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Our aim is to classify the Rota-Baxter operators of weight 0 on the 3-dimensional Lie algebra whose derived algebra’s dimension
is 2. We explicitly determine all Rota-Baxter operators (of weight zero) on the 3-dimensional Lie algebras g. Furthermore, we give
the corresponding solutions of the classical Yang-Baxter equation in the 6-dimensional Lie algebras gix 4 g* and the induced

left-symmetry algebra structures on g.

1. Introduction

In physics, the Yang-Baxter equation is a consistency equa-
tion which was first introduced in the field of statistical
mechanics. It depends on the idea that, in some scattering
situations, particles may preserve their momentum while
changing their quantum internal states. Rota-Baxter algebra
started with the probability study and has since found
applications in many areas of mathematics and physics, such
as quasi-symmetric functions, number theory, dendriform
algebras, and Yang-Baxter equations.

A Rota-Baxter operator (of weight zero) on an associative
algebra A is defined to be a linear map P : g — g satisfying

P(x)P(y)=P(P(x)y+xP(y)), YxyeA ()

Rota-Baxter operators (on associative algebras) were intro-
duced by Baxter to solve an analytic formula in probability
[1-4]. It has been related to other areas in mathematics
and mathematical physics [5-9]. A Rota-Baxter operator (of
weight zero) on a Lie algebra (g, [-,-]) is a linear operator
P: g — gsuch that

[P(x),P()] =P([P), 5]+ [xP()]),
Vx,y € g.

)

In fact, a Rota-Baxter operator is also called the operator
form of the classical Yang-Baxter equation [10-13]. Let g be a

Liealgebraandr = ), a,®b, € g® g. r is called a classical R-
matrix if it is a solution of the classical Yang-Baxter equation
(CYBE) in g: that is,

[7’12’7’13] + [7’12”'23] + [7’13,1’23] =0 (3)

in U(g), where U(g) is the universal enveloping algebra of g
and

1’12 = Zal®bl® 1,
i

r3 = Zdi ®1 ®bi’ (4)
i

Ty = Zl ®a; Qb
i

Setr*! = Y. b®a,. It is easy to obtain that r is skew-symmetric
if and only if r = —r*'. Semenov-Tian-Shansky proved in
[14] that r is skew-symmetric and there is a nondegenerate
symmetric invariant bilinear form on Lie algebra g; relation
(2) is equivalent to relation (3) when the weight is zero.
Furthermore, Rota-Baxter operators of weights 0 and 1 on a
Lie algebra g give rise to solutions of CYBE on the double
Lie algebra gx,4- g* over the direct sum g @ g” of the Lie
algebra g and its dual space g* [12, 15, 16]. Moreover, we can
get some solutions of CYBE in g x4+ g* Lie algebras through
Rota-Baxter operators of any weight on g.
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In [12], the authors gave all Rota-Baxter operators (of 00 0
weight zero) on 3-dimensional simple Lie algebra sl(2, C). The P,
aim of this paper is to determine the Rota-Baxter operators
(of weight zero) on the 3-dimensional Lie algebra which is not
simple, and the dimension of its derived algebra is 2. We will
determine the Rota-Baxter operators on the Lie algebra g and
give a family of solutions of CYBE in g x4+ g*. This paper is Py =
organized as follows. In Section 2, we give the classification
theorem of Rota-Baxter operators (of weight zero) on g.

In Section 3, we give the corresponding solutions of CYBE
in g, g*. In Section 4, we give the corresponding left- P,
symmetry structure on g.

ab a -a* |,

b1 -a

o = O [N N )
o o O o o O
o o O o = O

o
o
o

2. The Rota-Baxter Operators on
g (of Weight Zero) P, =

2.1. Notations and the Classification Theorem. Let g be a 3-
dimensional linear Lie algebra whose standard (Cartan-Weyl)
basis consists of e}, e,, e; over the field of complex numbers
C with the following Lie brackets: Py

€1,6,| = ey,
[1 2] 1

[er es] =0, (5) P,

[esres] =€) +es.

Thus, a linear operator P : g — g is determined by

)
)
)
)
)
i
)
)
)
)
)
)

P = <
P(e)) by by, by € 000
P(ey) |=| by by by e | (6) p 00
= a ,
P(e;) b, by by =] H
100
where b;; € C, 1 <i,j < 3. P is a Rota-Baxter operator on 000
g if the above matrix (), satisfies (2). Here is our main p.=l00o0
theorem. 2 ’
100
Theorem 1. All Rota-Baxter operators of weight zero on g are
listed in their matrices form with respect to the Cartan-Weyl 00
basis below, where a, b, and c are nonzero complex numbers. Py=|alb|,
0
000 00
p=[000], po=(a10],
alo 000
00 O 000
P=|0a-a |, Ps;={01a|,
01 -a 000
00 0 000
p=(00 0 |, P16<010 ,
01 0 000
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00 1 0 1 2a
P,=la0 b |, p._| 0 a 24
29 = >
00 -1 0 1 4
a 0 1 2
P18— 0 0 b (ﬂ#—), a 1 261
a*-a 0 a-1 P, = 0 00 >
a 1
a 0 1 Ty T, @
1
P.=| b 0 o0 <a _>,
19 i 1 3 01 0
a-a 0 a-
0 0 O
Py = >
00 1 0 1 0
Py=100 a [, 2
00 -1 a 1 2(a+b)
00 1 P32= ab b —2b2—2ab
P21—<a 00 |, —; -— —(a+b)
00 -1 )

2.2. Reduction to Quadratic Equations. In order to show that
P is a Rota-Baxter operator, we only check the following:

[P(e),P(e;)] = P([P(e)e,] +e,P(ey)],
[P(e;),P(e;)] = P([P(ey).e5] +e5P(e5)],  (8)

0
00 -1 [P(e1),P(es)] = P([P(e;),e5] +ep,P(es)].
It follows from (5) and (6) that

)
]
| Il
T~
= Q
)
| S X
Q
o o O
Q
| ]
—_
~/
Q
Ny
N
~——

1 [P (ez) P (33)] = (b21b32 —bybs; +bybs; - b23b32)61
Py = b 0 ¢ <“ # z) , 9)
P-a0a-1 + (byabss — bysbyy) €3,
] while
2 01 P([P(ey),e5] + [er P (e3)])
P. = 0 0 a ,
» 1 = P((by, —bs; +bs3)e;) = P((by, + b33) e3)

N
[\S]

= (byobyy = by by + bysbyy + byybyy + bysby)) e (10)
+ (bybyy = by by, + bysby, + byybs, +bysbyy) e,
> + (byybys = by bys + byzbys + byybss + bysbss) es.
Comparing the coefficients in (9) and (10), we have

by b3y, — 2by,b31 + byybsy — bysbyy — byybyy + by by

01 byb,, — bbb 0 )
0 0 ’ 33011 — 033051 = 0,
1 bybyy — by by, + bysby, + by b, +bysbs, = 0, (12)

ON| = o~

N
[\S]

by3bsy + byybys — by by; + bysby; + bysby; = 0. (13)

Similarly, from

QN =

> [P(e;),P(e;)] = P([P(e)).e,] +e1,P(er)]

[P(e;),P(es)] = P([P(e;).es] +e1,P(es)]

(14)
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we obtain the following six equations:
biibyy + bipbyy = bisby = bisbsy = biybys + bysby, =0, (15)
biibyy + byby, = bisby, — bysbs, =0, (16)
bi1bys + 2byybys — by3bys — bisbys — b,y =0, (17)
biybss — 2b1,by, — bysby, —byb =0, (18)
bi,by, +2b3,b, =0, (19)
b,ybys + 2by,by5 = 0. (20)
2.3. Solving the Quadratic Equations. Equation (19) implies
b,(b, + 2by,) = 0. To solve the quadratic equations (11),

(12), (13), (15), (16), (17), (18), (19), and (20), we distinguish
the following cases depending on whether b;, = 0 or not.

Casel. by, = 0,b, +2by, # 0. That is, b, = 0, b, # 0, taking
by, = 1. Equation (16) implies b,; = 0. Equation (15) implies
by, = 0. Equation (11) implies by, = by, by, +b3, + by;. Equation
(12) implies by; = —b,,. Equation (13) implies by; = —b, =
~b2,. We obtain

0 0 0
P=| byb, b, b, |. (21)
b31 1 _b22

Taking b,, = 0, by, = a, we obtain P,. Taking b,, = a, by, =0,
we obtain P,. Taking b,, = 0, by; = 0, we obtain P;. Taking
by, = a, b;; = b, we obtain P,.

Case 2. Assumeb,, = 0,b;,+2b;, = 0. Thatis, b, = 0,b;, = 0.

We distinguish the two cases depending on whether b;; = 0
or not.

Subcase 2.1. 1f b;; = 0, then (13) implies b;; = 0. Equation
(15) implies b;; = 0. Equation (11) implies b,,b;; = 0.

Subcase 2.1.1. It by, = 0, by, = 0, we obtain

000
P=1| by 0 by |. (22)
000

Taking b,, = a, b,; = 1, we obtain P;. Taking b,; = 1, by; = 0,
we obtain Py. Taking b,; = 0, by; = 1, we obtain P,. Taking
b,; =0, by; = 0, we obtain P.

Subcase 2.1.2. 1f b, = 0, by, # 0, taking b;; = 1, we obtain

0 0 0
P={1b, 0b, | (23)
1 0 0

Taking b,, = a, b,; = b, we obtain P,. Taking b,; = a, by; =0,
we obtain P,,,. Taking b,, = 0, b,; = a, we obtain P,;. Taking
b,, =0, by; = 0, we obtain P,,.
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Subcase 2.1.3. 1If by, # 0, by, = 0, taking b,, = 1, we obtain

000
P=| by 1 by |. (24)
000

Taking b,, = a, b,; = b, we obtain P,;. Taking b,, = a,by; = q,
we obtain P,,. Taking b,, = 0, b,; = a, we obtain P,5. Taking
by, =0, by; = 0, we obtain Py.

Subcase 2.2. If b;; # 0, taking b;; = 1, (17) implies b, =
(bys — by, + 1)/2. Then (15) implies by, = (2b7, — 3b;; + bys +
1)/2. Equation (13) implies b;; + by; = blzl - b323. That s, (b, +
by3)(by, — b3 — 1) = 0.

Subcase 2.2.1. 1t by, + by, # 0, by, —by; — 1 =0, (by; # 1/2),
and then by, = 0, b5, = blz1 — by, we obtain

by 0 1
P = by 0 by
blzl—bn 0 b;-1

,<b11#%>. (25)

Taking b, = 0, b,; = a,b,; = b, we obtain P,,. Taking b, = q,
b, = 0,b; = b (a # 1/2), we obtain Pj5. Taking b, = a,
by, = b,by; = 0 (a # 1/2), we obtain P,,. Taking b;; = 0,
b,, = 0,b,; = a, weobtain P,. Takingb;; = 0,b,; = a,b,; =0,
we obtain P,,. Taking b;; = a,b,; = 0,b,; = 0 (a # 1/2), we
obtain P,,. Taking b, = 0, b,; = 0, b,; = 0, we obtain P,;.
Taking by, = a, b,; = b, b,; = ¢ (a # 1/2), we obtain P,,.

Subcase 2.2.2. Ifb),+b;; =0,b),—b;5—1 #0 (b, # 1/2),and
then by, = (-2b,, +1)/2,by, = 2b}, —4b;; +1)/2, (3.4) implies
86}, — 12b7 + 6b;; — 1 = 0. Then we have 8(b;, — 1/2) = 0,
b, = 1/2, giving a contradiction.

Subcase 2.2.3. 1fb;;+bs; = 0,b;;—b;;—1 = 0, thatis, b, = 1/2,
by; = —1/2, and then b,, = 0, b;; = —1/4, we obtain

Lo
2
P= by 0 by |, (26)
1 1
4 2

Taking b,, = 0, b,; = a, we obtain P,;. Taking b,, = a, b,; =0,
we obtain P,,. Taking b,; = 0, b,; = 0, we obtain P,,. Taking
b,, = a, b,; = b, we obtain Pyg.

Case 3. Assume b, # 0, (b, +2by,) = 0. Taking b;, = 1, then
by, = —1/2. Equation (16) implies b;; = 2b;, +2b,,. Equations
(12) and (18) imply b;; = (b, + bs3)/2. Equation (17) implies
by, = —2b7, = 2by by, — 2b;, by; — 2b,, by;. Equation (15) implies
by, = —b;1by, — by bys — byybss — 19121 - b222. Equations (11), (15),
and (17) imply b}, + by, + b3, + 2y, by, + 2by 1 bys + 2by,bs5 = 0.
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Then we have (by, + by, + byy)? = 0. 50 by = —(by; + byy), ry=e,®e; —e;®e,
by, = by by, byy = =2b;, — 2by, by, by, = by, /2. We obtain ,
T, = (abe1 +ae,—a 83) ®e, + (be, +e, —ae;) ®e;

by, 1 2by, +2by,

p=| buby by ~2b;, — 2by, by, (27)
b, 1 ® (be, +e, — ae;),

5 75 ~(by; +by)

* 2 *
—e, <§Z>(abe1 +ae,—a 63)—63

rs = (ae, +e;)®e, —e, ® (ae; +e3),

Taking by, = 0, b,, = a, we obtain P,y. Taking b, = a,b,, = 0,
we obtain Pj,. Taking b, = 0, b,, = 0, we obtain P;;. Taking
b, = a, b,, = b, we obtain P,.

re=e€,®e —e, ®ey,
r,=e;®e; —e; ®e;,
3. Solutions of the CYBE in g x ;- g* rg =0,

In this section, we will give some solutions of CYBE in ro = (ae, +be;) ®e; +e, ®e; — e, ® (ae, + be;)
g%+ g - Let (g,[,]) be a Lie algebraand : g — gl(V) a
representation of g. On the vector space g&V, there is natural
Lie algebra structure (denoted by g x;z V) given by

x
—e; ®ey,

rp=ae ®e, +e;®e; —e, ®ae, — e, ®ey,

[0 + V1% + 9] = [0, 2] + B (o) va = B (52) 1 (28) ri=ae;®e, te ®e; —e, ®ae; —e; Ve,
XpXy €9, Vi, vy €V r,=e ®e; —e; ®ey,
Let 8" : g — gl(V") be the dual representation of f3. A linear 113 = (ae, +e, + be;) ®e; — e, ® (ae; +e, +be;),
map P : V — g can be identified as an element P in g ® . x
V* (g V) @ (gxg V™) as follows. Let {1, v,,..., v,,} be ra = (ae, +e;) ®e; —e; 8 (ae, +¢y),
. * % % .. * . N N
a*ba51s of Vand {v,v;,...,v,,} the dual.bas1s in V*: that is, ris = (e, + ae;) @ ek — e2 ® (e, + aes),
v; (vj) = 6,-j. Let {e;,e,,...,e,} be a basis of g. Set P(v;) =
Yiiae;, 1 < i < n.Since, as a vector space, Hom(V, g) = re=e,®e —¢, ®e,,
*
g® V7, then ~ . ) . .
r,=e;®e +(ae; +bey)®e;, —e;®e;
n m n
D * * _ ¥ _ ¥ *
P=YP(w)ev =) Yae o ] ®e;—e, ®(ae; +be;) +e5 ®e,
i=1 i=1j=1 (29)

rs = (ae, +e;) ® ey +be; ®e,
Q(gx;V*)®(gl><;V*). , o
+ ((a —a)e1 +(a- 1)63)®63 —e, ® (ae; +e;)
Lemma 2 (see [15]). Let g be a Lie algebra; let (V, ) be a g-

® * 2
module. A linear map P : g — g is a Rota-Baxter operator if —e; ®be;—e; ® ((a - a) e +(a-1) 63) ’
and only if r = P — P*" is a skew-symmetric solution of CYBE 1
ingx,g". (aqu),

Now consider the adjoint representation of g, (g,ad)

O . 1o = (ae, +e;) ®e; +be, ®e,
which is a g-module. Let e;, e,, e; be the Cartan-Weyl basis.

Using Lemma 2 and relation (29), we can obtain a family + ((a2 - a) e +(a—1) e3) ®e; —e) ®(ae, +e;)
of solutions of CYBE in gi,4.g" through the Rota-Baxter

operators on g given in Theorem 1. —e; ®be, — ¢ ® ((az - a) e +(a-1) 63) ,
Theorem 3. The following tensors are solutions of the classical 1
Yang-Baxter equation in gX.; g*, where a, b, and c are (a # z>’

nonzero complex numbers . . P .
rpy=e®e +ae;Qe, —e;Qe; —e, ®e;—e,

* *

r = (ae, +e,)®e; —e; ®(ae; +ey), ®ae; +e; ®e;,
r, = (ae, —a’e;) @e; + (e, —ae;) ®e; —e; - * * *_ o *
2 2 3)®e€; te; —ae;)®e; —e, T =e;®e +ae ®e, —e;®e; —e, ®e;—e,

2 * *
®(aez—a 63)—63®(62—ae3), ®ae; +e; ®e;,



) = (ae; +e;) ®e; + ((az —a) e +(a- 1)e3)®e;

—e] ®(ae; +e;)—e; ®((a’—a)e +(a—1)e;)

(r})

r3=e;®e —e;0e; —€, ®eyte; ®es,
1y = (ae; +e5) ®@e; + (be, +ce;) ®e,
+((a2—a)el+(a—1)e3)®e;—ef@(ael+e3)
—e, ® (be, +ce;) — ey

2 1)
o((—a)er s @-ve). (av)),

((a a)e1 (a )e3) a#z

1 . . (1 1
Tys = <Ee1 +e3)®e1 +ae;®e, — (‘—le1 + 5e3)

* * 1 * *
®e; —e ® Jate —e, ®ae; + e,

o(7e1+5)
—e; +=e; ),
4 27
1 . Lo/l 1
re= (56 tes)®el tae @, - Ze1+ze3)
# s 1 s %
®e;—e @ e te; ) —e; ®ae +e
o(Lers 1e)
471 27)
1 « 1 1 " *
rp=(gate)ee —(jat e )0 e
®<1e +e)+e*®(1e +1e>
Seites 3@\ gatas)
1 . .
Tg = Eel+e3 ®e, + (ae, +be;) ®e;
1 1 - 1 *
- Z€1+§€3 ®e; —e; ® E€1+€3 —e,
®(ael+be3)+e;‘®(lel+le3>,
4 2
* 2 *
1y = (e, + 2ae;) ®e] + (ae2 +2a 63) ®e,
1 5 * 5
- <562 +ae3> ®e, —e; ® (e, +2ae;) — e,
®(ae +2a2e)+e*®<le +ae>
2 3)tes®\Setag )

% a 1
130 = (ae; + e, + 2ae;) ® e] — 261t e T ae;
®e, —e; ®(ae; +e, +2ae;) +e,

®<ae +le +ae>
21 22 3 )
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« 1 « x w1
= e®e - 6@ e Bete 8 e,
%
r, = (ae, +e, +2(a+b)e;) ®e;

+ (abe1 +be, -2 (b2 + ab) e3) ®e,

a
Eel+ ez+(a+b)e3)®e3 —e

®(ae, +e,+2(a+b)ey) —e,

® (abel + be, — (bz + ab) 63) ®e, +e,

® Lt ez+(a+b)e3>

4.
2
(30)

One can check that all of the tensors above are solutions
of the classical Yang-Baxter equation in g X4+ g*.

4. Induced Left-Symmetric Algebras from
Rota-Baxter Operators of Weight 0 on g

A left-symmetric algebra structure on g is a bilinear product
1 g ® g — g satisfying the condition

x(yD)-(cy) 2=y a-(rx)z O

for all x, y,z € g. There are many examples of Lie algebras
which do not admit a left-symmetric product. For example,
it is easy to see that there are no left-symmetric algebras
with semisimple Lie algebra. Equation (31) implies that the
commutators [x, y] = x - y — y - x satisty the Jacobi identity;
that is to say each left-symmetric product has an associated
commutation Lie algebra, which is called the subadjacent Lie
algebra. If R is a Rota-Baxter operator on a left-symmetric
algebra, then R is a solution of CYBE on its subadjacent Lie
algebra [17]. Clearly, each associative algebra product is a left-
symmetric product. Given a Lie algebra g, it is a fundamental
problem to decide whether g admits a left-symmetric product
and to give a classification of such products [18]. As an
application of Yang-Baxter operators, we can use them to
construct left-symmetric algebras with respect to gg.

Lemma 4 (see [13]). Let g be a Lie algebra; P is called a
solution of the classical Yang-Baxter equation. Define a new
operation on g by

xxy=[P(x),y], Vx,ye€gq. (32)
Then (g, =) is a left-symmetric algebra.

According to Theorem 3 and Lemma 4, we can get some
left-symmetric algebras of g.

Theorem 5. Some left-symmetric algebras of g (of weight zero)
are determined:
(1) esxe;, =—e,esxe, =ae;, e; xe; =e; +e;;

(2) ey e, = —ae;, e, xe, = a*(e, +e;), e, #e; = ale, +e;),
eske =—e,e;xe,=dle +e;),e;xe;=¢e +e;;
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(3)e; xe;, =—e,e;%e;=¢ +e3;

(4) e, * e, = —ae,, e, * e, = (a* + ab)e, + a’es, e, * 5 =
ale; +e;), e5 e, = —e, e5 x e, = (a+be, + aes,
e; * e3=¢e; +e;3;

(5) e, xe, =(a—1)e; —es;

(6) e, x e, =¢y;

(7) e, x e, = —(e; +e3);

(8) e, xe, =(a—ble, —bes, e5 % e, =¢;

(9) e, x e, =ae;, e5 x e, =ey;

(10) e, x e, = —ale; +e3), e5 % e, =¢;;

(11) e5 * e, = ey;

(12) ey e, = —e;, e, % e, = (a—b)e; —bes, e, % e5 = e, +e5;

(13) ey e, =€, e, x e, =ae, e, % e; =€, +e3;

(14) e, e, = —ey, €, x e, = —ale; +e3), e, % e; =€, +ée;;

(15) e, ey =—ej, e, x €5 =€, +e55

(16) e, x e, = —(e; +e3), e, ke, = (a—b)e, —bes, e5 x e, =
e + ey

(17) e, xe; =(a—1)e, —e5, e, e, = —b(e; +e3), e5 * e,
(a- 1)261 —(a—1)es;

(18) e, xe, = (a—1)e, —e5, €, x e, = bey, e5 * ¢,
(a- 1)261 —(a—1es;

(19) ey e, = —(e;+e3), e, %€, = —ale;+e;), es%e, = e;+e;;

(20) e, xe, =€, +es, e, ke, =ae;, e; * e, =e; +e;;

(21) e, xe, = (a—1)e; —es, e5 % e, = (a—1)’e; — (a—1)es;

(22) e; x e, = —(e; +e3), €5 x e, =€, +e3;

(23) e, e, = (a—1)e; —es, e, x e, = (b—c)e; — ces,
es ke, = (a—1)%e, — (a—-1)ey;

(24) e, % e, = —(1/2)e; —e5, e, ke, = —ale; +e3), 5 ¥ e, =
(1/4)e; + (1/2)es;

(25) e, %€, = —(1/2)e, —e5, e, %€, = ae|, esxe, = (1/4)e, +
(1/2)es;

(26) e, x e, = —(1/2)e; —e5, 5 x e, = (1/4)e; + (1/2)es;

(27) e; x e, = —(1/2)e; —e5, €5 % e, = (a — b)e; — bes,
es % ey = (1/4)e; + (1/2)es;

(28) e, e, = —e, e, % e, = —2ale; +e3), e, xe5 =e, +es,
e, ke, = —ae, e, ¥ e, = —2a°(e; +e;), e, ¥ e; =
ale; +e3), e3 xe; = (1/2)e}, e3 % e, = ale; + e3),
es % e3 = —(1/2)(e; +e3);

(29) e, x e, = —ej, e, * e, = —ae, —2ae;, e, * e5 =€, +e5,
es x e = (1/2)e;, e5 % e, = (a/2)e; + aes, e; * e5 =
—(1/2)(eq + e3);

(30) e; * e5 = e +e3, 5 %5 =—(1/2)(e; +e3);

(Bl) e, x e, = —e, e xe, = —(a+2ble, —2(a+ bles,
e xe; = e +ey, e, ke, = —be, e, ke, = (2b* +3ab)e, +
(2b* + 2ab)es, e, * e, = b(e, +¢e;), e; * e, = (1/2)e,,
esxe, = (a/2+b)e, +(a+b)es, e5xe; = —(1/2)(e; +e3).
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