑅]

∫𝑇+𝑅
𝑇

var (𝑥1 (𝑡)) 𝑑𝑡. (16)

Let Φ(𝑡) = (𝜙𝑖𝑗)𝑛×𝑛; by (6), we have, for 0 ≤ 𝑡 < ∞,𝑥1 (𝑡) = 𝑐 ∫𝑡
0
𝜙1𝑛 (𝑡 − 𝑠) 𝜆 (𝑠) 𝑑𝑠+ 𝑐∫𝑡
0
𝜙1𝑛 (𝑡 − 𝑠) |𝜆 (𝑠)|𝛼 𝑑𝑤𝑠. (17)

Therefore, by (15) and (17), we have∫𝑡
0
𝜙1𝑛 (𝑡 − 𝑠) 𝜆 (𝑠) 𝑑𝑠 = 𝑑𝑥𝑐 , 𝑡 ∈ [𝑇, 𝑇 + 𝑅] . (18)

By the calculation of matrix Φ(𝑡), we easily get the following
results.

Lemma 1. For 𝑘 = 1, 2, . . . , 𝑛 − 1 and 𝑗 = 1, 2, . . . , 𝑛,𝜙𝑘+1,𝑗 (𝑡) = 𝜙󸀠𝑘,𝑗 (𝑡) ,𝜙𝑘+1,𝑗 (𝑡) = 𝜙𝑘1,𝑗 (𝑡) . (19)

In particular, for 𝑛 ≥ 2,𝜙1𝑛 (0) = 0,𝜙󸀠1𝑛 (0) = 0, . . . , 𝜙𝑛−21𝑛 (0) = 0. (20)

Proof. Since Φ󸀠(𝑡) = 𝐴Φ(𝑡), by the definition of 𝐴 (see (14))
and the multiplication of matrices, we get (19) at once.

SinceΦ(0) = 𝐼, Φ𝑘(0) = 𝐴𝑘, it is easy to get (20).
For simplicity of notation, we suppose that 𝐴 has 𝑛-

different eigenvalues 𝛾1, 𝛾2, . . . , 𝛾𝑛 (in this case, 𝐴 is diag-
onalizable). Hence 𝐴 is similar to the diagonal matrix
diag{𝛾1, 𝛾2, . . . , 𝛾𝑛} and there exists an invertible matrix 𝑆
such thatΦ(𝑡) = 𝑆 diag{exp(𝛾1𝑡), . . . , exp(𝛾𝑛𝑡)}𝑆−1.Therefore,
there are 1 ≤ 𝑚 ≤ 𝑛, 𝑚 nonzero real number 𝜃1, . . . , 𝜃𝑚 and𝑚 different eigenvalues 𝛾𝑘1 , . . . , 𝛾𝑘𝑚 such that𝜙1𝑛 (𝑡) = 𝑚∑

𝑖=1

𝜃𝑖 exp (𝛾𝑘𝑖𝑡) fl 𝑚∑
𝑖=1

𝜃𝑖 exp (𝛾𝑖𝑡) . (21)

We introduce the following notations:Γ (𝑡) = diag {exp (−𝛾1𝑡) , . . . , exp (−𝛾𝑚𝑡)} ;Θ = diag {𝜃1, 𝜃2, . . . , 𝜃𝑚} ;
𝑉 (𝛾1, . . . , 𝛾𝑚) = (

(
1 1 1 ⋅ ⋅ ⋅ 1𝛾1 𝛾2 𝛾3 ⋅ ⋅ ⋅ 𝛾𝑚... ... ... ... ...𝛾𝑚−11 𝛾𝑚−12 𝛾𝑚−13 ⋅ ⋅ ⋅ 𝛾𝑚−1𝑚

)
)

;
Π(𝑡, 𝜆) = (∫𝑡

0
exp (−𝛾1𝑠) 𝜆 (𝑠) 𝑑𝑠, . . . ,

∫𝑡
0
exp (−𝛾𝑚𝑠) 𝜆 (𝑠) 𝑑𝑠)󸀠

𝐷 = (𝑑𝑥𝑐 , 0, . . . , 0)󸀠 .

(22)
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Theorem 2. Under the constrained control condition (18), the
following results hold:

(i) 𝜆(𝑡) = −𝑎1𝑑𝑥/𝑐, for 𝑡 ∈ [𝑇, 𝑇 + 𝑅];
(ii) Π(𝑇, 𝜆) = Γ(𝑇)Θ−1𝑉−1(𝛾1, . . . , 𝛾𝑚)𝐷.

Proof. (i) Since 𝑅 > 0, we can make the derivation until (𝑛 −1)-order derivation for the two sides of (17) and, by Lemma 1,
we get for 𝑡 ∈ [𝑇, 𝑇 + 𝑅]𝑐 ∫𝑡

0
𝜙1𝑛 (𝑡 − 𝑠) 𝜆 (𝑠) 𝑑𝑠 = 𝑑𝑥∫𝑡
0
𝜙𝑘𝑛 (𝑡 − 𝑠) 𝜆 (𝑠) 𝑑𝑠 = 0, 𝑘 = 2, . . . , 𝑛. (23)

That is to say,∫𝑡
0
Φ (𝑡 − 𝑠) Λ (𝑠) 𝑑𝑠 = 𝑐𝐷, for 𝑡 ∈ [𝑇, 𝑇 + 𝑅] . (24)

Since 𝑅 > 0, Φ(0) = 𝐼 and Φ󸀠(𝑡) = 𝐴Φ(𝑡), again differenti-
ating (24), we obtainΛ (𝑡) = −𝑐𝐴𝐷 ∀𝑡 ∈ [𝑇, 𝑇 + 𝑅] . (25)

Therefore, 𝜆 (𝑡) = −𝑎1𝑑𝑥𝑐 , ∀𝑡 ∈ [𝑇, 𝑇 + 𝑅] . (26)

(ii) By (21) and Lemma 1, (23) can be expressed as
𝑚∑
𝑖=1

𝜃𝑖 exp (𝛾𝑖𝑡) ∫𝑡
0
exp (−𝛾𝑖𝑠) 𝜆 (𝑠) 𝑑𝑠 = 𝑑𝑥𝑐 ,

𝑚∑
𝑖=1

𝜃𝑖𝛾𝑘−1𝑖 exp (𝛾𝑖𝑡) ∫𝑡
0
exp (−𝛾𝑖𝑠) 𝜆 (𝑠) 𝑑𝑠 = 0,𝑘 = 2, . . . , 𝑛;

(27)

that is,𝑉 (𝛾1, . . . , 𝛾𝑚)ΘΓ (−𝑡)Π (𝑡, 𝜆) = 𝐷,
for 𝑡 ∈ [𝑇, 𝑇 + 𝑅] . (28)

Since 𝜃1, . . . , 𝜃𝑚 are different, using the multiplicity of matrix
and 𝑇 replacing 𝑡 in the above equation, we get result (ii) at
once.

Note. if 𝛾hasmultiplicity𝑚 > 1 as an eigenvalue of𝐴, and𝐴 is
diagonal matrix, we can also choose 𝑛 independent functions
with the form 𝑡𝑘 exp(𝛾𝑡), 𝑘 = 0, 1, . . . , 𝑛 − 1. In this case, we
can obtain the same result as that in the Theorem 2 by using
the similar approach.

By (17), it is easily seen that𝐼 (𝜆) = ∫𝑇+𝑅
𝑇

var (𝑥1 (𝑡)) 𝑑𝑡= 𝑐2 ∫𝑇+𝑅
𝑇

[∫𝑡
0
𝜙21𝑛 (𝑡 − 𝑠) |𝜆 (𝑠)|2𝛼 𝑑𝑠] 𝑑𝑡

= 𝑐2 ∫𝑇
0

[∫𝑇+𝑅
𝑇

𝜙21𝑛 (𝑡 − 𝑠) 𝑑𝑡] |𝜆 (𝑠)|2𝛼 𝑑𝑠
+ 𝑐2 ∫𝑇+𝑅

𝑇
[∫𝑇+𝑅
𝑠

𝜙21𝑛 (𝑡 − 𝑠) 𝑑𝑡] |𝜆 (𝑠)|2𝛼 𝑑𝑠.
(29)

Thus we only need to minimize the first term in (29),
since minimizing each term of last equal in (29) implies
minimizing 𝐼(𝜆) and, by (26), the control signal |𝜆(𝑠)|2𝛼 in
the second term of (29) is a constant for 𝑠 ∈ [𝑇, 𝑇 + 𝑅]. Now
we apply the calculus of variations to the first term in (29),
that is,

min
𝜆(𝑡)∈𝐿2𝛼[0,𝑇+𝑟]

∫𝑇
0

[∫𝑇+𝑅
𝑇

𝜙21𝑛 (𝑡 − 𝑠) 𝑑𝑡] |𝜆 (𝑠)|2𝛼 𝑑𝑠. (30)

To this end, let us define the control signal set:{𝜆 (⋅) : ∫𝑇
0

𝜆 (𝑠) 𝜙1𝑛 (𝑇 − 𝑠) 𝑑𝑠 = 𝑑𝑥𝑐 , 𝜆 (𝑡)
= −𝑎1𝑑𝑥𝑐 , 𝑡 ∈ [𝑇, 𝑇 + 𝑅]} = UD,

𝜑 ∈ {𝜑 : ∫𝑇
0

𝜑 (𝑠) exp (−𝛾𝑖𝑠) 𝑑𝑠 = 0, for 𝑖
= 1, 2, . . . , 𝑚; 𝜑 (𝑡) = 0, 𝑡 ∈ [𝑇, 𝑇 + 𝑅]} = U

0
D.

(31)

For any 𝜏 ∈ 𝑅1, 𝜑 ∈ U0D and 𝜆 ∈ UD, we have 𝜆 + 𝜏𝜑 ∈ UD.
By (30), 𝜆∗ must satisfy𝑑𝐼 (𝜆 + 𝜏𝜑)𝑑𝜏 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=0 = 0 (32)

which gives∫𝑇
0

{[∫𝑇+𝑅
𝑇

𝜙21𝑛 (𝑡 − 𝑠) 𝑑𝑡] |𝜆 (𝑠)|2𝛼−1 sign (𝜆 (𝑠))}⋅ 𝜑 (𝑠) 𝑑𝑠 = 0. (33)

Comparing (33) with the first part constraint in U0D, we
conclude that[∫𝑇+𝑅

𝑇
𝜙21𝑛 (𝑡 − 𝑠) 𝑑𝑡] |𝜆 (𝑠)|2𝛼−1 sign (𝜆 (𝑠))

= 𝑛∑
𝑖=1

𝜉𝑖 exp (−𝛾𝑖𝑠) (34)

almost surely for 𝑠 ∈ [0, 𝑇] with parameters 𝜉𝑖 ∈ 𝑅1, 𝑖 =1, 2, . . . , 𝑛. Hence the solution of the original problem is𝜆∗ (𝑠)= 󵄨󵄨󵄨󵄨∑𝑛𝑖=1 𝜉𝑖 exp (−𝛾𝑖𝑠)󵄨󵄨󵄨󵄨1/(2𝛼−1) sign [∑𝑛𝑖=1 𝜉𝑖 exp (−𝛾𝑖𝑠)](∫𝑇+𝑅
𝑇

𝜙21𝑛 (𝑡 − 𝑠) 𝑑𝑡) ,
for 𝑠 ∈ [0, 𝑇]𝜆∗ (𝑠) = −𝑎1𝑑𝑥𝑐 , for 𝑠 ∈ [𝑇, 𝑇 + 𝑅] ,

(35)
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where 𝜉1, 𝜉2, . . . , 𝜉𝑛 are the unique solution of the following
(by the result of Theorem 2):Π(𝑇, 𝜆∗) = Γ (𝑇)Θ−1𝑉−1 (𝛾1, . . . , 𝛾𝑚)𝐷. (36)

The similar equations are true for the other components
in 𝑑-dimensional space.

From the results above, we can obtain the following
conclusions.

Theorem 3. Under the optimal control framework as we set
up here and 𝛼 > 1/2, the optimal mean trajectory is a straight
line. When 𝛼 ≤ 1/2 the optimal control problem is degenerate;
that is, the optimal control signal is a delta function, and (29)
withΛ = Λ∗ gives us an exact relationship between time 𝑇 and
variance.

Proof. This proof is similar to that ofTheorem 1 in Feng et al.
[3]; we omit it.

Remark 4. When 𝑑 = 1, the results of Theorem 3 are
consistentwith Feng et al. [3].Thefinding is also in agreement
with the experimental Fitts law (see Fitts [11]); that is, the
longer time of a reaching movement, the higher the accuracy
of arriving at the target point.

4. Example in 3-Dimensional Space

We consider a simple model of (arm) movements. Let𝑋(𝑡) =(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))󸀠 be the position of the hand at time 𝑡; we then
have 𝑋̈ = − 1𝜏1𝜏2𝑋 − 𝜏1 + 𝜏2𝜏1𝜏2 𝑋̇+ 1𝜏1𝜏2 [Λ (𝑡) 𝑑𝑡 + Λ (𝛼, 𝑡) 𝑑󳨀→𝑊(𝑡)] , (37)

where 𝜏1, 𝜏2, 𝛼 > 0 are parameters, Λ(𝑡) = (𝜆𝑥(𝑡), 𝜆𝑦(𝑡),𝜆𝑧(𝑡))󸀠 is the control signal, Λ(𝛼, 𝑡) is a 3 × 3 diagonal matrix
with diagonal elements as |𝜆𝑧(𝑡)|𝛼, |𝜆𝑦(𝑡)|𝛼, |𝜆𝑥(𝑡)|𝛼, respec-
tively, and 󳨀→𝑊(𝑡) = (𝑊𝑥(𝑡),𝑊𝑦(𝑡),𝑊𝑧(𝑡))󸀠 is the standard
Brown motion. In physics, we know that (37) is the well-
known Kramers’ equation. In neuroscience, it is observed in
all in vivo experiments that the noise strength is proportional
to the signal strength Λ(𝑡) and hence the signals received by
muscle take the form of (37) (see Feng et al. [3]).

For a point D = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧)󸀠 ∈ 𝑅3 and two positive
numbers 𝑇, 𝑅, we intend to find a control signal Λ(𝑡) which
satisfies𝜇 (𝑡) = ⟨𝑋 (𝑡)⟩ = 𝐷, for 𝑡 ∈ [𝑇, 𝑇 + 𝑅] , (38)𝐼 (Λ∗) = min

𝜆∈𝐿2𝛼[𝑇,𝑇+𝑅]
𝐼 (Λ)= min

𝜆∈𝐿2𝛼[𝑇,𝑇+𝑅]
∫𝑇+𝑅
𝑇

𝐸 [(𝑋 (𝑡) − 𝜇 (𝑡))󸀠⋅ (𝑋 (𝑡) − 𝜇 (𝑡))] 𝑑𝑡= min
𝜆∈𝐿2𝛼[𝑇,𝑇+𝑅]

∫𝑇+𝑅
𝑇

[var (𝑥 (𝑡)) + var (𝑦 (𝑡))+ var (𝑧 (𝑡))] 𝑑𝑡,
(39)

whereΛ ∈ L2[0, 𝑇+𝑅]means that each component of it is in
L2[0, 𝑇+𝑅]. To stabilize the hand, we further require that the
hand will stay at𝐷 for a while, that is, in time interval [𝑇, 𝑇 +𝑅], which also naturally requires that the velocity should be
zero at the end of movement. The physical meaning of the
problem we considered here is clear; at time 𝑇, the hand will
reach the position 𝐷 (see (38)), as precisely as possible (see
(39)).Without loss of generality, we assume that𝑑𝑥 > 0, 𝑑𝑦 >0, and 𝑑𝑧 > 0.

To use the results in the previous section, we can rewrite
the optimal control problem posed in the previous para-
graph as a 2-order linear stochastic dynamical system in 2-
dimensional space, that is,

𝑥̈ (𝑡) = − 1𝜏1𝜏2 𝑥 (𝑡) − 𝜏1 + 𝜏2𝜏1𝜏2 𝑥̇ (𝑡)+ 1𝜏1𝜏2 [𝜆𝑥 (𝑡) 𝑑𝑡 + 󵄨󵄨󵄨󵄨𝜆𝑥 (𝑡)󵄨󵄨󵄨󵄨𝛼 𝑑𝑊𝑥 (𝑡)] . (40)

The similar equation holds true for 𝑦(𝑡) and 𝑧(𝑡).
If we let V𝑥(𝑡) express the moving velocity in the direction

of 𝑥-coordinate, (40) becomes the following 2-order linear
SDE:𝑑𝑥 (𝑡) = V𝑥 (𝑡) 𝑑𝑡,𝑑V𝑥 (𝑡)= [− 1𝜏1𝜏2 𝑥 (𝑡) − 𝜏1 + 𝜏2𝜏1𝜏2 V𝑥 (𝑡) + 1𝜏1𝜏2 𝜆𝑥 (𝑡) 𝑑𝑡]+ 1𝜏1𝜏2 󵄨󵄨󵄨󵄨𝜆𝑥 (𝑡)󵄨󵄨󵄨󵄨𝛼 𝑑𝑊𝑥 (𝑡) .

(41)

Comparing (12), it is easy to know that

𝐴 = [[[ 0 1− 1𝜏1𝜏2 −𝜏1 + 𝜏2𝜏1𝜏2 ]]] ,
Λ (𝑡) = [[[ 01𝜏1𝜏2 𝜆 (𝑡)]]] ,
Σ (𝑡) = [[[ 01𝜏1𝜏2 󵄨󵄨󵄨󵄨𝜆𝑥 (𝑡)󵄨󵄨󵄨󵄨𝛼]]] .

(42)

Since

𝐴 = 𝑆[[[[
− 1𝜏1 00 − 1𝜏2]]]]𝑆−1, (43)
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where

𝑆 = [−𝜏1 −𝜏21 1 ] ,
𝑆−1 = 1𝜏2 − 𝜏1 [ 1 𝜏2−1 −𝜏1] ,

(44)

thus by calculating, we know that

𝑒𝑡𝐴 = [𝜙11 (𝑡) 𝜙12 (𝑡)𝜙21 (𝑡) 𝜙22 (𝑡)] = 1𝜏2 − 𝜏1 [[[[[
𝜏2 exp(− 𝑡𝜏2) − 𝜏1 exp(− 𝑡𝜏1) 𝜏1𝜏2 [exp(− 𝑡𝜏2) − exp(− 𝑡𝜏1)]
exp(− 𝑡𝜏1) − exp(− 𝑡𝜏2) 𝜏2 exp(− 𝑡𝜏1) − 𝜏1 exp(− 𝑡𝜏2)

]]]]] , (45)

where

𝜙12 (𝑡) = 𝜏1𝜏2𝜏2 − 𝜏1 [exp(− 𝑡𝜏2) − exp(− 𝑡𝜏1)] ,
𝜙22 (𝑡) = 𝜏1𝜏2𝜏2 − 𝜏1 [ 1𝜏1 exp(− 𝑡𝜏1) − 1𝜏2 exp(− 𝑡𝜏2)] . (46)

Hence, by (8), we get that

𝑥 (𝑡) = 1𝜏1𝜏2 ∫𝑡0 𝜙12 (𝑡 − 𝑠) 𝜆 (𝑠) 𝑑𝑠
+ 1𝜏1𝜏2 ∫𝑡0 𝜙12 (𝑡 − 𝑠) |𝜆 (𝑠)|𝛼 𝑑𝐵𝑥 (𝑠) ,

V𝑥 (𝑡) = 1𝜏1𝜏2 ∫𝑡0 𝜙22 (𝑡 − 𝑠) 𝜆 (𝑠) 𝑑𝑠+ 1𝜏1𝜏2 ∫𝑡0 𝜙22 (𝑡 − 𝑠) |𝜆 (𝑠)|𝛼 𝑑𝐵𝑥 (𝑠) .
(47)

Therefore, (34), (35), and (36) become[∫𝑇+𝑅
𝑇

𝜙212 (𝑡 − 𝑠) 𝑑𝑡] |𝜆 (𝑠)|2𝛼−1 sign (𝜆 (𝑠))= 𝜉1 exp( 𝑠𝜏1) + 𝜉2 exp( 𝑠𝜏2) , (48)

almost surely for 𝑠 ∈ [0, 𝑇] with parameters 𝜉𝑖 ∈ 𝑅, 𝑖 =1, 2, . . . , 𝑛. Hence the solution of the original problem is

𝜆∗ (𝑠) = 󵄨󵄨󵄨󵄨𝜉1 exp (𝑠/𝜏1) + 𝜉2 exp (𝑠/𝜏2)󵄨󵄨󵄨󵄨1/(2𝛼−1) sign [𝜉1 exp (𝑠/𝜏1) + 𝜉2 exp (𝑠/𝜏2)]∫𝑇+𝑅
𝑇

𝜙21𝑛 (𝑡 − 𝑠) 𝑑𝑡 , (49)

with 𝜉1, 𝜉2 being given by the following equations (by
Theorem 2):∫𝑇

0
𝜆∗ (𝑠) exp( 𝑠𝜏1)𝑑𝑠 = 𝜏1𝑑𝑥 exp( 𝑇𝜏1) ,

∫𝑇
0

𝜆∗ (𝑠) exp( 𝑠𝜏2)𝑑𝑠 = 𝜏2𝑑𝑥 exp( 𝑇𝜏2) . (50)

5. Conclusion

The experimental study of movement in human has shown
that voluntary reachingmovements obey Fitts law: the longer
the time taken for a reaching movement, the greater the
accuracy for the hand to arrive at the end point. In this
paper, we study a stochastic control problem for a reaching
movement within a 𝑑-dimensional space. We solve this
stochastic control problem explicitly and obtain the analytical
solutions for optimal signals, optimal velocity, and optimal
variance. Furthermore, we find that the optimal control is

also consistent with Fitts law. This implies that the straight
line trajectory is a natural consequence of optimal stochastic
control principles, under a nondegenerate optimal control
signal.
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