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We consider the kinematics of the locally BPS super-Wilson loop inN = 4 super-Yang-Mills with scalar coupling from a twistorial
point of view. We find that the kinematics can be described either as supersymmetrized pure spinors or as a point in the product
of two super-Grassmannian manifolds 𝐺2|2(4 | 4) × 𝐺2|2(4 | 4). In this description of the kinematics the scalar–scalar correlation
function appearing in the one-loop evaluation of the super-Wilson loop can be neatly written as a sum of four superdeterminants.

1. Introduction

The dual superconformal symmetry is one of the more
surprising and unexpected results arising from studies of
scattering amplitudes in N = 4 theory. It started as an
observation (see [1]) of an inversion symmetry property of
integrals appearing the perturbative expansion. From there it
grew into a full superconformal symmetry, as shown in [2],
and finally into an infinite-dimensional Yangian in [3].

The Yangian symmetry is at the core of the duality
between polygonal super-Wilson loops and scattering ampli-
tudes; in particular it contains both the conformal group
acting on scattering amplitudes and the dual conformal group
acting on super-Wilson loops.

Initially the duality was between polygonal Wilson loops
and MHV scattering amplitudes (see [4–8]). Later it was
extended beyond MHV for scattering amplitudes and to
polygonal super-Wilson loops (see [9, 10]). However, it has
proven challenging to actually use this big symmetry to
constrain the functional form of scattering amplitudes or of
super-Wilson loops, mainly because of IR/UV divergences
(see however [11–16] for progress in this area).

For the super-Wilson loops the divergences arise because
of the cusps in the contour. Reference [17] asked the question
of whether it was possible to avoid the cusps (and the
divergences) while still preserving the Yangian symmetry.
They found that this is possible but, besides the coupling to
the gauge field 𝐴, they had to add a coupling of the scalars 𝜙

as well, in a way which would correspond to the dimensional
reduction of a light-likeWilson loop in ten-dimensionalN =1 super-Yang-Mills theory. For a SU(𝑁) gauge theory, this
super-Wilson loop reads

W = 1𝑁 ⟨tr𝑃
⋅ exp (∫

�퐶
𝑑𝑡 (𝑝 ⋅ 𝐴 + ̇𝜃 ⋅ 𝐴�휃 + 𝜃̇ ⋅ 𝐴�휃 + 𝑞 ⋅ Φ))⟩ , (1)

where 𝑝 = 𝑥̇ + (1/2) ̇𝜃𝜃 − (1/2)𝜃𝜃̇, 𝑞 is a six-dimensional
vector such that 𝑝2 − 𝑞2 = 0, 𝐴 is the Grassmann even gauge
superfield, 𝐴�휃 and 𝐴�휃 are the Grassmann-odd components
of the gauge superfield, and Φ is the scalar superfield.

Such Wilson loops were studied soon after the formu-
lation of the AdS/CFT correspondence, in [18, 19]. Their
supersymmetrization was studied in [20].

The authors of [17] found that the Yangian symmetry
is present in one-loop order for the first few orders in the
Grassmann expansion. Later, [21] studied the superconformal
symmetry, 𝜅 symmetry, and finiteness of these operators
while [22] studied the Yangian symmetry to one-loop order
but to all orders in the Grassmann expansion.

In [21] the scalar–scalar two-point function was com-
puted with the result. (Here and in the following we adopt
a matrix notation, which allows us to omit all the indices.
The index contraction is just matrix multiplication or matrix
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trace. In this notation 𝑥 is a 2 × 2matrix, 𝜃 is a 2 × 4matrix,
and 𝜃 is a 4×2matrix.The conventions are similar to the ones
in [21, 22].)⟨Φ�푎�푏 (1)Φ�푐�푑 (2)⟩

∝ (1 + 𝜃21𝑥+−,−121 𝜃21)[�푐𝑎 (1 + 𝜃21𝑥+−,−121 𝜃21)�푑]𝑏
det 𝑥+−21 , (2)

where point 𝑖 has coordinates (𝑥�푖, 𝜃�푖, 𝜃�푖) and 𝜃12 = 𝜃1 − 𝜃2,𝑥+−12 = 𝑥+1 − 𝑥−2 + 𝜃1𝜃2, and 𝑥± = 𝑥 ∓ (1/2)𝜃𝜃.
This result, while not difficult to obtain, does not make

the superconformal symmetry manifest. Ideally one would
like to find a set of variables with simple superconformal
transformations, which can be used as building blocks for
superconformal and Yangian invariants (in fact, we actually
only need invariance up to total derivatives). This is what we
set out to do in this paper.

We describe the kinematics by two (2 | 2) × (2 | 4 | 2)
supermatrices V and Ṽ and two (2 | 4 | 2) × (2 | 2)
supermatricesU and Ũ, such that

VŨ = 0,
ṼU = 0,

sdet (Ṽ⋅) = sdet (U; ⋅)−1 ,
sdet (V⋅) = sdet (Ũ; ⋅)−1 ,

(3)

where the ⋅ can be replaced by any (2 | 4 | 2) × (2 |2) supermatrix such that all the superdeterminants make
sense. The V and Ṽ transform by a right action of the
superconformal group and are defined up to a left action by(2 | 2) × (2 | 2) supermatrices. The same holds forU and Ũ
but with left and right interchanged.

Using these variables, the scalar–scalar correlation func-
tion can be written as⟨𝑞1 ⋅ Φ (1) 𝑞2 ⋅ Φ (2)⟩∝ sdet (V1U2) + sdet (V1Ũ2) + sdet (Ṽ1U2)+ sdet (Ṽ1Ũ2) . (4)

We hope that this parametrization, besides making the
superconformal symmetry manifest, will be useful in finding
the Yangian invariants as well, along the lines of [23–25].

2. Kinematics

For a 2𝑛 × 2𝑛 antisymmetric complex matrix 𝐴, there is a
decomposition 𝐴 = 𝑈Σ𝑈T, where 𝑈 is a unitary matrix

and Σ is a block-diagonal antisymmetric matrix with 2 × 2
blocks:

Σ =(((((((((
(

0 𝑐1 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅−𝑐1 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 0 𝑐2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 −𝑐2 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅... ... ... ... d⋅ ⋅ ⋅ 0 0 0 0 𝑐�푛⋅ ⋅ ⋅ 0 0 0 −𝑐�푛 0

)))))))))
)

. (5)

Moreover, we can choose the 𝑐�푖 to be real and positive.
A similar decomposition exists for real antisymmetric

matrices, for which the unitary matrices in the decomposi-
tion above are replaced by orthogonal matrices.

In the following we consider 𝑞�푎�푏, which is a 4 × 4
antisymmetric complex matrix (therefore we set 𝑛 = 2 in
the general discussion above). We denote by 𝑞 the complex
conjugate matrix. Its decomposition reads 𝑞 = 𝑈∗Σ𝑈†.

The matrix 𝑞 can be identified with a six-dimensional
vector. We denote the norm of this vector by 𝑞2. Thematrices𝑞 and 𝑞 are related by a constraint 𝑞𝑞 = −𝑞214. Using the
decomposition above, we find that this implies 𝑞2 = 𝑐21 = 𝑐22
and, since 𝑐1 and 𝑐2 are real and positive, 𝑐1 = 𝑐2. We denote
the common value by 𝑐.

The final constraint we impose is the duality condition𝑞�푎�푏 = (1/2)𝜖�푎�푏�푐�푑𝑞�푐�푑. It implies that det𝑈 = 1; therefore we
have 𝑈 ∈ SU(4) while initially we had 𝑈 ∈ U(4).

In conclusion, 𝑞 = 𝑈Σ𝑈T with 𝑈 ∈ SU(4) and
Σ =( 0 𝑐 0 0−𝑐 0 0 00 0 0 𝑐0 0 −𝑐 0) , (6)

and 𝑐 > 0.
Given 𝑞, there are severalmatrices𝑈which yield the same𝑞. For example, if 𝑃Σ𝑃T = Σ, 𝑈 and 𝑈�耠 = 𝑈𝑃 give the same𝑞. Such matrices 𝑃 form a group, which is Sp(4,C). If we also

want to preserve the unitarity conditions we should take 𝑃 ∈
Sp(4,C) ∩ U(4). This is a real form (the group Sp(2) can be
also defined as the subgroup of GL(2,H) which preserves the
Hermitian form ⟨𝑥, 𝑦⟩ = ∑2�푖=1 𝑥�푖𝑦�푖, where 𝑥�푖, 𝑦�푖 ∈ H and 𝑥�푖 is
the quaternionic conjugate of 𝑥�푖) of Sp(4,C), called Sp(2) (or
sometimes USp(4)).

This means that 𝑞 is parametrized by the length 𝑞2 =𝑐2 and by the coset SU(4)/Sp(2). Using the isomorphisms
SU(4) ≃ Spin(6), Sp(2) ≃ Spin(5), SO(5) ≃ Sp(2)/Z2, and
SO(6) ≃ SU(4)/Z2, the coset is seen to be a five-dimensional
sphere

SU (4)
Sp (2) ≃ Spin (6)

Spin (5) ≃ SO (6)
SO (5) ≃ S

5. (7)
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A conformal transformation 𝑔 can be seen as an element
of SU(2, 2). We write 𝑔 = (𝐴 𝐵𝐶 𝐷) , (8)

where 𝐴, 𝐵, 𝐶, and 𝐷 are 2 × 2 matrices. The block
decomposition of the inverse is

𝑔−1 = (𝐴 𝐵𝐶 𝐷) . (9)

The condition that 𝑔 ∈ SU(2, 2) is
(𝐴 𝐵𝐶 𝐷)( 0 1−1 0)(𝐴† 𝐶†𝐵† 𝐷†) = ( 0 1−1 0) , (10)

which implies that

(𝐴 𝐵𝐶 𝐷) = ( 𝐷† −𝐵†−𝐶† 𝐴† ) . (11)

The complexified and compactified Minkowski space is
the 𝐺2(4) Grassmannian of two-planes through the origin
of C4. A point on the Grassmannian can be described as a4 × 2 matrix of rank two modulo the right action of GL(2).
In some appropriate coordinate patch, a representative of this
coset can be written as ( �푥1 ). The 2 × 2 matrix 𝑥 encodes the
space-time coordinates. In (1, 3) Lorentzian signature 𝑥 is
Hermitian.

A conformal transformation𝑔, described by a 4×4matrix
above, acts on C4, the space on which the Grassmannian
is defined, by left multiplication. If we perform such a
transformation followed by a right multiplication by GL(2)
to go back to the canonical form, we find the transformation
law(𝑥1) 󳨀→ (𝐴 𝐵𝐶 𝐷)(𝑥1) ∼ ((𝐴𝑥 + 𝐵) (𝐶𝑥 + 𝐷)−11 )

= (𝑥�耠1 ) . (12)

Therefore, 𝑥 → 𝑥�耠 = (𝐴𝑥 + 𝐵)(𝐶𝑥 + 𝐷)−1.
Let us also consider a dual 𝐺2(4) Grassmannian, which

is the set of two-planes through the dual C4 to the one
previously considered. A point in this Grassmannian can be
represented by a 2 × 4matrix, modulo a left action by GL(2).
The conformal group acts on the right, by multiplication by
the inverse. A representative of this coset can be written as(1 −𝑥). Under conformal transformations we have

(1 −𝑥) 󳨀→ (1 −𝑥)(𝐴 𝐵𝐶 𝐷)∼ (1 − (𝐴 − 𝑥𝐶)−1 (−𝐵 + 𝑥𝐷)) = (1 −𝑥�耠) . (13)

We therefore have two ways to write the transformations
of 𝑥: 𝑥 → 𝑥�耠 = (𝐴𝑥 + 𝐵)(𝐶𝑥 + 𝐷)−1 and 𝑥 →𝑥�耠 = (−𝑥𝐶 + 𝐴)−1(𝑥𝐷 − 𝐵). These two ways are related by
Hermitian conjugation.

For a 2 × 2matrix 𝐴 we define 𝐴 = (det𝐴)𝐴−1 = −𝜖𝐴T𝜖.
This operation has the following properties: 𝐴𝐵 = 𝐵𝐴,(𝐴−1) = (𝐴)−1, det𝐴 = det𝐴, and 𝐴 = 𝐴.

The 2 × 2 matrix 𝑝 is Hermitian since 𝑥 is Hermitian.
Therefore, 𝑝 can be diagonalized by a unitary matrix V:

𝑝 = V(𝑐1 00 𝑐2) V†. (14)

The unitary matrix V can be restricted to be in SU(2) (in
fact, even in PSU(2)) and we will do so from now on. Since
det V = 1 and V is 2 × 2, we have V−1 = V† = −𝜖VT𝜖 and also

𝑝𝜖 = V( 0 𝑐1−𝑐2 0) VT,
𝑝𝜖 = V( 0 𝑐2−𝑐1 0) VT,
𝑝 = V(𝑐2 00 𝑐1) V†,

(15)

which shows that (𝑝𝜖)T = −(𝑝𝜖). If we denote by 𝑝2 the norm
of the momentum, then 𝑝2 = 𝑐1𝑐2 = det𝑝 = det𝑝 and 𝑝0 =(1/2) tr𝑝 = (1/2) tr𝑝.

Given 𝑝, V is not uniquely determined. In fact, 𝑝 can
be parametrized by 𝑐1, 𝑐2 and a coset S2 ≃ SU(2)/U(1).
In other words, the momentum is parametrized by its zero
component, its norm, and the direction of its space-like
projection.

3. Pure Spinor Parametrization

Let us now solve the following equation in 𝜆:𝜆𝑝𝜖 − 𝑞𝜆∗ = 0. (16)

Using the decomposition of 𝑝 and 𝑞worked out above we can
reduce this equation to

𝜉(0 −𝑐2𝑐1 0 ) + 𝑐(𝜖 00 𝜖) 𝜉∗ = 0. (17)

This equation needs to be solved in the 4 × 2matrix 𝜉. Given
a solution of this equation we can find 𝜆 = 𝑈𝜉V†.
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When 𝑐1𝑐2 = 𝑐2, which just corresponds to a 10D
light-likeness condition, something special happens. Indeed,
consider the explicit form 𝜉�푖�푗 with 𝑖 = 1, . . . , 4, 𝑗 = 1, 2. Then,

𝜉(0 −𝑐2𝑐1 0 ) + 𝑐(𝜖 00 𝜖) 𝜉∗
=(𝑐1𝜉12 + 𝑐𝜉∗21 −𝑐2𝜉11 + 𝑐𝜉∗22𝑐1𝜉22 − 𝑐𝜉∗11 −𝑐2𝜉21 − 𝑐𝜉∗12𝑐1𝜉32 + 𝑐𝜉∗41 −𝑐2𝜉31 + 𝑐𝜉∗42𝑐1𝜉42 − 𝑐𝜉∗31 −𝑐2𝜉41 − 𝑐𝜉∗32). (18)

If we set 𝜉11 = 𝑐1𝑐 𝜉∗22 = 𝑐𝑐2 𝜉∗22,𝜉21 = −𝑐1𝑐 𝜉∗12 = − 𝑐𝑐2 𝜉∗12,𝜉31 = 𝑐1𝑐 𝜉∗42 = 𝑐𝑐2 𝜉∗42,𝜉41 = −𝑐1𝑐 𝜉∗32 = − 𝑐𝑐2 𝜉∗32,
(19)

then the left-hand side vanishes. If we want to see the
transformation

𝜉 󳨃󳨀→ 𝜉(0 −𝑐2𝑐1 0 ) + 𝑐(𝜖 00 𝜖) 𝜉∗, (20)

as a real-linear operator acting on a 16-dimensional real
space (the space of 𝜉), then this linear operator has a real
8-dimensional kernel. Therefore, it must have a real 8-
dimensional image.

If we fix the normalization of 𝜉 by |𝜉12|2 + |𝜉22|2 + |𝜉32|2 +|𝜉42|2 = 𝑐2 and as a consequence |𝜉11|2+|𝜉21|2+|𝜉31|2+|𝜉41|2 =𝑐1, then we have

𝜉†𝜉 = (𝑐1 00 𝑐2) , (21)

and therefore 𝜆†𝜆 = 𝑝, (22)

where we recall that 𝜆 is a 2 × 4 matrix. The hermiticity of 𝑝
is manifest.

Next we define

𝜉 = (𝑐2𝛼𝜉11 𝑐1𝛼𝜉12𝑐2𝛼𝜉21 𝑐1𝛼𝜉22𝑐2𝛽𝜉31 𝑐1𝛽𝜉32𝑐2𝛽𝜉41 𝑐1𝛽𝜉42), (23)

with

𝛼 = 1𝑐√ 󵄨󵄨󵄨󵄨𝜉32󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜉42󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨𝜉12󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜉22󵄨󵄨󵄨󵄨2 ,
𝛽 = −1𝑐√ 󵄨󵄨󵄨󵄨𝜉12󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜉22󵄨󵄨󵄨󵄨2󵄨󵄨󵄨󵄨𝜉32󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜉42󵄨󵄨󵄨󵄨2 .

(24)

The 𝜉 and 𝜉 satisfy some useful identities𝜉†𝜉 = 0,∗ (𝜉∗𝜖𝜉†) = 𝜉𝜖𝜉T, (25)

where ∗𝑀 computes the Hodge dual of a 4×4 antisymmetric
matrix𝑀; that is, (∗𝑀)�푎�푏 = (1/2)𝜖�푎�푏�푐�푑𝑀�푐�푑.

We can also easily compute that𝜉†𝜉 = (𝑐2 00 𝑐1) ,𝜉𝜖𝜉T + 𝜉𝜖𝜉T = 𝑐(𝜖 00 𝜖) . (26)

Using the definitions 𝜆 = 𝑈𝜉V†,𝜆̃ = 𝑈𝜉V†, (27)

and the identities

VT𝜖V = 𝜖,∗ (𝑈∗𝑀𝑈†) = 𝑈 (∗𝑀)𝑈T, (28)

valid for V ∈ SU(2),𝑈 ∈ SU(4), and𝑀 antisymmetric, we can
show that 𝜆†𝜆̃ = 0,∗ (𝜆∗𝜖𝜆†) = 𝜆̃𝜖𝜆̃T,𝑝 = 𝜆†𝜆,𝑝 = −𝜖𝜆T𝜆∗𝜖,𝑞 = 𝜆𝜖𝜆T + 𝜆̃𝜖𝜆̃T,𝑞 = 𝜆∗𝜖𝜆† + 𝜆̃∗𝜖𝜆̃†.

(29)

The constraints in the first two lines above are precisely the
pure spinor constraints in a 4D-reduced form. They were
presented in this form by Berkovits and Fleury in [26].

We can nowdo the construction in the opposite direction;
we start with two 2 × 4 matrices 𝜆 and 𝜆̃ satisfying the pure
spinor constraints; we compute𝑝,𝑝, 𝑞, and 𝑞 by the equations



Advances in Mathematical Physics 5

above and show that they satisfy the correct constraints. A
similar construction was done by Howe in [27].

Clearly 𝑞 and 𝑞 are antisymmetric and also 𝑞 = 𝑞∗ and𝑞 = ∗𝑞. To check that the other constraints are satisfied by 𝑞
and 𝑞 we need the following identity:𝑀𝑁+ (∗𝑁) (∗𝑀) = 12 tr (𝑀𝑁) 14, (30)

where𝑀 and𝑁 are 4×4 antisymmetricmatrices.This identity
can be shown by explicit computation.

There are four terms in the product 𝑞𝑞:𝑞𝑞 = (𝜆𝜖𝜆T) (𝜆∗𝜖𝜆†) + ∗ (𝜆∗𝜖𝜆†) ∗ (𝜆𝜖𝜆T)+ (𝜆𝜖𝜆T) ∗ (𝜆𝜖𝜆T) + (𝜆̃𝜖𝜆̃T) ∗ (𝜆̃𝜖𝜆̃T) . (31)

The last two terms vanish by antisymmetry while the first two
terms combine in a trace by using (30). We obtain𝑞𝑞 = 12 tr ((𝜆𝜖𝜆T) (𝜆∗𝜖𝜆†)) 14 = − det (𝜆†𝜆) 14= − det𝑝14. (32)

The constraints for 𝑝 are automatically satisfied.

4. Supersymmetrization

The infinitesimal supersymmetry generator is represented by
the supermatrix

𝑚 = (0 𝜃 00 0 𝜃0 0 0) , (33)

where we have adopted a (2 | 4 | 2)× (2 | 4 | 2) block writing.
The corresponding finite supersymmetry transformation is

𝑀 = exp (𝑚) = (1 𝜃 12𝜃𝜃0 1 𝜃0 0 1 ) . (34)

In fact, we can combine the supersymmetry transforma-
tions with translations in a single supermatrix

𝑀 =(1 𝜃 𝑥−0 1 𝜃0 0 1 ) ,
𝑀−1 = (1 −𝜃 −𝑥+0 1 −𝜃0 0 1 ) , (35)

where 𝑥± = 𝑥 ∓ (1/2)𝜃𝜃.

The supersymmetrized versions of the bosonic quantities
can be obtained by acting with the transformation matrix𝑀.
For example, we find

𝑀(001) = (𝑥−𝜃1 ) ,
(0 0 1)𝑀−1 = (1 −𝜃 −𝑥+) . (36)

These quantities are supersymmetric but not superconformal.
Under superconformal action they transform as elements of a
coset; that is, we need to include a right action by the stability
group in order to preserve their form.

We want to supersymmetrize the bosonic variables dis-
cussed in the previous section. Using their transformation
properties under Lorentz and 𝑅-symmetry, it is easy to
identify the bosonic part which should be supersymmetrized.
We find

(0 0𝜆 00 1) 󳨀→ 𝑀(0 0𝜆 00 1) = U = (𝜃𝜆 𝑥−𝜆 𝜃0 1 ) ,
(0 𝜆† 01 0 0) 󳨀→ (0 𝜆† 01 0 0)𝑀−1 =V

= (0 𝜆† −𝜆†𝜃1 −𝜃 −𝑥+ ) .
(37)

This defines U to be a (2 | 4 | 2) × (2 | 2) supermatrix and
V to be a (2 × 2) × (2 | 4 | 2) supermatrix. These quantities
transformcovariantly under supersymmetry transformations
(U under a left action and V under a right action), but
under general superconformal transformations they require
a compensating transformation by a (2 | 2) × (2 | 2)
supermatrix (on the right forU and on the left forV).

The spinor 𝜆̃ has the same transformation properties as𝜆 so we can define Ũ and Ṽ by replacing 𝜆 → 𝜆̃ in the
definition ofU andV, respectively.

Here are the possibleVU products which yield (2 | 2) ×(2 | 2) supermatrices:

VŨ = 0,
ṼU = 0,
VU = (𝑝 00 0) ,
ṼŨ = (𝜆̃†𝜆̃ 00 0) .

(38)

The identities in the first two lines above are consequences of
the constraints 𝜆†𝜆̃ = 0 and 𝜆̃†𝜆 = 0 described previously.We
will describe later how the remaining pure spinor constraints
arise.
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The product V�푖U�푗 between such supermatrices corre-
sponding to different points in superspace is

V�푖U�푗 = ( 𝜆†�푖𝜆�푗 −𝜆†�푖 𝜃�푖�푗−𝜃�푖�푗𝜆�푗 −𝑥+−�푖�푗 ) , (39)

where 𝜃�푖�푗 = 𝜃�푖 − 𝜃�푗 and 𝑥+−�푖�푗 = 𝑥+�푖 − 𝑥−�푗 + 𝜃�푖𝜃�푗.
Under superconformal transformations all these quanti-

ties transformhomogeneously and getmultiplied by a left and
a right super-matrix.This implies that the super-determinant
is covariant under superconformal transformations.

5. Correlation Functions

Using the expression for 𝑞 and 𝑞 in terms of pure spinor
components, we find

tr (𝑞1𝑞2) = −2 (det (𝜆†2𝜆1) + det (𝜆̃†2𝜆1)+ det (𝜆†2𝜆̃1) + det (𝜆̃†2𝜆̃1)) . (40)

Supersymmetrically we expect the answer for the correla-
tion function of two scalar superfields ⟨𝑞1 ⋅ Φ(1) 𝑞2 ⋅ Φ(2)⟩
to be obtained by replacing

det (𝜆†2𝜆1)
det 𝑥12 󳨀→ sdet( 𝜆†2𝜆1 −𝜆†2𝜃21−𝜃21𝜆1 −𝑥+−21 )= sdet (V2U1) , (41)

where

sdet(𝑀 𝑁𝑃 𝑄) = det (𝑀 −𝑁𝑄−1𝑃)
det𝑄= det𝑀

det (𝑄 − 𝑃𝑀−1𝑁). (42)

This is similar to the result obtained in [28], but it differs in
some details. In the next section we will discuss the relation
to harmonic superspace in more detail.

Explicitly, we find

sdet (V2U1) = det (𝜆†2𝜆1 + 𝜆†2𝜃21𝑥+−,−121 𝜃21𝜆1)
det 𝑥+−21 = −12

⋅ tr (𝜆†2 (1 + 𝜃21𝑥+−,−121 𝜃21) 𝜆1𝜖𝜆T1 (1 + 𝜃21𝑥+−,−121 𝜃21)T 𝜆∗2𝜖)
det𝑥+−21 , (43)

where we have used the identity det 𝑥 = −(1/2) tr(𝑥𝜖𝑥T𝜖),
valid for all 2 × 2matrices.

Adding up all the four contributions reproduces 𝑞1 =𝜆1𝜖𝜆T1 + 𝜆̃1𝜖𝜆̃T1 and 𝑞2 = 𝜆∗2𝜖𝜆†2 + 𝜆̃∗2𝜖𝜆̃†2.
Other superconformal covariants can be formed by join-

ing together two (2 | 4 | 2) × (2 | 2) supermatrices to form a(2 | 4 | 2) × (2 | 4 | 2) super-matrix. We define

sdet (U1;U2) = sdet(𝑥−1 𝜃1𝜆1 𝜃2𝜆2 𝑥−2𝜃1 𝜆1 𝜆2 𝜃21 0 0 1 ) , (44)

where we have permuted the columns in order to make it
possible to compute the superdeterminant (in order to be able
to compute the superdeterminant the supermatrix should be
a linear map between spaces of the same structure; that is,
the sequence of integers describing the dimensions of the
even and odd spaces should be the same for the domain of
definition and for the image). In general permuting rows or
columns of different parity does not preserve the value of the
superdeterminant, but in the expression above we will simply
take the right-hand side to be definition of the sdet (U1;U2)
notation.

The easiest way to compute this superdeterminant is to
apply a supertranslation which preserves it:

sdet(𝑥−1 𝜃1𝜆1 𝜃2𝜆2 𝑥−2𝜃1 𝜆1 𝜆2 𝜃21 0 0 1 )
= sdet(0 0 −𝜃12𝜆2 −𝑥+−120 𝜆1 𝜆2 −𝜃121 0 0 1 ) . (45)

Next, we apply the identity

sdet(𝑀 𝑁𝑃 𝑄) = sdet (𝑀 −𝑁𝑄−1𝑃) sdet𝑄−1, (46)

where𝑀,𝑁, 𝑃, and𝑄 are themselves supermatrices (see [29,
page 104, Theorem 3.4] for a proof). This yields

sdet (U1;U2)= sdet((0 0 −𝜃12𝜆20 𝜆1 𝜆2 ) − (1 0 0)(−𝑥+−12−𝜃12))= det 𝑥+−12
det (𝜆1, (1 + 𝜃12𝑥+−,−112 𝜃12) 𝜆2) .

(47)

Finally, we need to compute the 4 × 4 determinant in the
denominator. For a 4 × 4 matrix𝑀 = (𝜆, 𝜇), where 𝜆, 𝜇 are4 × 2matrices, we have

det𝑀 = 𝜖�푎�푏�푐�푑𝑀�푎1𝑀�푏2𝑀�푐3𝑀�푑4 = 𝜖�푎�푏�푐�푑𝜆�푎1𝜆�푏2𝜇�푐1𝜇�푑2= 14𝜖�푎�푏�푐�푑 (𝜆𝜖𝜆T)�푎�푏 (𝜇𝜖𝜇T)�푐�푑= −12 tr (∗ (𝜆𝜖𝜆T) (𝜇𝜖𝜇T)) .
(48)

Using this formula and applying the constraint ∗(𝜆𝜖𝜆T) =𝜆̃∗𝜖𝜆̃†, we find
sdet (Ṽ1U2) = sdet (U1;U2)−1 . (49)

This identity is the supersymmetric version of the second
pure spinor constraint. Since this holds for arbitrary U2, the
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dependence on U2 can be eliminated and then the identity
reads

sdet (Ṽ⋅) = sdet (U; ⋅)−1 , (50)

where ⋅ can be replaced by any (2 | 4 | 2)×(2 | 2) supermatrix.
Let us check that the expression for the correlation

function⟨𝑞1 ⋅ Φ (1) 𝑞2 ⋅ Φ (2)⟩∝ sdet (V1U2) + sdet (V1Ũ2) + sdet (Ṽ1U2)+ sdet (Ṽ1Ũ2) (51)

has the required symmetry properties. For example, since𝑞 ⋅ Φ = 𝑞 ⋅ Φ, we should find that ⟨𝑞1 ⋅ Φ(1) 𝑞2 ⋅ Φ(2)⟩ =⟨𝑞1 ⋅ Φ(1) 𝑞2 ⋅ Φ(2)⟩. In Section 6 we show that
sdet (V�푖Ũ�푗) = sdet𝑋�푖�푗 with𝑋�푖�푗 = 𝑋�푖 − 𝑋�푗 and therefore

sdet (V�푖Ũ�푗) = sdet𝑋�푖�푗 = sdet (−𝑋�푗�푖)= sdet (−V�푗Ũ�푖) = sdet (V�푗Ũ�푖) . (52)

Moreover,

sdet (V�푖U�푗) = sdet (Ũ�푖;U�푗)−1 = sdet (U�푗; Ũ�푖)−1= sdet (Ṽ�푗Ũ�푖) . (53)

The required symmetry follows from these two identities.

6. Harmonic Superspace

In this section we drop the reality conditions and complexify
all coordinates.

The results in the previous section can also be presented
in the language of harmonic superspace, but we need to use
two copies. The relevant superspace is the 𝐺2|2(4 | 4) super-
Grassmannian introduced by Howe and Hartwell in [30].
The super-Grassmannian 𝐺2|1(4 | 2) was introduced even
earlier forN = 2 superconformal field theories by Rosly and
Schwarz (see [31]). See also the book [32] by Manin, for a
more mathematical treatment.

For a 4×4 antisymmetric matrix, the action of the Hodge
dual can be written as∗( 𝑀 𝑁−𝑁T 𝑃) = ( 𝑃 𝜖𝑁𝜖−𝜖𝑁T𝜖 𝑀 ) . (54)

Next assume that we can gauge-fix

𝜆 = ( 1𝑦†) ,𝜆† = (1 𝑦) . (55)

Then, 𝜆𝜖𝜆T = ( 𝜖 𝜖𝑦∗𝑦†𝜖 𝑦†𝜖𝑦∗) ,∗ (𝜆∗𝜖𝜆†) = (𝑦T𝜖𝑦 −𝑦𝜖−𝜖𝑦T 𝜖 ) = 𝜆̃𝜖𝜆̃T, (56)

where 𝜆̃ = (−𝑦1 ) ,𝜆̃† = (−𝑦† 1) . (57)

The equality ∗(𝜆∗𝜖𝜆†) = 𝜆̃𝜖𝜆̃T relies on the identity 𝑦𝜖𝑦T =𝑦T𝜖𝑦, valid for 2 × 2matrices. This implies

𝑞 = ( 𝜖 + 𝑦T𝜖𝑦 𝜖𝑦∗ − 𝑦𝜖𝑦†𝜖 − 𝜖𝑦T 𝑦†𝜖𝑦∗ + 𝜖) ,𝑞 = (𝜖 + 𝑦†𝜖𝑦∗ 𝜖𝑦 − 𝑦∗𝜖𝑦T𝜖 − 𝜖𝑦† 𝑦T𝜖𝑦 + 𝜖) ,𝑝 = 1 + 𝑦𝑦†.
(58)

Using this gauge-fixed form of the variables 𝜆 and 𝜆† we
find

V = (0 1 𝑦 −𝜃�耠 − 𝑦𝜃�耠�耠1 −𝜃�耠 −𝜃�耠�耠 −𝑥+ ) , (59)

where we split the 𝜃 and 𝜃 in 2 × 2 blocks 𝜃 = (𝜃�耠, 𝜃�耠�耠) and𝜃 = ( �휃󸀠
�휃
󸀠󸀠 ). By an SL(2 | 2) left action, theV super-matrix can

be transformed into a canonical form

V ∼ (0 1 𝑦 −𝜃�耠 − 𝑦𝜃�耠�耠1 0 𝜃�耠𝑦 − 𝜃�耠�耠 −𝜃�耠𝜃�耠 − 𝜃�耠𝑦𝜃�耠�耠 − 𝑥+)≡ ( 0 11 0 𝑋 ) , (60)

where

𝑋 = ( 𝑦 −𝜃�耠 − 𝑦𝜃�耠�耠𝜃�耠𝑦 − 𝜃�耠�耠 −𝑥 − 12𝜃�耠𝜃�耠 + 12𝜃�耠�耠𝜃�耠�耠 − 𝜃�耠𝑦𝜃�耠�耠). (61)

A similar analysis can be done for the Ũ and its canonical
form contains the same components as𝑋. We have

V�푖Ũ�푗 = 𝑋�푖 − 𝑋�푗 = 𝑋�푖�푗. (62)

It is important to notice that the product in the left-hand side
can bewritten as a difference.These differences aremanifestly
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invariant under a subgroup of the superconformal group,
which acts by translations on𝑋. This is one advantage of this
parametrization of the harmonic variables.

In [28], Howe and West expressed the correlation func-
tion of projections of scalar superfields as a super-determinant
of 𝑋�푖�푗. More explicitly, instead of being contracted with the
vector 𝑞, in their work the superfield Φ was contracted with𝜆𝜖𝜆T, so the second term 𝜆̃𝜖𝜆̃T did not appear. For our
purposes, it is essential that we keep all the contributions
since the super-Wilson loop contains contractions 𝑞 ⋅ Φ for
generic 𝑞 while in [28] the superfield Φ is always contracted
with a rank two matrix.

In order to add these contributions, we follow the same
idea as above and, after putting Ṽ andU in canonical forms,
we are led to introduce𝑋 as𝑋

= ( −𝑦† 𝑦†𝜃�耠 − 𝜃�耠�耠−𝜃�耠 − 𝜃�耠�耠𝑦† −𝑥 + 12𝜃�耠𝜃�耠 − 12𝜃�耠�耠𝜃�耠�耠 + 𝜃�耠�耠𝑦†𝜃�耠). (63)

These are coordinates on a second 𝐺2|2(4 | 4) super-
Grassmannian.

So far we have shown that two of the terms in the
scalar–scalar superfield correlation function can be written
in a simple way in terms of harmonic coordinates:

sdetV1Ũ2 = sdet𝑋12,
sdet Ṽ1U2 = sdet𝑋12. (64)

The other two contributions sdetV1U2 and sdet Ṽ1Ũ2 do
not have such a simple form. In particular, they can not be
written in terms of differences of coordinates. To see this it is
easiest to notice thatVU ̸= 0.

The subgroup which acts by translating the variables 𝑋
has appeared before in [33, Section 3.1] by Berkovits and
Maldacena on fermionic T-duality. The main result of this
paper is that the type IIB AdS5 × 𝑆5 string background is
preserved by a sequence of T-dualities in the four space-time
directions and in the eight fermionic directions correspond-
ing to a set of anticommuting chiral supercharges. Moreover,
this invariance under T-duality implies Yangian symmetry of
the super-Wilson loop (see also [34]).

As shown in [22] the nonchiral super-Wilson loop with
a coupling to scalars is also Yangian invariant to one-loop
order. Is it possible to show Yangian invariance to all orders
in the ’t Hooft coupling by applying T-duality as in the chiral
case? Berkovits and Maldacena also point out in Sections3.1 and 3.2 of [33] that there is another set of T-dualities
which also preserve the AdS5×𝑆5 background.The directions
in which these T-dualities are performed are parametrized
by 𝑋 but can also correspond to 𝑋. We should emphasize
that 𝑋 and 𝑋 do not transform in the same way and in fact
translations of𝑋 and of𝑋 do not commute.

An obvious guess is that one needs to perform the T-
dualities corresponding to 𝑋 and then the T-dualities corre-
sponding to 𝑋, or the other way around. At weak coupling

and for the chiral case, the effect of T-dualities was to pass to
the dual space𝑝�푖 → 𝑥�푖−𝑥�푖+1, 𝑞�푖 → 𝜃�푖−𝜃�푖+1 and onemay hope
to introduce a dual space for the nonchiral superspace in a
similar way.The strong-coupling situation is more confusing.
For example, in the chiral case one starts with some D3-
branes which after four T-dualities along the space-time
directions become D(-1) instantons, which are the vertices of
the super-Wilson loop. In the nonchiral case we can perform
some T-dualities along four space-time directions in 𝑋 and
then four T-dualities along the four space-time directions in𝑋. These space-time directions, however, differ by nilpotent
quantities. It should be interesting to understand what kind
of brane configuration gets generated by such a sequence of
T-dualities.
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