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We investigate a mathematical model describing 3D steady-state flows of Bingham-type fluids in a bounded domain under
threshold-slip boundary conditions, which state that flows can slip over solid surfaces when the shear stresses reach a certain
critical value. Using a variational inequalities approach, we suggest the weak formulation to this problem. We establish sufficient
conditions for the existence of weak solutions and provide their energy estimates.Moreover, it is shown that the set of weak solutions
is sequentially weakly closed in a suitable functional space.

1. Introduction

The statement that a fluid adheres to any solid boundary is
one of the main tenets of classical fluid mechanics. However,
careful experiments point to various possibilities for the
behaviour of fluids at the interphase boundary. In particular,
it is known that many non-Newtonian fluids slip over solid
surfaceswhen the shear stresses reach a critical value. In order
to describe slip effects, numerous mathematical models have
been proposed (see, e.g., the short survey [1]).

In this article, we consider a model describing internal
steady-state flows of a viscoplastic fluid of Bingham type
[2, 3] in a bounded domain Ω ⊂ R3 with locally Lipschitz
boundary Γ under a threshold-slip boundary condition [4]
on a fixed subset Γ0 ⊂ Γ and the no-slip condition on Γ\Γ0:
𝜌 div (u ⊗ u) − div 𝜎 + ∇𝜋 = 𝜌f in Ω, (1)

div u = 0 in Ω, (2)

𝜎 = 𝜇 (|D (u)|)D (u) + 𝑔 D (u)
|D (u)| if |D (u)| ̸= 0 in Ω, (3)

|𝜎| ≤ 𝑔 if |D (u)| = 0 in Ω, (4)

u ⋅ n = 0 on Γ, (5)
󵄨󵄨󵄨󵄨(𝜎n)tan󵄨󵄨󵄨󵄨 ≤ 𝜔 on Γ0, (6)

󵄨󵄨󵄨󵄨(𝜎n)tan󵄨󵄨󵄨󵄨 < 𝜔 󳨐⇒ utan = 0 on Γ0, (7)
󵄨󵄨󵄨󵄨(𝜎n)tan󵄨󵄨󵄨󵄨 = 𝜔 󳨐⇒ utan ↑↓ (𝜎n)tan on Γ0, (8)

u = 0 on Γ\Γ0. (9)

Here u is the velocity, 𝜋 is the pressure, 𝜎 is the deviatoric
stress tensor, f is an external body force, D = D(u) is the
strain velocity tensor,

𝐷𝑖𝑗 = 𝐷𝑖𝑗 (u) = 1
2 ( 𝜕𝑢𝑖𝜕𝑥𝑗 +

𝜕𝑢𝑗
𝜕𝑥𝑖 ) , (10)

𝜇(|D|) > 0 is the viscosity, 𝜌 is the constant density of the
fluid,𝑔denotes the yield stress,𝑔 : Ω → R+, and𝜔 is a critical
value for start to slip along the boundary, 𝜔 : Γ0 ⊂ Γ → R+.
For the sake of simplicity, we put in the sequel 𝜌 = 1.

The unknowns in systems (1)–(9) are the vector functions
u,𝜎 and the function𝜋, while all other quantities are assumed
to be given.

Let us explain the tensor notation that we use in this
article. Given a tensor F, the vector div F is defined by the
formula

(div F)𝑖 =
3∑
𝑗=1

𝜕𝐹𝑖𝑗
𝜕𝑥𝑗 . (11)
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Given vectors x and y, the tensor x ⊗ y is the tensor product
defined by

(x ⊗ y)𝑖𝑗 = 𝑥𝑖𝑦𝑗. (12)
We denote by |k| the Euclidean norm of a vector k and by |E|
the Frobenius norm of a tensor E:

|k|2 = k ⋅ k = 3∑
𝑖=1

V2𝑖 ,

|E|2 = trace (EE𝑇) = 3∑
𝑖,𝑗=1

𝐸2𝑖𝑗.
(13)

As usual, n denotes the unit outer normal to Γ and (⋅)tan
stands for the tangential component of a vector; that is,

utan = u − (u ⋅ n)n. (14)
The symbol ↑↓ is used to denote oppositely directed vectors.

Remark 1. Obviously, for 𝑔 ≡ 0 and 𝜇 ≡ const, we recover the
Navier–Stokes system with stick-slip boundary conditions.
Such slip problem was studied in [4] (see also [5]). Note that
system (6)–(8) is a special case of the following slip boundary
condition [1]: 󵄨󵄨󵄨󵄨(Tn)tan󵄨󵄨󵄨󵄨 ≤ 𝜓 (x, 󵄨󵄨󵄨󵄨(Tn)𝑛󵄨󵄨󵄨󵄨) ,

(Tn)tan ⋅ utan = −𝜓 (x, 󵄨󵄨󵄨󵄨(Tn)𝑛󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨utan󵄨󵄨󵄨󵄨 ,
(15)

where T = −𝜋I + 𝜎 is the stress tensor, (Tn)𝑛 = ((Tn) ⋅ n)n,
and𝜓 : Γ0×R+ → R+ is a given function. Actually, if𝜓(x, 𝑠) =𝜔(x) for any (x, 𝑠) ∈ Γ0×R+, then it is easily shown that system
(6)–(8) is equivalent to (15).

The mathematical models of Bingham-type fluids are
used to study the behaviour of materials such as paints,
pastes, foams, suspensions, cements, and oils. Starting with
the pioneering works by Mosolov and Miasnikov [6] and
Duvaut and Lions [7], a large number of mathematicians
have worked on the theoretical analysis of Bingham fluids
and other similar viscoplastic media (see [8–23] and the
references therein).

The novelty of the present paper is that it combines the
use of the Bingham constitutive equations with threshold-slip
boundary conditions and takes into account the dependence
of the viscosity on the second invariant of the strain velocity
tensor. It should be mentioned at this point that a nonlocal
(regularized) friction problem for a class of non-Newtonian
fluids has been investigated byConsiglieri [24] (see also [25]).

Let us state the main results of this paper. Following an
approach adopted in [4, 7], we formulate the boundary-value
problem (1)–(9) as a variational inequality for the unknown
velocity field. Using some existence results for inequalities
with pseudomonotone operators and convex functionals,
which naturally arise in this slip problem, and the Kras-
noselskii theorem on continuity of the Nemytskii operator
[26], we establish sufficient conditions for the existence of
weak solutions and derive their energy estimates. Also, it is
shown that the set of weak solutions to problem (1)–(9) is
sequentially weakly closed in a suitable functional space.

2. Preliminaries

In this section, we describe the necessary functional spaces
and the main assumptions used in the paper.

We shall use the classical notation 𝐿𝑝(Ω) and 𝐻𝑠(Ω) =𝑊𝑠2 (Ω) for the Lebesgue and Sobolev spaces, respectively.
Bold face letters will denote functional spaces of vectors or
tensors: L𝑝(Ω) = 𝐿𝑝(Ω)3,H𝑠(Ω) = 𝐻𝑠(Ω)3, and so forth.

Next, we set

𝐿𝑝+ (Ω)
fl {𝛼 ∈ 𝐿𝑝 (Ω) : 𝛼 (x) ≥ 0 for almost every x ∈ Ω} ,
Q (Ω)
fl {k ∈ C∞ (Ω) : div k = 0, k|Γ ⋅ n = 0, k|Γ\Γ0 = 0} ,
X (Ω)
fl the closure of the set Q (Ω) in the space H1 (Ω) .

(16)

We now recall an inequality of Korn’s type.

Proposition 2. Let 𝑎 : H1(Ω) ×H1(Ω) → R be a continuous
symmetric bilinear form such that 𝑎(k, k) ≥ 0, for any k ∈
H1(Ω), and it follows from the conditions

∫
Ω
|D (w)|2 𝑑𝑥 = 0, 𝑎 (w,w) = 0, w ∈ H1 (Ω) (17)

that w = 0. Then there exists a positive constant 𝐶 such that

‖k‖2H1(Ω) ≤ 𝐶(∫
Ω
|D (k)|2 𝑑𝑥 + 𝑎 (k, k)) (18)

for all k ∈ H1(Ω).
The proof of this proposition is given in [27].
Suppose that the 2-dimensional Lebesgue measure of the

set Γ\Γ0 is positive, then we can define the scalar product in
X(Ω) by the formula

(k, u)X(Ω) = ∫
Ω
D (k) : D (u) 𝑑𝑥, (19)

whereD(k) : D(u) denotes the scalar product of tensorsD(k)
andD(u):

D (k) : D (u) = trace (D (k)D (u)𝑇) . (20)

Setting

𝑎 (k, u) fl ∫
Γ\Γ0

k ⋅ u 𝑑Γ ∀k, u ∈ H1 (Ω) (21)

and applying Proposition 2, we infer that the norm

‖k‖X(Ω) = (k, k)1/2X(Ω) (22)

is equivalent to the norm induced from the Sobolev space
H1(Ω).
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Recall that the restriction of a function 𝑤 ∈ 𝐻1(Ω) to Γ
is defined by the formula 𝑤|Γ = 𝛾0𝑤, where 𝛾0 : 𝐻1(Ω) →
𝐻1/2(Γ) is the trace operator (see [7]).

ByM3×3sym denote the space symmetric matrices of size 3 ×3.
In the sequel, we assume that the following conditions

hold:

(i) for any matrices A,B ∈ M3×3sym, we have

(𝜇 (|A|)A − 𝜇 (|B|)B) : (A − B) ≥ 0; (23)

(ii) the function 𝜇 is continuous and

0 < 𝜇0 < 𝜇 (𝑠) < 𝜇1, ∀𝑠 ∈ R+; (24)

(iii) 𝑔 ∈ 𝐿2+(Ω), 𝜔 ∈ 𝐿2+(Γ0), and f ∈ L2(Ω);
(iv) the 2-dimensional Lebesguemeasure of the set Γ\Γ0 is

positive.

Remark 3. We claim that condition (i) holds true if the
function 𝜇 is monotonically increasing. Indeed, using the
Cauchy–Schwarz inequality, we obtain

(𝜇 (|A|)A − 𝜇 (|B|)B) : (A − B)
= 𝜇 (|A|) |A|2 − 𝜇 (|A|)A : B − 𝜇 (|B|)B : A

+ 𝜇 (|B|) |B|2
≥ 𝜇 (|A|) |A|2 − 𝜇 (|A|) |A| |B| − 𝜇 (|B|) |A| |B|

+ 𝜇 (|B|) |B|2
= 𝜇 (|A|) |A| {|A| − |B|} − 𝜇 (|B|) |B| {|A| − |B|}
= {𝜇 (|A|) |A| − 𝜇 (|B|) |B|} {|A| − |B|} ≥ 0

(25)

for any A,B ∈ M3×3sym.

3. Weak Formulation of Problem (1)–(9)

Definition 4. One shall say that a vector function u : Ω → R3

is a weak solution to problem (1)–(9) if u ∈ X(Ω) and the
following inequality holds:

− ∫
Ω
(u ⊗ u) : D (k) 𝑑𝑥
+ ∫
Ω
𝜇 (|D (u)|)D (u) : D (k − u) 𝑑𝑥

+ ∫
Ω
𝑔 |D (k)| 𝑑𝑥 + ∫

Γ0

𝜔 |k| 𝑑Γ

− ∫
Ω
𝑔 |D (u)| 𝑑𝑥 − ∫

Γ0

𝜔 |u| 𝑑Γ

≥ ∫
Ω
f ⋅ (k − u) 𝑑𝑥

(26)

for any vector function k ∈ X(Ω).

Remark 5. Let us explain how variational inequality (26)
arises in the definition of weak solutions. Assume that regular
functions u, 𝜎, 𝜋 satisfy relations (1)–(9) and k ∈ X(Ω). If
we take the scalar product of both sides of (1) by k − u and
integrate by parts over the domainΩ, we get

− ∫
Ω
(u ⊗ u) : D (k) 𝑑𝑥 + ∫

Ω
𝜎 : D (k − u) 𝑑𝑥

− ∫
Γ0

(𝜎n) ⋅ (k − u) 𝑑Γ = ∫
Ω
f ⋅ (k − u) 𝑑𝑥,

(27)

where we used the equalities

∫
Ω
(u ⊗ u) : D (u) 𝑑𝑥 = 0, (u ⊗ u) n|Γ = 0. (28)

Let us show that under conditions (3) and (4) the
following inequality

∫
Ω
𝜎 : D (k − u) 𝑑𝑥
≤ ∫
Ω
𝜇 (|D (u)|)D (u) : D (k − u) 𝑑𝑥

+ ∫
Ω
𝑔 |D (k)| 𝑑𝑥 − ∫

Ω
𝑔 |D (u)| 𝑑𝑥

(29)

holds true. We set

Ω+ fl {x ∈ Ω : |D (u) (x)| > 0} ,
Ω0 fl {x ∈ Ω : |D (u) (x)| = 0} . (30)

Using (3) and the Cauchy–Schwarz inequality, we obtain

∫
Ω+

𝜎 : D (k − u) 𝑑𝑥

= ∫
Ω+

(𝜇 (|D (u)|)D (u) + 𝑔 D (u)
|D (u)|) : D (k − u) 𝑑𝑥

= ∫
Ω+

𝜇 (|D (u)|)D (u) : D (k − u) 𝑑𝑥

+ ∫
Ω+

𝑔 D (u)
|D (u)| : D (k) 𝑑𝑥 − ∫

Ω+

𝑔 |D (u)| 𝑑𝑥

≤ ∫
Ω+

𝜇 (|D (u)|)D (u) : D (k − u) 𝑑𝑥

+ ∫
Ω+

𝑔 |D (k)| 𝑑𝑥 − ∫
Ω+

𝑔 |D (u)| 𝑑𝑥

= ∫
Ω
𝜇 (|D (u)|)D (u) : D (k − u) 𝑑𝑥

+ ∫
Ω+

𝑔 |D (k)| 𝑑𝑥 − ∫
Ω
𝑔 |D (u)| 𝑑𝑥.

(31)
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Besides, taking into account (4), we arrive at the inequality

∫
Ω0

𝜎 : D (k − u) 𝑑𝑥 = ∫
Ω0

𝜎 : D (k) 𝑑𝑥

≤ ∫
Ω0

|𝜎| |D (k)| 𝑑𝑥

≤ ∫
Ω0

𝑔 |D (k)| 𝑑𝑥.

(32)

By adding this inequality to (31), we obtain relation (29).
Note also that the system of conditions (6)–(8) is equiva-

lent to the following system:
󵄨󵄨󵄨󵄨(𝜎n)tan󵄨󵄨󵄨󵄨 ≤ 𝜔 on Γ0,

(𝜎n)tan ⋅ utan + 𝜔 󵄨󵄨󵄨󵄨utan󵄨󵄨󵄨󵄨 = 0 on Γ0.
(33)

Using these relations, we obtain

− ∫
Γ0

(𝜎n) ⋅ (k − u) 𝑑Γ = −∫
Γ0

(𝜎n)tan ⋅ (k − u)tan 𝑑Γ

= −∫
Γ0

{(𝜎n)tan ⋅ ktan + 𝜔 󵄨󵄨󵄨󵄨utan󵄨󵄨󵄨󵄨} 𝑑Γ

≤ ∫
Γ0

𝜔 |k| 𝑑Γ − ∫
Γ0

𝜔 |u| 𝑑Γ.

(34)

Finally, combining (27) with (29) and (34), we arrive at
inequality (26).

4. Main Results

Our main results are collected in the following theorem.

Theorem 6. Suppose that conditions (i)–(iv) hold. Then

(a) problem (1)–(9) has at least one weak solution;
(b) any weak solution u satisfies the energy equality

∫
Ω
𝜇 (|D (u)|) |D (u)|2 𝑑𝑥 + ∫

Ω
𝑔 |D (u)| 𝑑𝑥

+ ∫
Γ0

𝜔 |u| 𝑑Γ = ∫
Ω
f ⋅ u 𝑑𝑥;

(35)

(c) the set of weak solutions to problem (1)–(9) is sequen-
tially weakly closed in the space X(Ω).

5. Proof of Theorem 6

The proof uses the following two propositions.

Proposition 7 (see [28]). Let V be a reflexive Banach space,
V∗ its the dual space,A : V → V∗ a pseudomonotone operator,
and 𝐽 : V → R a lower semicontinuous convex functional. In
addition, suppose that

⟨A (k) , k⟩ + 𝐽 (k)
‖k‖V 󳨀→ +∞ (36)

as ‖k‖V → +∞. Then, for an arbitrary z ∈ V∗, there exists an
element uz ∈ V such that

⟨A (uz) − z, k − uz⟩ + 𝐽 (k) − 𝐽 (uz) ≥ 0 ∀k ∈ V. (37)

Proposition 8 (Krasnoselskii’s theorem, see [26]). Let ℎ : Ω×
R𝑚 → R be a function such that

(a) the function ℎ(⋅, y) : Ω → R is measurable for every
y ∈ R𝑚;

(b) the function ℎ(x, ⋅) : R𝑚 → R is continuous for almost
every x ∈ Ω;

(c) for every y ∈ R𝑚 and for almost every x ∈ Ω
󵄨󵄨󵄨󵄨ℎ (x, y)󵄨󵄨󵄨󵄨 ≤ 𝛼 (x) + 𝐶 𝑚∑

𝑘=1

󵄨󵄨󵄨󵄨𝑦𝑘󵄨󵄨󵄨󵄨𝑝𝑘/𝑞 , (38)

where 𝑝𝑘, 𝑞 ≥ 1, 𝛼 ∈ 𝐿𝑞(Ω), and 𝐶 is a positive
constant.

Then the Nemytskii operator defined by

𝑁ℎ : 𝐿𝑝1 (Ω) × ⋅ ⋅ ⋅ × 𝐿𝑝𝑚 (Ω) 󳨀→ 𝐿𝑞 (Ω) ,
𝑁ℎ [𝑦1, . . . , 𝑦𝑚] (x) fl ℎ (x, 𝑦1 (x) , . . . , 𝑦𝑚 (x))

(39)

is a bounded and continuous map.

Proof of Theorem 6. Let us introduce here the following
operators:

A𝜇 : X (Ω) 󳨀→ [X (Ω)]∗ ,
⟨A𝜇 (u) , k⟩ fl ∫

Ω
𝜇 (|D (u)|)D (u) : D (k) 𝑑𝑥,

K𝑓 : X (Ω) 󳨀→ [X (Ω)]∗ ,
⟨K𝑓 (u) , k⟩ fl −∫

Ω
(u ⊗ u) : D (k) 𝑑𝑥 − ∫

Ω
f ⋅ k 𝑑𝑥,

𝐽𝑔,𝜔 : X (Ω) 󳨀→ R,
𝐽𝑔,𝜔 (u) fl ∫

Ω
𝑔 |D (u)| 𝑑𝑥 + ∫

Γ0

𝜔 |u| 𝑑Γ.

(40)

Using these operators, we can rewrite inequality (26) as
follows:

⟨A𝜇 (u) + K𝑓 (u) , k − u⟩ + 𝐽𝑔,𝜔 (k) − 𝐽𝑔,𝜔 (u) ≥ 0
∀k ∈ X (Ω) . (41)

By condition (i), we deduce that

⟨A𝜇 (u) − A𝜇 (k) , u − k⟩ ≥ 0 ∀u, k ∈ X (Ω) ; (42)

that is, the operator A𝜇 is monotone. Moreover, applying
Proposition 8 and condition (ii), we establish that this opera-
tor is continuous. From properties of monotone operators it
follows that A𝜇 is a pseudomonotone operator.
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The embedding H1(Ω) 󳨅→ L4(Ω) is compact (see, e.g.,
[29]). This implies that the embedding X(Ω) 󳨅→ L4(Ω) is
compact too. Therefore, it is easily shown that the operator
K𝑓 is completely continuous; that is, if u𝑛 ⇀ u0 weakly in the
spaceX(Ω) as 𝑛 → ∞, thenK𝑓(u𝑛) → K𝑓(u0) strongly in the
space [X(Ω)]∗ as 𝑛 → ∞. This yields that the sumA𝜇 +K𝑓 is
a pseudomonotone operator.

Further, taking into account condition (ii) and the equal-
ity

∫
Ω
(u ⊗ u) : D (u) 𝑑𝑥 = 0, (43)

we obtain

⟨A𝜇 (u) + K𝑓 (u) , u⟩ + 𝐽𝑔,𝜔 (u)
‖u‖X(Ω) 󳨀→ +∞ (44)

as ‖u‖X(Ω) → +∞.
Then from Proposition 7 we infer that inequality (41) has

a solution u∗ ∈ X(Ω). It is clear that u∗ is a weak solution to
problem (1)–(9).

We claim that energy equality (35) holds true for anyweak
solution u of problem (1)–(9). Indeed, by setting k = 2u in
(26), we find

∫
Ω
𝜇 (|D (u)|) |D (u)|2 𝑑𝑥 + ∫

Ω
𝑔 |D (u)| 𝑑𝑥

+ ∫
Γ0

𝜔 |u| 𝑑Γ ≥ ∫
Ω
f ⋅ u 𝑑𝑥.

(45)

On the other hand, the choice k = 0 in (26) yields that

− ∫
Ω
𝜇 (|D (u)|) |D (u)|2 𝑑𝑥 − ∫

Ω
𝑔 |D (u)| 𝑑𝑥

− ∫
Γ0

𝜔 |u| 𝑑Γ ≥ −∫
Ω
f ⋅ u 𝑑𝑥.

(46)

Obviously, if we combine the last inequality with (45), we get
(35).

Now we must only prove that the set of weak solutions
to problem (1)–(9) is sequentially weakly closed in the space
X(Ω). Consider a sequence {u𝑛}∞𝑛=1 such that, for any 𝑛 ∈ N,
u𝑛 is a weak solution of (1)–(9) and u𝑛 ⇀ u0 weakly in X(Ω)
as 𝑛 → ∞. Let us show that u0 is a weak solution of (1)–(9).

By definition of weak solutions, we have

⟨A𝜇 (u𝑛) + K𝑓 (u𝑛) , k − u𝑛⟩ + 𝐽𝑔,𝜔 (k) − 𝐽𝑔,𝜔 (u𝑛)
≥ 0 ∀k ∈ X (Ω) , 𝑛 ∈ N. (47)

Note that the functional 𝐽𝑔,𝜔 : X(Ω) → R is convex
and continuous.Therefore, 𝐽𝑔,𝜔 is lower semicontinuous with
respect to the weak convergence in X(Ω). This implies that

𝐽𝑔,𝜔 (u0) ≤ lim inf
𝑛→∞

𝐽𝑔,𝜔 (u𝑛) . (48)

Further, we set k = u0 in (47) and pass to the lower limit as𝑛 → ∞. Taking into account inequality (48) and the complete
continuity of the operator K𝑓, we obtain

lim inf
𝑛→∞

⟨A𝜇 (u𝑛) , u0 − u𝑛⟩ ≥ 0, (49)

or equivalently,

lim sup
𝑛→∞

⟨A𝜇 (u𝑛) , u𝑛 − u0⟩ ≤ 0. (50)

Since A𝜇 is a pseudomonotone operator, it follows from the
last inequality that

lim inf
𝑛→∞

⟨A𝜇 (u𝑛) , u𝑛 − k⟩ ≥ ⟨A𝜇 (u0) , u0 − k⟩
∀k ∈ X (Ω) .

(51)

Now, we rewrite (47) in the form

𝐽𝑔,𝜔 (u𝑛) − 𝐽𝑔,𝜔 (k) ≤ − ⟨A𝜇 (u𝑛) + K𝑓 (u𝑛) , u𝑛 − k⟩
∀k ∈ X (Ω) , 𝑛 ∈ N

(52)

and pass to the upper limit in this inequality:

lim sup
𝑛→∞

{𝐽𝑔,𝜔 (u𝑛) − 𝐽𝑔,𝜔 (k)}
≤ lim sup
𝑛→∞

{− ⟨A𝜇 (u𝑛) + K𝑓 (u𝑛) , u𝑛 − k⟩} . (53)

Using (48) and (51), we deduce from (53) that

𝐽𝑔,𝜔 (u0) − 𝐽𝑔,𝜔 (k) ≤ lim inf
𝑛→∞

{𝐽𝑔,𝜔 (u𝑛) − 𝐽𝑔,𝜔 (k)}
≤ lim sup
𝑛→∞

{𝐽𝑔,𝜔 (u𝑛) − 𝐽𝑔,𝜔 (k)}
≤ lim sup
𝑛→∞

{− ⟨A𝜇 (u𝑛) + K𝑓 (u𝑛) , u𝑛 − k⟩}
= −lim inf
𝑛→∞

{⟨A𝜇 (u𝑛) + K𝑓 (u𝑛) , u𝑛 − k⟩}
≤ −⟨A𝜇 (u0) + K𝑓 (u0) , u0 − k⟩
= ⟨A𝜇 (u0) + K𝑓 (u0) , k − u0⟩ ∀k ∈ X (Ω) .

(54)

Thus, we have

⟨A𝜇 (u0) + K𝑓 (u0) , k − u0⟩ + 𝐽𝑔,𝜔 (k) − 𝐽𝑔,𝜔 (u0) ≥ 0
∀k ∈ X (Ω) . (55)

This means that u0 is a weak solution of problem (1)–(9).
Theorem 6 is completely proved.
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