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A linear theory for the electromagnetic properties and interactions of an annular beam-ion channel system in plasma waveguide
is presented. The dispersion relations for two families of propagating modes, including the electrostatic and transverse magnetic
modes, are derived. The dependencies of the dispersion behavior and interaction for different wave modes on the thickness of the
annular beam and betatron oscillation frequency are studied in detail by numerical calculations. The results show that the inner
and outer radii of the beam have different influences on propagation properties of the electrostatic and electromagnetic modes with
different betatron oscillation parameters. In the weak ion channel situation, the two types of electrostatic waves, that is, space charge
and betatron modes, have no interaction with the transverse magnetic modes. However, in the strong ion channel situation, the
transverse magnetic modes will have two branches and a low frequency mode emerged as the new branch. In this case, compared
with the solid beam case, the betatron modes not only can interact with the high frequency branch at small wavenumber but also
can interact with the low frequency branch at large wavenumber.

1. Introduction

As is well known, plasma filling has a variety of advantages
in increasing the space charge limited current, overall energy
conversion efficiency, and radiation bandwidth dramatically
[1–3] and it has been widely used in many plasma microwave
radiation sources, such as traveling-wave tubes (TWT) [4],
backward-wave oscillators (BWO) [5], klystrons [6], and
gyrotrons [7]. Compared with the vacuum electronic devices,
the EM dispersion characteristic and beam-wave energy
transfer mechanism will become more complex [8]. As it is
the basis of the application of any plasma electronics devices,
the EM dispersion behavior and interaction in such plasma
apparatus have always been research hot spots in the past two
decades. In the past years, most of the published papers con-
centrated on the case of the relativistic electron beam (REB)
with an external magnetic field guiding. In recent years,
ion channel guiding has been put forward as an innovative
focusingmethod for guiding the electron bunch transport [9,
10]. To form an ion channel, the electron beam density 𝑛𝑏 and

the plasma density 𝑛𝑝 must satisfy the matching condition𝑛𝑏/𝛾2 ≤ 𝑛𝑝 < 𝑛𝑏 [9, 11]. Here, 𝛾 is Lorentz factor of the
beam. As a REB passes through the preformed plasma, the
beam front will push out the plasma electrons continuously
by the space charge force induced by beam electron, leaving
the almost immobile positive ions to form the so-called ion
channel. Then the electron beam can transport reliably with
the guidance of the focus force of the ion channel. This new
focusing method has been experimentally demonstrated in
plasma wave tubes (PWT) [12], free electron lasers (FEL)
[13], and charged particle accelerators [14] successfully. In
previous works, the high frequency azimuthally symmetrical
and nonsymmetrical eigenmodes in a REB with ion-channel
guiding have been analyzed by Rouhani et al. [15, 16]. Wang
et al. have studied the dispersion relations of EM waves in
beam-ion channel system and the mechanism of Cherenkov
EM instability [17, 18]. Mirzanejhad et al. have presented
the dispersion characteristics of the space charge waves in
a uniform and rigid rotation REB in ion channel without
betatron oscillations [19].
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Figure 1:The cross section of the annular beam-ion channel system.
The annular electron beam with inner radius 𝑎 and outer radius 𝑏,
ion channel with radius 𝑐, and metallic waveguide with radius 𝑅.

However, these papers mainly focused on the solid beam
case. As annular beam has higher space charge limiting
current and beam-wave energy conversion efficiency, it is also
used widely. Therefore, the aim of the present article is the
investigation of the EM wave dispersion and interaction of
an annular beam-ion channel system in cylindrical plasma
waveguide. There are three types of eigenmodes that will be
discussed and the electrostatic (ES) and EM approximation
will be used to study the space chargemodes, betatronmodes,
and transverse magnetic (TM) modes, respectively. After
dispersion relations are derived, the influences of the beam
bunch thickness and betatron oscillation parameter on the
dispersion propagation property and interaction of different
wavemodes are discussed in detail by numerical calculations.
The differences between the solid and annular beam are also
given by a comparison.

The remainder of the article is structured as follows. In
Section 2, the governing equations and the solutions of the
wave equations in different regions for ES and TM waves are
derived in the beam coordinate system and the dispersion
relations are also presented. In Section 3, a numerical study
of azimuthally symmetric eigenmodes is presented. In Sec-
tion 4, some conclusions are made.

2. Basic Equations and Dispersion Relations

A cylindrical metallic waveguide with radius R is completely
filled with an annular plasma column. This plasma column
is with inner radius a and outer radius R. A relativistic
annular electron beam with inner radius a and outer radius
b passes through it with an initial velocity V𝑏0𝑧 along with the
waveguide axis.The annular beam expels the plasma electron
continuously and forms an ion channel with radius c in the
background plasma. The schematic diagram has been shown
in Figure 1.

In the ion channel, the beam is subjected to three forces
in the radial direction, which are originated from the actions

of the transverse electric field E𝑖 produced by the positive ion
core, the space charge field E𝑠𝑏 of the REB,

𝛼 = [ 𝜔2𝑏(𝜔2 − 𝛾𝜔2𝑖 /2)] − 1,𝐴 (𝑥, 𝑦) = 𝐽0 (𝑥)𝑁0 (𝑦) − 𝐽0 (𝑦)𝑁0 (𝑥) ,
𝐵 (𝑥, 𝑦) = 𝐽0 (𝑥)𝑁1 (𝑦) − 𝐽1 (𝑦)𝑁0 (𝑥) ,
𝐶 (𝑥, 𝑦) = 𝐽1 (𝑥)𝑁1 (𝑦) − 𝐽1 (𝑦)𝑁1 (𝑥) ,
𝐷 (𝑥, 𝑦) = 𝐼0 (𝑥)𝐾0 (𝑦) − 𝐼0 (𝑦)𝐾0 (𝑥) ,
𝐸 (𝑥, 𝑦) = 𝐼0 (𝑥)𝐾1 (𝑦) + 𝐼1 (𝑦)𝐾0 (𝑥) ,

(1)

and the azimuthal self-magnetic fieldB𝑠𝑏 induced by the beam
current. Applying the Gauss’ theorem andAmpere’s theorem,
E𝑖, E𝑠𝑏, and B𝑠𝑏 can be expressed as follows, respectively:

E𝑖 = 𝑒𝑛𝑖𝑟2𝜀0 e𝑟,
E𝑠𝑏 = −𝑒𝑛𝑏2𝜀0 𝑟

2 − 𝑎2𝑟 e𝑟,
B𝑠𝑏 = −𝑒V𝑏0𝑧𝑛𝑏2𝑐2𝜀0 𝑟

2 − 𝑎2𝑟 e𝜃.
(2)

Here, 𝑛𝑖 is the ion density and is equal to the plasma density𝑛𝑝, 𝑛𝑏 is the electron beam density, 𝑒 is the unit charge, 𝑟 is
the radial coordinate, e𝑟 is the radial unit vector, and e𝜃 is
the azimuthal unit vector. The radial force balance equation
is

𝛾𝑚𝑒 𝑑𝑟2𝑑𝑡2 = −𝑒 [ 𝑒𝑛𝑖2𝜀0 𝑟 − (𝑒𝑛𝑏2𝜀0 − 𝑒𝑛𝑏V
2
𝑏0𝑧2𝜀0𝑐2 ) 𝑟

2 − 𝑎2𝑟 ] . (3)

If the inner radius 𝑎 approaches zero, the annular beam will
reduce to the solid beam case and the solution has been given
in [15], which can be written as r = r0 cos(𝜔𝑖𝑡/√2𝛾), and r0
denotes the initial radial coordinate. The equation of motion
of the electron beam is

𝑑p𝑑𝑡 = −𝑒 (E + k × B) . (4)

Note that𝑑/𝑑𝑡 = 𝜕/𝜕𝑡+(v⋅∇). Here, we only discuss linear
waves; it means that the amplitude of oscillation of the waves
is small and the terms containing higher powers of amplitude
factors can be neglected. Therefore, we can assume that all
physical quantities can be expressed as f = f0 + f1 exp[𝑗(𝜔𝑡 −𝑘𝑧𝑧 + 𝑙𝜃)], f0 and f1 represent the equilibrium quantity and
perturbation quantity, respectively, and f1 ≪ f0. Therefore,
we have r = r𝑏0 + r1, v = v𝑏0𝑧 + v𝑏1, E = E𝑖 + E𝑠𝑏 + E1, and
B = B𝑠𝑏 + B1. If introducing cylindrical coordinates (𝑟, 𝜃, 𝑧)
and 𝑧-axis coincides with the waveguide axes, the transverse
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and longitudinal motion equation of the beam electrons can
be, respectively, expressed as

[ 𝜕𝜕𝑡 + (v𝑏0𝑧 + v𝑏1) ⋅ ∇] v𝑏1⊥ = − 𝑒𝛾𝑚𝑒 {E1⊥ + 𝑛𝑝𝑒2𝜀0 (r𝑏0
+ r𝑏1) − 𝑛𝑏𝑒2𝜀0 (r𝑏0 + r𝑏1 − 𝑎2e𝑟𝑟𝑏0 + 𝑟𝑏1) + [(v𝑏0𝑧 + v𝑏1)
× B1]⊥ − 𝑛𝑏𝑒V𝑏0𝑧2𝜀0𝑐2 [(v𝑏0𝑧 + v𝑏1)
× (r𝑏0 + r𝑏1 − 𝑎2e𝑟𝑟𝑏0 + 𝑟𝑏1)]⊥} ,

[ 𝜕𝜕𝑡 + (v𝑏0𝑧 + v𝑏1) ⋅ ∇] v𝑏1𝑧 = − 𝑒𝛾𝑚𝑒 {E1𝑧
+ [(v𝑏0𝑧 + v𝑏1) × B1]𝑧 − 𝑛𝑏𝑒V𝑏0𝑧2𝜀0𝑐2 [(v𝑏0𝑧 + v𝑏1)
× (r𝑏0 + r𝑏1 − 𝑎2𝑟𝑏0 + 𝑟𝑏1)]𝑧} + 𝑒 V2𝑏0𝑧𝛾𝑚𝑒𝑐2E1𝑧.

(5)

In the above derivation we have considered the relativistic
effects and must notice that

𝑑p𝑑𝑡 = 𝛾𝑚𝑒 (𝜕v𝑏1𝜕𝑡 + v𝑏1 ⋅ ∇v𝑏1) + 𝑚𝑒V𝑏0𝑧 𝜕𝛾𝜕𝑡 ,
𝑚𝑒V𝑏0𝑧 𝜕𝛾𝜕𝑡 = V𝑏0𝑧𝑐2 𝑑𝑊𝑑𝑡 .

(6)

Here,𝑊 = 𝛾𝑚𝑐2 is the relativistic energy. Using the relation𝑑𝑊/𝑑𝑡 = F ⋅ V results in

𝑚𝑒V𝑏0𝑧 𝜕𝛾𝜕𝑡 = −𝑒V2𝑏𝑜𝑧𝑐2 E1𝑧. (7)

In (5), r𝑏0 is used to describe the betatron oscillation in
the radial direction and r𝑏1 is used to describe the radial
displacement induced by high frequency fields. The sub-
scripts “⊥” and “𝑧” denote the transverse and longitudinal
component, respectively. If without disturbances all the beam
electrons are nearly on the 𝑧-axis at the initial time, the
perturbation amplitude caused by betatron oscillation will
be nearly identical with the perturbation induced by high
frequency fields so that both of them can be considered as
a perturbation. Based on this assumption, after linearization,
we can obtain the first-order motion equation:

( 𝜕𝜕𝑡 + v𝑏0𝑧
𝜕𝜕𝑧) v𝑏1 = − 𝑒𝛾𝑚𝑒 (E1⊥ + v𝑏0𝑧 × B1) − 𝜔2𝑖2𝛾 r1

− 𝑒E1𝑧𝛾3𝑚𝑒 .
(8)

In the comoving coordinate of the beam, although the
background plasma will be equivalent to a moving plasma

column, the processing of the moving electron beam can
be avoided, which is beneficial to simplify the derivation.
Transformation to the beam frame (8) can be written as

𝜕𝜕𝑡v𝑏1 = − 𝑒𝑚𝑒E1 − 𝛾𝜔
2
𝑖2 r1. (9)

2.1. Electrostatic Modes. The Poisson equation is

∇2𝜑 = 𝑒𝑛𝑏1𝜀0 . (10)

The linearized continuity equation is

𝜕𝜕𝑡𝑛𝑏1 + 𝑛𝑏𝑏0∇ ⋅ v𝑏1 = 0, (11)

where 𝑛𝑏𝑏0 = 𝑛𝑏/𝛾 is the unperturbed density of the REB in
the beam frame.

Noticing that v⊥ = 𝑑r/𝑑𝑡 = −𝑗𝜔r, the transverse com-
ponent of (9) can be written as

( 𝜕𝜕𝑡 − 𝛾𝜔2𝑖2𝑗𝜔) V𝑏1⊥ = − 𝑒𝑚𝑒∇⊥𝜑. (12)

By using (10), (11), and (12), the ESwaves equation in the beam
region can be obtained as

∇2⊥𝜑 + 𝑇2𝜑 = 0, (13)

where

𝑇2 = 𝑘2𝑧 (𝜔2 − 𝛾𝜔2𝑖 /2) (𝜔2 − 𝜔2𝑏)𝜔2 (−𝜔2 + 𝜔2
𝑏
+ 𝛾𝜔2𝑖 /2) (14)

and𝜔𝑏 is the beam frequency in beam frame. For the vacuum
and ion channel regions, we can get

∇2⊥𝜑 − 𝑘2𝑧𝜑 = 0. (15)

Therefore, the suitable solutions in the different regions in the
waveguide can be expressed as, respectively,

𝜑 = {{{{{{{{{
𝑐1𝐼𝑙 (𝑘𝑧𝑟) 0 < 𝑟 ≤ 𝑎𝑐2𝐽𝑙 (𝑇𝑟) + 𝑐3𝑁𝑙 (𝑇𝑟) 𝑎 < 𝑟 ≤ 𝑏𝑐4𝐼𝑙 (𝑘𝑧𝑟) + 𝑐5𝐾𝑙 (𝑘𝑧𝑟) 𝑏 < 𝑟 ≤ 𝑅, (16)

where 𝐽𝑙 is the Bessel function of the first kind, 𝑁𝑙 is the
Bessel function of the second kind, and 𝐼𝑙 and𝐾𝑙 aremodified
Bessel functions. Applying the appropriate boundary condi-
tions [20], we can get a set of equations for five unknown
coefficients. Eliminating the unknown coefficients, the ES
wave dispersion relation can be obtained as

𝐼1 (𝑘𝑧𝑎)𝐼0 (𝑘𝑧𝑎) = 𝛼 𝑇𝑘𝑧
⋅ 𝑘𝑧𝐸 (𝑘𝑧𝑅, 𝑘𝑧𝑏) 𝐵 (𝑇𝑏, 𝑇𝑎) + 𝑇𝛼𝐷 (𝑘𝑧𝑅, 𝑘𝑧𝑏) 𝐶 (𝑇𝑏, 𝑇𝑎)𝑘𝑧𝐸 (𝑘𝑧𝑅, 𝑘𝑧𝑏)𝐴 (𝑇𝑏, 𝑇𝑎) − 𝑇𝛼𝐷 (𝑘𝑧𝑅, 𝑘𝑧𝑏) 𝐵 (𝑇𝑎, 𝑇𝑏) .

(17)
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Here, only symmetric modes (𝑙 = 0) are considered and, in
the above equation, we have introduced

𝛼 = [ 𝜔2𝑏(𝜔2 − 𝛾𝜔2𝑖 /2)] − 1,𝐴 (𝑥, 𝑦) = 𝐽0 (𝑥)𝑁0 (𝑦) − 𝐽0 (𝑦)𝑁0 (𝑥) ,𝐵 (𝑥, 𝑦) = 𝐽0 (𝑥)𝑁1 (𝑦) − 𝐽1 (𝑦)𝑁0 (𝑥) ,𝐶 (𝑥, 𝑦) = 𝐽1 (𝑥)𝑁1 (𝑦) − 𝐽1 (𝑦)𝑁1 (𝑥) ,𝐷 (𝑥, 𝑦) = 𝐼0 (𝑥)𝐾0 (𝑦) − 𝐼0 (𝑦)𝐾0 (𝑥) ,𝐸 (𝑥, 𝑦) = 𝐼0 (𝑥)𝐾1 (𝑦) + 𝐼1 (𝑦)𝐾0 (𝑥) .

(18)

Equation (17) is the dispersion relation for space charge and
betatron waves with ES approximation. If the annular beam
fills the waveguide completely, the dispersion relation will
reduce to 𝐼1 (𝑘𝑧𝑎)𝐼0 (𝑘𝑧𝑎) = 𝑇𝛼𝑘𝑧 𝐵 (𝑇𝑅, 𝑇𝑎)𝐴 (𝑇𝑅, 𝑇𝑎) . (19)

If the inner radius of the annular beam is close to zero, the
annular beam will reduce to the solid beam case

𝐽1 (𝑇𝑏)𝐽0 (𝑇𝑏) = 𝑘𝑧𝑇𝛼 𝐸 (𝑘𝑧𝑅, 𝑘𝑧𝑏)𝐷 (𝑘𝑧𝑅, 𝑘𝑧𝑏) . (20)

2.2. TMModes. After linearization, Maxwell’s equations are

∇ × E1 = 𝑗𝜔B1, (21)

∇ × B1 = −𝜇0𝑒𝑛𝑏𝑏0v𝑏1 − 𝑗𝜔𝜇0𝜀0E1, (22)

∇ ⋅ E1 = −𝑒𝑛𝑏1𝜀0 , (23)

∇ ⋅ B1 = 0. (24)

By using (21) and (22), we can find the transverse and
longitudinal equation for E1 as follows:

− 𝜕𝜕𝑧 (𝜕𝐸1𝑟𝜕𝑧 − 𝜕𝐸1𝑧𝜕𝑟 ) − 𝜔2𝑐2 𝐸1𝑟 = −𝑗𝜔𝜇0𝑒𝑛𝑏𝑏0V𝑏1𝑟,1𝑟 𝜕𝜕𝑟 (𝑟 (𝜕𝐸1𝑟𝜕𝑧 − 𝜕𝐸1𝑧𝜕𝑟 )) − 𝜔2𝑐2 𝐸1𝑧
= −𝑗𝜔𝜇0𝑒𝑛𝑏𝑏0V𝑏1𝑧.

(25)

From (9) and (25), the TMwave equation in the beam region
can be obtained as

∇2⊥𝐸1𝑧 + 𝑇2𝐸1𝑧 = 0, (26)

𝑇2
= (𝜔2 − 𝜔2𝑏) [𝑘2𝑧 (𝛾𝜔2𝑖 /2 − 𝜔2) − (𝜔2/𝑐2) (𝜔2𝑏 − 𝜔2 + 𝛾𝜔2𝑖 /2)]𝜔2 (𝜔2 − 𝜔2

𝑏
− 𝛾𝜔2𝑖 /2) . (27)

In the beam coordinate system, the quasi-static background
plasma can be viewed as a moving medium with a velocity
V𝑏0𝑧 along the 𝑧-axis negative direction. Using linear theory,
we can get the expressions of the transverse and longitudinal
perturbation current after a simple derivation, respectively,

J𝑝1⊥ = −𝑗𝜔𝜀0 {−𝜔2𝑝𝜔2 E𝑝1⊥ − 𝑗 𝜔2𝑝(𝜔 + 𝑘𝑧V𝑏0𝑧) V𝑏0𝑧𝜔2
⋅ ∇⊥𝐸𝑝1𝑧} ,

J𝑝1𝑧 = −𝑗𝜔𝜀0 {( −𝜔2𝑝(𝜔 + 𝑘𝑧V𝑏0𝑧) 𝛾2
+ 𝜔2𝑝V2𝑏0𝑧(𝜔 + 𝑘𝑧V𝑏0𝑧)2 𝜔2∇2⊥)E𝑝1𝑧 −𝑗
⋅ 𝜔2𝑝v𝑏0𝑧(𝜔 + 𝑘𝑧V𝑏0𝑧) 𝜔2 (∇⊥ ⋅ E𝑝1⊥)} .

(28)

Ampere’s circuital law is

∇ × B1 = 𝜇0J1 − 𝑗𝜔𝜀0𝜇0E1 = −𝑗𝜔𝜇0󳨀→󳨀→𝜀 ⋅ E1. (29)

Therefore, the equivalent dielectric tensor of the plasma
column can be obtained as

󳨀→󳨀→𝜀 = 𝜀0( 𝜀1 0 𝑗𝜀2∇𝑟0 𝜀1 𝑗𝜀2∇𝜃𝑗𝜀2∇𝑟 𝑗𝜀2∇𝜃 𝜀3 ), (30)

where 𝜀1 = 1 − 𝜔2𝑝/𝜔2, 𝜀2 = −𝜔2𝑝V𝑏0𝑧/(𝜔 + 𝑘𝑧V𝑏0𝑧)𝜔2, and𝜀3 = 1 − 𝜔2𝑝/(𝜔 + 𝑘𝑧V𝑏0𝑧)2𝛾2 + (𝜔2𝑝V2𝑏𝑜𝑧/(𝜔 + 𝑘𝑧V𝑏0𝑧)2𝜔2)∇2⊥.
And the wave equation in the plasma region can be

obtained as

∇2⊥𝐸1𝑧 + 𝑝2𝐸1𝑧 = 0; (31)

here, 𝑝2 = (𝜔2 − 𝜔2𝑝)/𝑐2 − 𝑘2𝑧.
For high frequency EMwaves, the ion channel region can

be regarded as vacuum and the wave equation in this region
is

∇2⊥𝐸1𝑧 + 𝜏2𝐸1𝑧 = 0 (32)

and 𝜏2 = 𝜔2/𝑐2 − 𝑘2𝑧.
The appropriate solutions for (26), (31), and (32) in the

different regions of the waveguide are of the form

𝐸1𝑧 = 𝑐1𝐽𝑙 (𝜏𝑟) 0 < 𝑟 ≤ 𝑎,𝐸2𝑧 = 𝑐2𝐽𝑙 (𝑇𝑟) + 𝑐2𝑁𝑙 (𝑇𝑟) 𝑎 < 𝑟 ≤ 𝑏,𝐸3𝑧 = 𝑐4𝐽𝑙 (𝜏𝑟) + 𝑐5𝑁𝑙 (𝜏𝑟) 𝑏 < 𝑟 ≤ 𝑐,
𝐸4𝑧 = 𝑐6𝐽𝑙 (𝑝𝑟) + 𝑐7𝑁𝑙 (𝑝𝑟) 𝑐 < 𝑟 ≤ 𝑅.

(33)
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Applying the appropriate boundary conditions [20], the TM
modes dispersion equation can be obtained as follows:

𝐽󸀠0 (𝜏𝑎)𝐽0 (𝜏𝑎) = 𝐴0𝐴1𝐵 (𝑝𝑅, 𝑝𝑐)𝑋1 + 𝐴 (𝑝𝑅, 𝑝𝑐)𝑋2𝐴 (𝑝𝑅, 𝑝𝑐)𝑋3 − 𝐴1𝐵 (𝑝𝑅, 𝑝𝑐)𝑋4 . (34)

Here, only symmetric modes (𝑙 = 0) are considered. In the
above equation, we have introduced

𝐴0 = 𝜏𝑇 𝜔2 − 𝜔2𝑏𝜔2 ,
𝐴1 = [𝜀1 − 𝜀2𝑘𝑧] 𝜏𝑝 ,

𝑋1 = 𝐴0𝐶 (𝑇𝑏, 𝑇𝑎)𝐴 (𝜏𝑏, 𝜏𝑐) + 𝐵 (𝑇𝑏, 𝑇𝑎) 𝐵 (𝜏𝑐, 𝜏𝑏) ,𝑋2 = 𝐵 (𝑇𝑏, 𝑇𝑎) 𝐶 (𝜏𝑏, 𝜏𝑐) − 𝐴0𝐶 (𝑇𝑏, 𝑇𝑎) 𝐵 (𝜏𝑏, 𝜏𝑐) ,𝑋3 = 𝐴0𝐵 (𝑇𝑎, 𝑇𝑏) 𝐵 (𝜏𝑏, 𝜏𝑐) − 𝐴 (𝑇𝑎, 𝑇𝑏) 𝐶 (𝜏𝑏, 𝜏𝑐) ,𝑋4 = 𝐴 (𝑇𝑎, 𝑇𝑏) 𝐵 (𝜏𝑐, 𝜏𝑏) + 𝐴0𝐵 (𝑇𝑎, 𝑇𝑏)𝐴 (𝜏𝑏, 𝜏𝑐) .
(35)

In laboratory coordinate system the expression of the ion
channel radius is of the form 𝑟 = Δ𝑅(𝑛𝑏/𝑛𝑝)1/2 [21] and Δ𝑅 is
the thickness of the beam. It will increase with the thickness
of the beam Δ𝑅 or the reciprocal of the plasma neutralization
factor 𝑓 = 𝑛𝑝/𝑛𝑏. If it fills the waveguide completely, in this
case, the dispersion relation will be rewritten as

𝐽󸀠0 (𝜏𝑎)𝐽0 (𝜏𝑎) = 𝜏𝑇 𝜔2 − 𝜔2𝑏𝜔2 (𝜏/𝑇) ((𝜔2 − 𝜔2𝑏) /𝜔2) 𝐶 (𝑇𝑏, 𝑇𝑎)𝐴 (𝜏𝑅, 𝜏𝑏) − 𝐵 (𝜏𝑅, 𝜏𝑏) 𝐵 (𝑇𝑏, 𝑇𝑎)𝐵 (𝜏𝑅, 𝜏𝑏) 𝐴 (𝑇𝑎, 𝑇𝑏) − (𝜏/𝑇) ((𝜔2 − 𝜔2𝑏) /𝜔2) 𝐵 (𝑇𝑎, 𝑇𝑏)𝐴 (𝜏𝑅, 𝜏𝑏) . (36)

When thewaveguide filledwith the annular beam completely,
(36) will reduce to

𝐽󸀠0 (𝜏𝑎)𝐽0 (𝜏𝑎) = 𝜏𝑇 𝜔2 − 𝜔2𝑏𝜔2 𝐵 (𝑇𝑅, 𝑇𝑎)𝐴 (𝑇𝑅, 𝑇𝑎) . (37)

If the inner radius of the annular beam is close to zero, the
annular beam will reduce to the solid beam case

𝐽󸀠0 (𝑇𝑏)𝐽0 (𝑇𝑏) = 1𝐴0
⋅ 𝐴1𝐵 (𝑝𝑅, 𝑝𝑐) 𝐵 (𝜏𝑐, 𝜏𝑏) + 𝐴 (𝑝𝑅, 𝑝𝑐) 𝐶 (𝜏𝑏, 𝜏𝑐)𝐵 (𝜏𝑏, 𝜏𝑐) 𝐴 (𝑝𝑅, 𝑝𝑐) − 𝐴1𝐵 (𝑝𝑅, 𝑝𝑐)𝐴 (𝜏𝑏, 𝜏𝑐) .

(38)

3. Numerical Results

In this part, a numerical calculation is used to analyze the
effects of the inner and outer radii on the dispersion curves of
the azimuthally symmetric (𝑙 = 0) ES and TMmodes and the
interaction between them under different EM characteristics
of the ion channel. For the convenience of the numerical
calculation,The dispersion frequency𝜔 and the wavenumber𝑘𝑧 are normalized by the beam frequency 𝜔𝑏 and the speed
of the light in vacuum; that is, 𝜔̃ = 𝜔/𝜔𝑏 and 𝑘̃𝑧 = 𝑘𝑧𝑐/𝜔𝑏.
The normalized waveguide radius has the value 𝑅𝜔𝑏/𝑐 = 1.2,
which corresponds to R = 2mm and 𝜔𝑏 = 1.8 × 1011 rad/s
with the beam density 𝑛𝑏𝑏0 = 1.033 × 1013 cm−3 in the beam
coordinate system and these values are consistent with [15].

From (14) and (27), we can find that the transverse
oscillation characteristic frequency 𝜔𝛽 = √𝛾/2𝜔𝑖 has
important influence on the solution of the ES and TM mode
dispersion equation. For example,𝜔𝛽 is larger or smaller than
the beam frequency 𝜔𝑏; the dispersion equations of the ES
and TM modes will have different solutions and it leads to
the wave modes in both cases having different dispersion
characteristics. Based on this point it can be classified as

strong and weak ion channel and in the cases of the weak and
strong ion channel, which meet √1/𝛾 < 𝜔𝑝/𝜔𝑏 ≤ √3/𝛾 and√3/𝛾 < 𝜔𝑝/𝜔𝑏 ≤ √𝛾, respectively.

The asymptotic behaviors and the influences of the inner
and outer radii on the space charge and betatron modes for
strong ion channel are presented in Figures 2–5. In this case
the dispersion curves of the SC01 waves will shift to the beam
frequency 𝜔𝑏 as the wavenumber is close to infinity and the
Be01 waves have upper hybrid frequency𝜔𝐻 = (𝜔2𝑏+𝛾𝜔2𝑖 /2)1/2
[15]. It can also be found that, as the inner radius decreased
or the outer radius increased, the SC01 modes experience
obviously shifts close to higher frequencies but the case of the
Be01 modes is just to the opposite and its dispersion curves
shift down clearly. Besides, compared with the solid beam
case, the SC01 modes have higher frequencies and the Be01
modes have lower frequencies in the annular beam case.

Figures 6–9 have shown the asymptotic behaviors and
the effects of the inner and outer radii on space charge and
betatronmodes for weak ion channel. In this case SC01 waves
have upper hybrid frequency 𝜔𝐻 = (𝜔2𝑏 + 𝛾𝜔2𝑖 /2)1/2 and will
approach the beam frequency𝜔𝑏 with the wavenumber being
close to infinity, and Be01 waves have the cutoff frequency𝜔𝛽. We can also see that from the figures, in contrast to the
strong channel case, the roles of the space charge and betatron
modes will be exchanged in weak ion channel so that the
effects of the inner and outer radii on the space charge and
betatron modes are also exchanged.

Figures 2–9 also show that, in both of the strong andweak
ion channel case, the asymptotic behaviors of the SC01 and
Be01modes for the case of the solid beam in [15] coincidewith
the annular beam case in this paper. Besides, the beam radius
of the solid beam and the outer radius of the annular beam
have a similar effect on the space and betatron modes. As
the solid beam can be regarded as a special case of the inner
radius of the annular beam close to zero, we can theoretically
expect such results.
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Figure 2: The influence of the ratio 𝑎/𝑏 on the dispersion curves of
the SC01 waves for strong ion channel with 𝜔𝛽 = 2.3195. The outer
radius of the annular beam is taken as 0.5R and 𝑎/𝑏 = 0 represents
the solid beam case.
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Figure 3: The influence of the ratio 𝑎/𝑏 on the dispersion curves of
the Be01 waves for strong ion channel with 𝜔𝛽 = 2.3195. The outer
radius of the annular beam is taken as 0.5R and 𝑎/𝑏 = 0 represents
the solid beam case.

The influences of the inner radius on the TM01 waves in
the cases of strong and weak ion channel are demonstrated
in Figures 10 and 11. With the increasing of the inner radius
(the ratio 𝑎/𝑏), the dispersion curves of the TM01 modes will
undergo slightly frequency shifts toward higher frequencies
for both of the strong and weak ion channel and the upward
shifts are more obscurely in strong ion channel case. In
general, the EM eigenmode in an annular beam system has
a higher phase velocity than the solid beam case with the
same condition [22]. Therefore, the TM modes have higher
frequencies for the solid case.

The TM modes normalized dispersion frequencies as a
function of the ratio of the outer radius 𝑏 to the waveguide
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Figure 4: The influence of the ratio 𝑏/𝑅 on the dispersion curves of
the SC01 waves for strong ion channel with 𝜔𝛽 = 2.3195. The inner
radius of the annular beam is taken as 0.25R. 𝑏/𝑅 = 1 represents the
waveguide completely filled with the annular beam.

Strong ion channel

b/R = 1

b/R = 0.7

b/R = 0.5

2.5259

2 4 6 80
zc/

2.3

2.35

2.4

2.45

2.5

2.55


/

H/b =

b


b

Figure 5: The influence of the ratio 𝑏/𝑅 on the dispersion curves of
the Be01 waves for strong ion channel with 𝜔𝛽 = 2.3195. The inner
radius of the annular beam is taken as 0.25R. 𝑏/𝑅 = 1 represents the
waveguide completely filled with the annular beam.

radius 𝑅 are illustrated in Figure 12. In this figure, 𝜔𝛽/𝜔𝑏 =1.6205 and 𝜔𝛽/𝜔𝑏 = 0.8832 correspond to 𝜔𝑖/𝜔𝑏 = 1.1456
and 𝜔𝑖/𝜔𝑏 = 0.6245, respectively. As the radius of the
ion channel is proportional to the thickness, that is, 𝑟 =Δ𝑅(√𝛾𝜔𝑏/𝜔𝑝) in beam frame, the ion channel will fill the
waveguide gradually with the increasing of the out radius. In
this case, we can find that if 𝑏/𝑅 > 0.46 or 𝑏/𝑅 > 0.6625,
the radius of the ion channel will be larger than the waveg-
uide radius R, which means that it will fill the waveguide
completely. As this figure shows, while the waveguide is only
filled with it partially, the TM modes frequencies will shift
down gradually as the outer radius increased. However, if the
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Figure 6: The effect of the ratio 𝑎/𝑏 on the dispersion curves of the
SC01 waves for weak ion channel with 𝜔𝛽 = 0.8761. The outer radius
of the annular beam is taken as 0.5R and 𝑎/𝑏 = 0 represents the solid
beam case.
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Figure 7: The effect of the ratio 𝑎/𝑏 on the dispersion curves of the
Be01 waves for weak ion channel with 𝜔𝛽 = 0.8761. The outer radius
of the annular beam is taken as 0.5R and 𝑎/𝑏 = 0 represents the solid
beam case.

waveguide is filled with it completely, this case is just to the
opposite of the partially filled case and the frequencies will
shift up.

Figure 13 shows the influences of the betatron oscillation
characteristic parameter 𝜔𝛽 on the TM dispersion properties
for strong ion channel.With the increasing of𝜔𝛽, therewill be
two branches for TM modes and a low frequency (LF) mode
with a lower cutoff frequency emerged as the new branch.We
can also find that the dispersion behavior of this new branch
is similar to the high frequency branch at small wavenumber,
but it is similar to betatron modes at large wavenumber. It
is supposed that the reason of this phenomenon is that the
dispersion equation (34) will have a new solution with the
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Figure 8: The effect of the ratio 𝑏/𝑅 on the dispersion curves of
the SC01 modes for weak ion channel with 𝜔𝛽 = 0.8761. The inner
radius of the annular beam is taken as 0.25R. 𝑏/𝑅 = 1 represents the
waveguide completely filled with the annular beam.
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Figure 9: The effect of the ratio 𝑏/𝑅 on the dispersion curves of
the Be01 modes for weak ion channel with 𝜔𝛽 = 0.8761. The inner
radius of the annular beam is taken as 0.25R. 𝑏/𝑅 = 1 represents the
waveguide completely filled with the annular beam.

increase of the betatron oscillation frequency. Besides, as the
longitudinal wavenumber 𝑘𝑧 approaches infinity, the new LF
branch will have longitudinal wave-like character, whichmay
result in the new LF branch having betatron-like character.
This is very different from the solid beam case and we did not
find similar phenomenon in that case.

The interactions between the TM and ES modes for the
cases of the annular beam and solid are presented in Figures
14–17. As can be seen from the figures, the cutoff frequencies
for the SC01 and Be01 waves are lower than the TM wave
in the weak ion channel case so that there is no coupling
between the three types propagating modes. However, the
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Figure 10: The effect of the ratio 𝑎/𝑏 on the dispersion curves of
the TM01 modes for strong ion channel with 𝜔𝛽 = 1.6202. The
outer radius of the annular beam is taken as 𝑏 = 0.4𝑅 and 𝑎/𝑏 = 0
represents the solid beam case.
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Figure 11: The effect of the ratio 𝑎/𝑏 on the dispersion curves of
the TM01 modes for weak ion channel with 𝜔𝛽 = 0.8832. The outer
radius of the annular beam is taken as 𝑏 = 0.4𝑅 and 𝑎/𝑏 = 0
represents the solid beam case.

strong ion channel case is completely different. Although the
asymptotic frequency𝜔𝑏 of the SC01modes is far smaller than
the cutoff frequency of the TM modes and it cannot interact
with the TMmodes, the Be01modes can interact with the TM
modes for both the annular and solid beam cases. Compared
with the solid beam, from Figure 15, it can also be seen that
the dispersion curve of the LF branch for the TM modes is
close to the betatron modes gradually and the two dispersion
curves almost coincident at large number wave. This is an
interesting phenomenon. As the betatronwaves are backward
waves and have negative group velocity, the coupling between

Weak ion channel

Strong
ion channel

 0.8832

 1.6205

3.6

3.65

3.7

3.75

3.8

3.85


/

0.4 0.6 0.8 10.2
b/R

/b =

/b =


b

Figure 12:The effect of the ratio 𝑏/𝑅 on the dispersion curves of the
TM modes for strong and weak ion channel with 𝛾 = 4. The inner
radius of the annular beam is taken as 𝑎 = 0.1𝑅.
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Figure 13: The effect of betatron oscillation parameter 𝜔𝛽 on the
dispersion characteristics of the TM01modes for strong ion channel.
The inner and outer radius of the annular beam are taken as 𝑎 =0.25𝑅 and 𝑏 = 0.5𝑅. The Lorentz factor is 𝛾 = 6.
betatron and TM wave may produce absolute instability and
this interaction can be used for microwave generation [23].

4. Conclusion

In present analysis, the EM dispersion properties and inter-
actions of an annular beam-ion channel system in plasma
waveguide are studied by linear perturbation theory. The
influences of the inner and outer radii of the beam and
betatron oscillation parameter on the dispersion charac-
teristics of space charge modes, betatron modes, and TM
modes are revealed by numerical calculations. It is shown
that the inner and outer radii have different influences on the
three types of waves under different betatron characteristic
frequencies and the TM modes will have two branches in
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Figure 14: In annular beam case, there is no coupling between the
TM modes and ES waves in weak ion channel case. The inner and
outer radius of the annular beam are taken as 𝑎 = 0.25𝑅 and 𝑏 =0.5𝑅; the Lorentz factor is 𝛾 = 6.
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Figure 15: In annular beam case, the TM wave of the two branches
can interact with the betatron wave in strong ion channel case. The
inner and outer radius of the annular beam are taken as 𝑎 = 0.25𝑅
and 𝑏 = 0.5𝑅; the Lorentz factor is 𝛾 = 6.
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Figure 16: In solid beam case, there is no coupling between the TM
and ES waves in weak ion channel case. The beam radius is taken as𝑎 = 0.25𝑅; the Lorentz factor is 𝛾 = 6.
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Figure 17: For solid beam, the TM wave only has one branch and
can interact with the betatron wave in strong ion channel case. The
beam radius is taken as 𝑎 = 0.25𝑅; the Lorentz factor is 𝛾 = 6.
strong ion channel case with appropriate betatron frequency.
The investigation of the interaction between the ESwaves and
TM waves for strong and weak ion channel indicates that
there is no coupling between the two families propagating
modes in weak ion channel case but the Be01 modes can
interact with the both of the two branches of the TM01 waves
in the strong ion channel case. The coupling between the
low frequency branch and the betatron wave especially is a
new phenomenon and the details still need further study.
Obviously, it can be found from the conclusions of this paper
that the ion channel on the one hand plays an important role
of guiding the beam to ensure the transport effectively. On
the other hand, different betatron oscillation characteristic
frequency of the ion channel can make the propagating
wave modes in the system show different EM characteristics
and change the interaction between them. In addition, the
physical model used in this paper also has some limitations;
for example, the influence of the electron duration is not
taken into account. On the one hand, for a short pulse
electron beam, when the beam is injected into the plasma,
a return current will be excited in it and the direction of the
return current is opposite to the beam current so that it may
have a significant impact on the balance of the electron beam
in the radial direction and also can affect the eigenstructure
of the system. On the other hand, for a long pulse electron,
there may be oscillating charge on the boundary of the ion
channel and then the oscillating current may be formed
[24]. It may also affect the dispersion characteristics of the
system. Therefore, these works still need further analyses in
the future.
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