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This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW) coating
process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method
(OHAM). The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the
obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM). The obtained
velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical
solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.

1. Introduction

The study of non-Newtonian fluids has gained deep attention
from researchers due to its various applications in industries
like oil, polymer, plastic, and so forth. Various models, both
analytical and numerical, have been discussed in the study
of non-Newtonian fluids. Fluids models are characterized by
the underlying fluid grades like second grade, third grade,
and so forth generalizing to n-grade fluids. In this study
non-Newtonian third-grade fluids have been studied for their
applicability in optical fiber coating. Third-grade fluids have
been studied by many researchers. Siddiqui et al. [1] studied
the torsion flow of such fluid. The same author studied heat
flux of such fluids in two parallel plates which is discussed in
[2]. Islam et al. [3] studied third-grade fluid with heat transfer.
Aksoy and Pakdemirli [4] investigated the third-grade fluid
flow in parallel plates with a porous medium.

The subject of two immiscible fluids flows with heat trans-
fer has been briefly studied due to its importance in nuclear
and chemical industries. It can be classified into three groups,
namely, segregated flows, transitional or mixed flows, and
dispersed flows [5]. Siddiqui et al. [6] studied two immiscible
fluids in porous media. Batchelor [7] studied two immiscible
fluids in an analogous plate. Two immiscible fluids have been

extensively studied theoretically and experimentally [8, 9].
Different types of fluids are used for wire and fiber optics
coating, which depends upon the geometry of die, fluid
viscosity, temperature of the wire or fiber optics, and the
molten polymer.

Most relevant works on the wire and fiber optics coating
are thus summarized in the following.

Shah et al. [10] studied the wire coating analysis with
linearly varying temperature. Unsteady second-grade fluid
with oscillating boundary condition inside the wire coating
die was investigated by Shah et al. [11]. Exact solution was
obtained for unsteady second-grade fluid in wire coating
analysis [12]. Shah et al. [13] studied third-grade fluid with
heat transfer in the wire coating analysis. All these attempts
were related to single layer coating flow.

Immiscible fluid flow is used for many industrial and
manufacturing processes such as oil industry or polymer
production. Kim et al. [14] examined the theoretical pre-
diction on the double-layer coating in wet-on-wet optical
fiber coating process. Double-layer coating liquid flows were
used by Kim and Kwak [15] in optical fiber manufacturing.
For this purpose power-law fluid model was used. Recently
Zeeshan et al. [16] used Phan Thien Tanner fluid in double-
layer optical fiber coating. The same author [17] investigated
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FIGURE 1: Manufacturing process of wire.

double-layer resin coating of optical fiber glass using wet-on-
wet coating process with constant pressure gradient. Two-
phase flow of an Oldroyd 8-constant fluid was used for optical
fiber coating by Zeeshan et al. [18]. Flow and heat transfer in
double-layer optical fiber coating using wet-on-wet coating
process were investigated by Khan et al. [19].

Keeping in view the wide range of applications, an attempt
is made to analyze the flow and heat transfer in two-phase
flow of an elastic-viscous fluid in a pressure type die. In
this paper, the task is to find the analytical solutions for the
governing nonlinear equation arising in a coating metallic
wire process inside a cylindrical roll die, to study the fluid
flow behavior in particular, and to examine the effects of
the non-Newtonian fluid parameters and axial distance from
the center of the metallic wire. This is our first attempt to
investigate the double-layer coating flow of an elastic-viscous
fluid on the wire using wet-on-wet coating process. Apart
from this, no one investigated the double-layer wire coating
in wet-on-wet coating process using two immiscible elastic-
viscous fluids in a pressurized coating die. To the best of
our knowledge, no such analysis of the double-layer coating
flows of two immiscible elastic-viscous fluids on the wire is
available in the literature.

The present paper is structured as follows. Section 2
is reserved for modeling of the problem. Solution of the
problem is given in Section 3. Section 4 is reserved for
analysis of results. Section 5 contains the concluding remarks.

2. Modeling of the Problem

The geometry of the problem is shown in Figure 1. The die
and wire are concentric. The coordinate system is taken at the
center of the wire, in which r is taken perpendicular to the
flow direction z.

The coating process is performed in two phases. In the
first phase the uncovered wire of radius R, is dragged with
constant velocity V; into the primary coating liquid. In the
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second phase the wet coating passes through the secondary
coating die of radius R; and length L. In this way, the wire
leaves the system with two layers of coating. The wet layers are
dried up by ultraviolet (UV) lamps. The liquid parameters at
each phase are generalized by corresponding phase number
denoted by j (j = 1,2). The liquids are parameterized by
temperature ©', the fluid density p'?, the viscosity '/,
thermal conductivity K, thermal expansion coefficient 7,

and the specific heat cI(,J ) The gas velocity surrounding the
polymer at the surface of coated wire is represented by V,, as
shown in Figure 2.

The governing equations for the two fluids are the conti-
nuity, momentum, and energy equations given as follows:

v = o, (1
a) .

p(]) DI’;t —v. T, (2)
. () i .

C;J’—Dg)t =k;v’eY +tr(TV . 1), 3)

where D/Dt = 0/ot + 719 . V is the substantive acceleration.

No-slip boundary conditions are taken at velocity. The
temperature conditions @(1) and 8 are taken at the fiber
optics and die wall, respectively. At the fluid interface, we
utilize the assumptions that the velocity, the shear stress,
the pressure gradient, the temperature, and the heat flux are
continuous. '

The Cauchy stress TV given in (2) is

TV = —p1+ 89, (4)

In the above equation p is the pressure and I and SV are the
identity and extra stress tensor, respectively.
For third-grade fluid S is defined as [1-4, 13]

9 = yDAY 4 (DAY 1 @AY 4 DAY
D) (AD AGD () A (D () (DY A D
+7,) (AYAY + AV AY) + ) (tr AY) AY

G G _G)

In which (xgj 5 oy, 7, 1, and ng ) are constants and A(lj 5

Agj ) Agj ) are kinematic tensors defined by
AD = LOT 410,

0 (6)
. . : DA
AP =AY LT+ LAY 4 o n=23

where T stands for transpose of a matrix.

For steady and unidirectional flow velocity, temperature
and stress fields are defined as

7 = [0,0,w” (],
@(j) — @(j) (1,) , (7)

s = 0 (1.
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In view of (7), (1) is satisfied identically and from (2)-(6) we The pertinent boundary conditions on the velocity are [14-19]
have

w = Vi atr=R,,

, o (10)
s _ (2“(1-) . (x(j)) dw? w” =0 atr=Ry
" o ) W _ @
w’ =w?,
M\?2 1 2
o _ o [ dw’ s = s (1
Se=a | —— > (8)
atr = R.
j 5 dw?? G on [ dw? ’ The pertinent boundary conditions on the temperature are
S(J):‘u(J) +2(T1+T1) : P] y p
rz dr 2 'h ar ) 16-19
ol = @(1) atr =R
w?
From (8), (2) and (3) reduce to o (12)
0¥ =0 atr =Ry,
(1) (2)
. 3 @ - @ >
2(9 + ) a <r<dw(1) > >
2 3 1 @
dr dr K(l)df;( ) kO d;) ) 13)
r r
) ()
+M_i rdw] :O’ atT:R,
r dr dr

9) where (11) and (13) are the interface conditions on velocity

(A 1d ) A dw?\? and temperature, respectively.
KV S t-— oW 4+ 0 [ Z=— The volume flow rate at some control surface is
dr rdr dr

w

QY =nv, (W* -R)), (14)

where h'7 is the radius of the coated wire.

A\ 4
. . d ()
+2(T§1)+T§]))<—;Ur ) =0.



The volume flow rate is [14-19]
. Ry .
QYW = J rw"? (r)dr. (15)
R

w

Thickness of the coating wire is [14-19]

(16)

In view of (17), (9)-(16) can be reduced to the following set of
nondimensional equations, respectively:

% r
r=—,
Rw
e
w, = —,
T
@(j) _ @(2)
0 = ———,
] —~(2 —~(1
a? _g®
0 =9 1D,
R
—d_5>1,
RU)
R
— =0,
R, (17)
v
22 U,
Vl
2
) u®
A=
U
K(z)
Ok
(D172
B WV
()
Ty
Bj

T WO (RVE)
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dzwj dw; 5 3 dzwj dw; ’
o tar PP\ e
dw; ’ 0
\a) )70

d*0; 1d6, s (1 ? - dw; \*
a e B\ e ) PP (1)

(18)

= 0,
w, (1) =1,
(20)
w, (0) =U,
wy = w,,
St =8 1)
atr = Q,
0, (1) =0,
(22)
0,(0) =1,
0,=0,,
9, _ Kdb, (23)
dr 6 dr
atr = Q,
Q(j) Q
Q=+ Q= g = | e )
(24)
B
+J rw, (r) (r) dr,
Q
A% Q 1/2
hj=hy+h, = - <[1 +2J1 rw, (r)(r)dr]

1/2

5
—1>+<[(1+h1)2+zj rw, (r)(r)dr] (25)
Q

+(1+h1)>.

3. Solution of the Problem

The OHAM is a steadfast method which has been broadly
used by the researchers to solve nonlinear problems. One
special area of application of this method is to solve equations
arising when non-Newtonian fluids [20-25] are studied. To
solve (18) corresponding to the boundary conditions given in
(20) and (21), we apply OHAM and ADM [26-28]. The details
of OHAM and ADM are given in Appendix. Here, only the
OHAM solution is given.
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By using OHAM, the zeroth-, first-, and second-order

solutions for both layers are given below:
Wy =0, +0yInr,

Wy =03 + o lnr,

1 2ﬁ1

Wy =05 +0glnr —rk, —CikyInr + — s

1C,k5p,
2 r?

>

1 2ﬁ2

Wy =07 +oglnr —rk, — CikyInr + — s

1 Gk,
2 2’

W), =09 +0yIlnr =2InrCik; - 21n rkal +rk,

C,k Cik, L1G K
_ 1™ rclkz _ Sﬁl
r r 5 r
a lclkgﬁl 3 CiksB | CiksBy
3 4r? 1075
_CHSB,  CHSB,  CHSB,  CRSB
3214 373 472 r2
n 3C§k1k§ﬁ1 . 6C1k3[51 0y ka;ﬁf
r? r r 2r?
_ kagﬂf _ 3C%k§/3f _ 3C1k§/3104
370 2rt r2

-o,lnr+C,o,Inr,

Wy, = 0q; + 0 Inr =2InrCik, - 21n ngkl +rk,

C;k, Ciky L1G Cik3B,
5 S
1G58,  C3k3p, C3k3p,
- = - +
3 4r? 1075
_ Cgkéﬁz _ Cgk%ﬁz Cgk%ﬁz B C4k§ﬁz
32r4 373 472 r2
3C2k k%ﬁz 6C3k§ﬁz O¢ Cgk;ﬁ%
r2 r r 2r2
_ Cgkgﬁg _ 3C§k§/3§ _ 3C3k§ﬁ20-6
3r° 2rt r2

—0glnr + Cyo4Inr.

Collecting the results, we write the velocity field obtained by
OHAM up to second-order approximation as

wy (r) = Wy (1) + Wy (7” Cl) + Wy (7’) Cy Cz)
+ e 5
(27)
W, (1) = W (1) + Wy, (1, Cy) + Wiy, (r,C5,Cy)

eI

The series solution up to second-order approximation for
both layers is

1 1
w =0, + O, Inr+rd 5 + ;(1)14 + r—zl"15 + r_3®16

1 1
+ Fq)w + r_Sq)lg’
(28)

1

1 1
wy, =1 + I Inr +7T; + ;FM + r—zl“15 + r_3r16

1
— T,

1
+ I+ =
-

7'4

In view of (24) the volume flow rate in each phase is obtained
as follows:

(26)
Q

1 )
:Z+®14(Q—1)+®11(02—1)—f02

) @
+—2(0°-1)+ (lﬂz +<D15)an
3 3

Q (29)

=(Q—&)((%(Qﬂsn%(Q+5)2+r14>>

T <lnln<%>>



4. Solution for the Temperature Distribution

Now inserting w, (r) and w, (r) from (28) into (19) and solving
with boundary conditions given in (22) and (23), we obtain
the temperature fields for both layers as
vZw Y Y Y Y Y
61:C1+Ozlnr+ﬁ+ﬁ+r% ﬁ m ﬁ
Y ¥ Y Y ¥, Ty
A6 T 05 T a3 T 2 T

7

b4 Y Y, v b4 Y
" 113 S U I (RS VA £
r

v v v V.
B 204 2y 2 g 7Y,
r T T r

r? r8 r r© r’

+

2
+¥,5 (Inr)”,
(30)
Ay, A, Ay A, A
O,=g+glnr+ =2+ =2+ =24+ 242
2 =G TG P TS T I
Aé A7 A8 A9 10 A11
trot st st ot ot
r r r r r r

Ap A Ay A A Ay

rll rlO 7’9 7’8 r7 r6
A A A A A

+ 2+ 2+ R R R,
r r r T

+7° Ay, + Ay (In7)?,

where ¢, 6, 6, ¢, 01, 05, 03, 0y, 05, O, 0, Og, Og, 0195 0715
0125 Wips Wips Wi, Wigs Wis, Wi Wigo Wi T T T, T s,
Lie> D17 Tigo Aps Mgy Ay, Ay, As, A, Agy Mg, Mgy Mgy Ay,
Aygs Mgz Ay Ayss Ay Aygs Ayg, Ayg, Mgy Mgy A, A,
and A ,, are all constants containing the convergence-control
parameters C,,...,C,, which are optimally determined by
the method of least squares and are given in Appendix.

5. Analysis of the Results

Two-phase flow of an elastic-viscous third-grade fluid is used
for wire coating. Actually, we are making a platform for
coating of polymer on the wire using theoretical approach.
The wire needs flexibility; that is why we need two-layer
coating of the polymer. The inner coating or primary coating
protects the wire from bending, while the outer coating
or secondary coating protects the primary coating from
mechanical damage. For coating of the double-layer wire
the wet-on-wet coating process is applied. Axial velocity
distribution, flow rate, thickness of the coated wire, and
temperature distributions for each phase are obtained by
OHAM.

The convergence of the method is also necessary to check
the reliability of the methodology. The convergence of the
obtained series is shown in Figures 3 and 4. The current
computed results obtained are also compared with ADM, and
an outstanding correspondence is seen to exist between the
two sets of data as revealed in Figures 5 and 6 and Table 1.
Furthermore, the obtained results are also compared with
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TAaBLE 1: Numerical comparison of OHAM and ADM when S,
0,3 = 051 = 03,8 = 2,C, = —-0.001243429, C,
-0.000248121, C, = 0.001032981, and C, = 0.000294127.

r OHAM ADM Absolute error
1 1 1 0

11 0.031721271 0.031621270 0.136 x 1077
1.2 0.022015241 0.022025243 0.251 x 1077
13 0.006210390 0.006230392 0.872x 1077
1.4 0.011607241 0.011606221 0.101 x 107°
15 0.010442045 0.010442141 0.712x 1077
1.6 0.001520519 0.001522512 0.101 x 1077
1.7 0.006014981 0.007214980 0.106 x 1077
1.8 0.004101612 0.004100632 0.103 x 1077
1.9 0.000032263 0.000031264 0.120 x 1077
2.0  0.003051x 107" 0.003061 x 107" 0.011x 1072

TABLE 2: Comparison of the present work with published work [12]
when B, = 0.1, B, = 0.5, 1 = 0.3, 8 = 2, C, = —0.001243429, C, =
-0.000248121, C; = 0.001032981, and C, = 0.000294127.

r Present work Published work [12] Absolute error
1 1 1 0

1.1 0.040810 0.040825 0.000005
1.2 0.043001 0.043004 0.000003
1.3 0.040173 0.040103 0.000007
1.4 0.032718 0.032712 0.000006
1.5 0.021556 0.021551 0.000005
1.6 0.003731 0.003721 0.000003
1.7 0.008221 0.008220 0.000001
1.8 0.006013 0.006011 0.000002
1.9 0.000012 0.000022 0.000010
2.0 0.000010 0.000010 0

TaBLE 3: Comparison of the present work with published work [13]
when B, = 1 = By, A = 03,8 = 2,C, = —0.001243429, C, =
-0.000248121, C; = 0.001032981, and C, = 0.000294127.

r Present work Published work [13] Absolute error
1.0 1 1 0

1.1 0.251392 0.251080 0.000312
1.2 0.273548 0.273526 0.000022
1.3 0.130913 0.130915 0.000012
1.4 0.193270 0.193260 0.000010
1.5 0.192713 0.1932707 0.000512
1.6 0.093035 0.0930262 0.000088
1.7 0.027517 0.0275210 0.000004
1.8 0.0122612 0.0122611 0.0000001
1.9 0.0000231 0.0000232 0.0000001
2.0 0 0 0

preceding published related literature, as a special case of the
problem and admirable agreement is observed in this case
also, as shown in Tables 2 and 3.
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FIGURE 3: Error graph (showing convergence of OHAM): OHAM up
to second-order solution when U = 0.2, 3, = 0.3, 3, = 1,A = 0.3,
and § = 2.
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FIGURE 4: Error graph (showing convergence of OHAM): OHAM up
to second-order solution whenU = 0.2, 8, = 0.1, 3, = 0.3, A = 0.3,
and § = 2.

The variation of the non-Newtonian parameter f3;, the
Brinkman number Br,, the conductivity ratio K, and the radii
ratio § on the velocity, temperature, and thickness of coated
wire are elaborated numerically in Tables 4-8. Table 4 shows
the effects of the non-Newtonian parameter 3, on the velocity
profile. Here, we varied 3, = 0.2,0.3,0.5,0.8 and fixed the
valuesof U = 0.2,1 = 0.1, 3, = 0.5,and § = 2.Itis to be noted
that the rise of the non-Newtonian parameter decreases the
speed of the flow. The effects of the Brinkman number Br, and
the conductivity ratio K on the temperature distribution are
given in Tables 5 and 6. In Table 5 we varied Br, = 5,10, 13,18
and fixed the values of A = 0.1, §; = 0.1, 5, = 0.3, and
0 = 2. Table 6 gives the numerical values of the temperature
distribution by taking different values of the conductivity
ratio K. We observe from these tables that the temperature
inside the fluid increases by increasing the values of the

7
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02 C1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \I'
1.0 12 1.4 1.6 1.8 2.0
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FIGURE 5: Velocity comparison between OHAM and ADM results
whenU = 0.2, 8, = 0.1, 8, = 0.5, 1 = 0.3,C, = —0.001243429,
C, = -0.000248121, C; = 0.001032981, and C, = 0.000294127.
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/}/
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0.2+ // i
O~O'(/. P S S U R
1.0 1.2 1.4 1.6 1.8 2.0
r
OHAM
--- ADM

FIGURE 6: Temperature comparison between OHAM and ADM
results when 8, = 0.1, 3, = 0.5,A = 0.3, Br, = 3,Br, = 5,6 = 2,
C, = -0.001243429, C, = —0.000248121, C, = 0.001032981, and
C, = 0.000294127.

conductivity ratio. The increase in the Brinkman number
significantly affects the temperature distribution as shown
in Table 5. Furthermore, the temperature profile attains its
maximum values at the center of the annular die for different
values of Br,; then it decreases to meet the far field boundary
conditions for fixed parameters. Tables 7 and 8 present the
impact of enlarging the radii ratio  and the viscosity ratio A
on the thickness of the coated wire, respectively. From these



TABLE 4: Velocity profile for various values of 3;, when 3, = 0.2, A =
03,0 = 2,C;, = -0.001243429, C, = -0.000248121,C,; =
0.001032981, and C, = 0.000294127.
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TABLE 7: Thickness of coated wire for various values of & when
B = 01,8 = 03,1 = 03,C, = —0.001243429,C, =
—-0.000248121, C; = 0.001032981, and C, = 0.000294127.

r B, =02 B, =03 B, =05 B, =08 r 6=12 5=14 5=18 8=2
1.0 1 1 1 1 1.0 0.826354 1.22604 1.65398 1.89453
11 0.95913 0.925982 0.895634 0.868704 1.2 0.997462 1.52918 1.85637 2.362485
1.2 0.91910 0.859577 0.807062 0.761416 1.4 1.032548 1.983550 2.482702 3.004536
1.3 0.87837 0.798656 0.730893 0.673223 1.6 1.557209 2.0047563 3.762449 3.978162
1.4 0.83392 0.738489 0.660351 0.595324 1.8 1.982107 2.8834252 4.772954 4.984535
1.5 0.78239 0.674541 0.589529 0.520467 2.0 2.452093 3.962949 5.035244 5.783529
1.6 0.71988 0.602079 0.512754 0.442056
L7 0.64172 0515892 0424158 0.353576 TaBLE 8: Thickness of coated wire for various values of A when
18 054245 0.410078 0.317355 024818 g _ 01 B - 030 - 2,C, - 0001243429, C, =
L9 0.41560 0.277826 0.185196 0.118392 -0.000248121, C; = 0.001032981, and C, = 0.000294127.
2.0 0 0 0 0
r A=02 A=04 A=0.5 A=0.6
1.0 1.25475 1.43402 1.74536 2.25475
TABLE 5: Temperature distributions for several values of Br,, when 12 1.55389 223425 3.45322 3.88452
= 0.1, =03,Br, = 10,K = 03,1 = 03,0 = 2, =
éé).001243f,229, CZOi —(7)‘?00024(:3121, C302 (/)\.001(?3;921, and (C:i = L4 2.37628 254763 389325 4.01045
0.000294127. 1.6 3.00124 3.24564 4.08439 4.745385
1.8 3.84735 4.10235 4.47365 5.543343
r Br, =5 Br, = 10 Br, =13 Bri=18 50 4362448 4.87524 5.014326 6.342650
1.0 0 0 0 0
11 2.98376 4.93489 791381 12.11141
12 403495 706917 1145326 1776048 Additionally, the thickness of the coated wire can be
1.3 4.54514 7:95893 1219506 18.50829 maintained at a required level by adjusting these parameters.
1.4 4.68145 8.06743 12.69515 20.07146
1.5 4.75303 8.28599 13.05673 20.05669
L6 4.23232 7.24325 10.65331 15.84121 6. Conclusions
L7 376761 6.24576 8.62779 12.39587 Two-phase flow of an elastic-viscous third-grade fluid and
1.8 3.19079 >.03953 6.25438 8.39888 wet-on-wet coating process is applied for wire coating analy-
L9 2.52216 2.18318 3.62751 4.00935 sis. The obtained nonlinear equations are solved for velocity
2.0 1 1 1 1

TABLE 6: Temperature distributions for several values of conductiv-
ity ratio K, when 8, = 0.1, 3, = 0.3, Br, = 10, Br, = 15,1 =
03,8 = 2,C;, = -0.001243429, C, = -0.000248121,C; =
0.001032981, and C, = 0.000294127.

r K=01 K=03 K =07 K=1
1.0 0 0 0

11 0.179451 0.152275 0.132929 0.119676
1.2 0.318216 0.278081 0.249429 0.229723
1.3 0.430445 0.386476 0.352996 0.333271
1.4 0.526147 0.483906 0.453590 0.432591
1.5 0.612117 0.574786 0.547935 0.529281
1.6 0.692744 0.661999 0.639849 0.624425
1.7 0.770691 0.473284 0.730476 0.718723
1.8 0.847449 0.831795 0.820495 0.812607
1.9 0.923776 0.915937 0.910277 0.906235
2.0 1 1 1 1

tables it is observed that the thickness of coated wire increases
with increase of § and A, respectively.

fields and temperature distribution by OHAM. ADM is also
used for clarity. The effect of various emerging parameters
on the velocity profile, thickness of coated wire, and tem-
perature distribution is discussed numerically. It is observed
that, with increasing f;, the velocity of the fluid decreases.
The temperature inside the fluid is found to be increased
with increasing the Brinkman number Br; and conductivity
ratio K. Furthermore, the thickness of the coated wire also
increases with § and A.

Appendix
A. Analysis of ADM

ADM is an analytical technique for decomposing an
unknown function into infinitely many components. For
better understanding we consider the following:

[ee]
U)(l) (r, t) = Zw(,-)n (T, t) > i= L,2. (Al)
n=0

To find the components wy, W), Wy - -
decomposition method is used.

., separately,



Advances in Mathematical Physics

Consider the following nonlinear differential equation:

wa(i) (r,t) + Lrw(i) (r,t) + R(i)w(i) (r,1)
(A.2)
+ Nywg) (r,1) = gg) (1:1),

Lywg) (1) = g (1) = Lawy) (. ) (A3)
- R(j)w(j) (7’, t) - N(j)w(j) (7’, t) .

Here L, = 0>/0r® and L, = 0/0t are linear operators, gii(rst)
is a source term, R;w;(r,t) is a remainder linear operator,
and N;u;(r,t) is a nonlinear term.

Applying L' on (A.3) to both side we have

L;lLrw(i) (r,t) = L;lg(,») (r,t) — L;lLtw(i) (r,t)
= L, Rywg (r,1)
- L'Nywg, (r.1),

1 (A4)
wy (1) = fg (r,t) = L Lywy (r,t)
-1
- Lr R(l)w(,) (r$ t)
-1
—L, Nowg (r.1).

The function f;(r,t) is obtained by utilizing the boundary

conditions given in (20) and (21). The operator L;l =

H(~)dr dr is used for second-order differential equations.
With the series solution of w(; using ADM, we have

[oe)
we (1) = Y we, (1),
n=0
o0 1 o0
Zw(z‘)n (rt)= fu(rt)-L, R(i)zw(z‘)n (r,1) (A.5)
n=0 n=0

o0
-1
- Lr N(l) Zw(,-)n (T, t)
n=0

In view of Adomian polynomials the nonlinear term
Ny Yoo Wia(7- ) can be expressed as

Ny D Wiy (1) = D Ay (A.6)
n=0 n=0

where the components w;y, W;);> Wy W3 - - - are deter-
mined as

Weiyo T Wiyt + Wip + Wiz + Weipg +
= f (r:1)
| (A7)
= L Ry (wio + Wiy + Wpp + Wz +++7)
-1
=L, Ni (Ao + Agy ++7).

To determine the series components w, Wiy, Ws
W(j)3> - - » it should be noted that ADM suggest that f;(r, 1),
in fact describe the zeroth component w;),.

9
The recursive relation is defined as
Weiyo (r,t) = f(i)o (r,t)
-1 -1
Wiy (1,8) = =L, Ry [weo ()] = Ly (Ago) »
(A.8)

Wy, (1) = =L Ry [wiy, (n )] = L (Agy),
'LU(i)3 (T, t) = —L;IR(i) [wz (r, t)] - L;l (A(I)Z) N

and so on.

B. Analysis of OHAM

To study the basic idea of OHAM, we consider the following
nonlinear differential equation:

A(wgy (1) +Ggy (r) =0, €A,
dw(i) (B.1)
B <w(i)’ 7) =0, reaA,

where A is the differential operator and B is the boundary
operator, wy; is the unknown function, r is the spatial
independent variable, A is the boundary of the domain A,
and G;(r) is the unknown analytical function. The operator
A can be written as

A= L(,) + N(i)’ (BZ)
where L) and N; are the linear and nonlinear operators,

respectively.
From (9), we have

dwyy  dwy
Loy oo (mp)] = 5=+ %

Ny [9g) (. p)]

where L;, N(;, and G are linear operator, nonlinear
operator, and source term, respectively, and p € [0,1] is an
embedding parameter.

We consider a homotopy go(j)(r, p): Ax[0,1] — Rthat
satisfies

[1-p][Ly [9) (np)] + Gy (0] - Hy) (p)

Ly (o) (np)] + Ny [0 (. p)] + G ()]
o, (B.4)

99j) (r.p)
B (%’) (r.p) —]ar ) =0,
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with boundary conditions
¢ (Lp)=1,
9, (8,p) =1,
91 (Qp) =9, (2 p),

Srz(l) (Q’ p) = Srz(z) (Q’ p) >

where H(; (p) is a nonzero auxiliary function and ¢y (r, p)
is an unknown function. For p = 0, (11) only recuperate the
linear part of solution; that is, ¢ j)(r, p) = wy j)o(r),

(B.5)

Li [9) n0)] + G () =0,

ow,;
()0
B(“’(j)o’ 3 )

For p = 1, we recuperate the nonlinear boundary value
problem and the solution converges to exact solution; that is,
@ j)(r, 1) = w j)(r). The solution ¢ j)(r, p) approaches from
w(j) to wy;(r) as p varies from 0 to 1.

In order to improve the accuracy of the results and also in
order to ensure a faster convergence to the exact solution, we
use the following generalized auxiliary function involving an
increased number of convergence-control parameters even
in the first order of approximation, including also a physical
parameter or a function of the physical parameter

(B.6)

H(tp,C) = pH, (.C;) + p’H, (,C;) +---,  (B7)

where H;(t;C j), i =1,2,..., are auxiliary functions depend-
ing on it (or another physical parameter) and unknown
convergence-control parameters Cj, j = 1,2,....

For approximate solution, ¢;)(r, p) is expanding with
respect to p by using Taylor series

@) (1P, C)) = wijo (r) + Z wx (r,.Cy) a8
k=1 (B.8)

i=12,....

Substituting both (B.7) and (B.8) into (B.4), and equating each
coefficient like power of p and p, we have different order
problems.

Zeroth-order problem with boundary conditions is
shown as follows:

2
P rd Yayp dwo _
T dr? dr ’

L0 rdzw(z)o + dw(z)o _

P dr? dr ’
Wy (1) =1, (B.9)
W2)0 6)=U,

w(l)O (Q) = w(z)o (Q) 5

SrZ(l)O Q) = Srz(z)O (Q).
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First-order problem with boundary conditions is shown as
follows:

1 .rdzw(m + dw), B dwy _C dw
P g0 dr dr Yodr
_2B,C (dwu)o )3 _ dway . dway
YU dr dr? bodr?
d*w dw 2
(1)o 1oy _
-6rf3,C, 2 ( 2 ) =0,
1 dzw(z)l N dwy), B dwyyo 3 dwz)
P g0 dr dr > dr
28,C (dw<z>o)3 dwy  dwgy,  (B10)
PGy dr arr T de

d*w dw, 2
(2)0 (2)0
-6rf3,C =0,
PGy dr? ( dr )
w(l)l (1) = 0,
Wiy (6) =0,

W Q) = Wiy (),
Srz(l)l Q)= Srz(2)1 Q).

Second-order problem with boundary conditions is shown as
follows:

2
o rd Yar dway — dwgy
odr? dr 2 dr

_28,C <dw<1>o )3 dwyy  dPwgy
2\ dr dr dr?

3 dw(l)l
dr? Lodr

dw, dw z
G d(rm< d(rm)

—6rp,C,

dzw(l)o ( dw(l)o )2
dr? dr

2 2
d w(l)O dw(l)O dw(l)l B rd w(l)l
dr?  dr dr dr?

- 12r3,C,

d*w d*w dw, 2
- rCl—(l)1 - 6rp,C, (w1 < (1)0) =0,
dr? dr? dr
) dzw(z)z

p y du)(2)2 _C dUJ(Z)O

dr? dr Y odr
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_2B8,C <dw(2>o >3 _dwey  dwey
24\ dr dr dr?
d*w dw
2)0 )1
~1C dr? = dr
dw, dw 2
@)1 (2)0
—6rB.C 7o
"B:Cs dr < dr >
d*w dw, 2
(2)0 (2)0
—6rB,C Z7@o
rB.Cs dr? ( dr )
12 C dzw(z)o dw(Z)O dw(Z)l dZUJ(z)l
~12rByCs dr? dr  dr -7 dr?

d*w, d*w, dw, 2
—rCy— 2 _6r,C, 2! <—(2’°> =0,

dr? dr? dr
W)z (1) =0,
w(2)2 (6) = 0,

w2 (Q) = wi), (Q),
Srz1)2 () = Sp1)2 ().
(B.11)

The convergence of (B.8) depends upon the auxiliary constant
and order of the problem.

1

If it converges at p = 1, one has
LU(J) (r, CI’CZ’ P Cfl)

) (B.12)
= W () + Zw(j)n (r.C,,Cy,...,C,).
n=1

Using (B.12) in (B.1), the expression for the residual in the
following is obtained as

R (r.C,) = Ljw(r,C,) + G (r)
(B13)
+ N (w(r,C,)), n=12...,m.

Many methods such as Ritz Method, Galerkin’s Method,
collocation method, and least square method are used to find
the auxiliary constants.

Here we use the least square method to find the auxiliary
constant:

b
J(C,,Cy,...,C,) =J R’ (r,Cy,Cy...,C,,) dr,
¢ (B.14)
a_a
oc, oc,
where a and b (taking from domain) are constant that locate
the auxiliary constants which minimize the residual.
The above sequence of problems given in (B.9)-(B.11) are
solved using Mathematica software (see (26) in Solution of
the Problem):

o, =1,
03 =U-0,1n4,
_U-1_ (1118 B 1)
27 nQ “\InQ ’
P, 2P (=p3 +3p1ps)
Oy = == —
3ps 173

3p; (_ZPS +9piPaps —27P3ps + \/4 (-p3 + 3?1]73)3 +(=2p3 +9p1p2p5 ~ 27P§P4)2)

+

1/3
<_2Pg +9p1psps — 27p3py + \/4 (-p3 + 31’11’3)3 +(=2p3 +9p1p2p5 — 27P§P4)2)

3213p,
Iné 6y1<U—1>2
=1+(—-1)(1-=2 ,
P +<1nQ )( 2 \no
o (Uoty(d
2= \(ma /\ma ’

2 Ind }
=" \2"h m—l >

>
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86* 282

0, = —0gInd + 8k, + C3k, Ind —
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A

oo A k
T Y¢)

é(ci-c§+cf—c§)+9(c1+c3)
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