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Mathematical modeling has become an indispensable part of systems biology which is a discipline that has become increasingly
popular in recent years. In this context, our understanding of bistable signaling pathways in terms of mathematical modeling is of
particular importance because such bistable components perform crucial functions in living cells. Bistable signaling pathways can
act as switches ormemory functions and can determine cell fate. In the present study, properties of mathematical models of bistable
signaling pathways are examined from the perspective of synergetics, a theory of self-organization and pattern formation founded
by Hermann Haken. At the heart of synergetics is the concept of so-called unstable modes or order parameters that determine the
behavior of systems as a whole close to bifurcation points. How to determine these order parameters for bistable signaling pathways
at saddle-node bifurcation points is shown. The procedure is outlined in general and an explicit example is worked out in detail.

1. Introduction

Bistable signaling pathways on the cellular level play a key
role [1–7]. They can act as switches in general and determine
cell fate and function as memory storage in particular [1–7].
While on a conceptual level there is a good understanding
of bistable signaling pathways, there is still a need for
improving our methodological tools to address such bistable
components from a mechanistic point of view. Within the
framework of ordinary differential equation (ODE) models,
bistable signaling pathways have been described by single
species ormultiple speciesmodels. Single speciesmodels cap-
ture the pathway activity by a single variable. A benchmark
model in this regard is a model for promoter activity under
the impact of a positive feedback loop. The feedback loop is
established by means of a transcription factor that acts as an
activator [2, 4, 8, 9]. In the case of single variable models,
the bistability is given in terms of a low and high state of
the species concentration under consideration or the gene
expression or promoter activity of interest. In what follows,
the focus will be on two-species models as described by

two coupled ODEs [2, 3, 5]. The two states of the bistable
element typically describe that either species 𝐴 is dominant
over species 𝐵 or species 𝐵 is dominant over species 𝐴; that
is, there are two states of interest that will in what follows be
denoted by 𝐴(high), 𝐵(low) and 𝐴(low), 𝐵(high). In order
to function as a switch, the bistable component must feature
a control parameter and the bistable component must be
driven through a saddle-node bifurcation by varying the
control parameter gradually. At the saddle-node bifurcation
the bistable pathway becomes monostable such that only one
of the two species can dominate the signaling pathway. In
doing so, bistable models can a switch from 𝐴(high), 𝐵(low)
to 𝐴(low), 𝐵(high) or vice versa from 𝐴(low), 𝐵(high) to𝐴(high), 𝐵(low). While the saddle-node bifurcation has been
studied using analytical and numerical solution methods
[2, 3, 5, 10], in this context little is known about the so-
called unstable mode or order parameter [11] emerging at this
saddle-node bifurcation. According to the theory of syner-
getics, a theory of pattern formation and self-organization,
the unstable mode at the bifurcation point determines the
order of the whole two-species system and for this reason
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may be referred to as order parameter [11]. In the following
section, the general approach to determine the unstablemode
or order parameter will be described and subsequently an
application to the bistable model proposed by Markevich et
al. (2004) [5] will be presented.

2. Unstable Mode and Order
Parameter of Bistable Signaling Pathways
Involving Two Species

2.1. General Case. Let us first consider the general case of
a two-species model of a bistable signaling pathway given
in terms of two coupled ODEs. Accordingly, the pathway is
described by the concentrations 𝑥 and 𝑦 of the two species
under consideration measured in arbitrary units. Variations𝑥(𝑡) and 𝑦(𝑡) over time 𝑡 are assumed to satisfy

𝑑𝑑𝑡𝑥 = 𝑓 (𝑥, 𝑦) ,
𝑑𝑑𝑡𝑦 = 𝑔 (𝑥, 𝑦) ,

(1)

where 𝑓 and 𝑔 are appropriately defined functions and
depend on the pathway being considered. Equation (1) is
assumed to involve a control parameter 𝛼. Furthermore, (1)
is assumed to be bistable in a particular interval of 𝛼. At the
boundaries of that interval a stable fixed pointmerges with an
unstable fixed point giving rise to a saddle-node bifurcation.
The stable and unstable fixed points merge and disappear and
the pathway becomesmonostable. Let us consider the saddle-
node bifurcation in more detail. To this end, we “follow” the
stable fixed point coordinates 𝑥(st) and 𝑦(st) involved in the
saddle-node bifurcation along variations of 𝛼. The linearized
version of (1) at that stable fixed point reads

𝑑𝑑𝑡𝛿 = 𝑎11𝛿 + 𝑎12𝜀,
𝑑𝑑𝑡𝜀 = 𝑎21𝛿 + 𝑎22𝜀

(2)

with 𝑥 = 𝑥(st) + 𝛿 and 𝑦 = 𝑦(st) + 𝜀. The variables 𝜀 and 𝛿
denote small deviations from the fixed point 𝑥(st), 𝑦(st). The
matrix coefficients 𝑎𝑗𝑘 correspond to the coefficients of the
Jacobian matrix 𝐽 at 𝑥(st) and 𝑦(st). The eigenvalues 𝜆1 and𝜆2 of the matrix 𝐽 are given by

𝜆1,2 = Tr (𝐽)2 ± √Tr (𝐽)24 − det (𝐽), (3)

where the trace Tr(𝐽) and the determinant det(𝐽) of 𝐽 are
given by

Tr (𝐽) = 𝑎11 + 𝑎22,
det (𝐽) = 𝑎11𝑎22 − 𝑎12𝑎21. (4)

Note that in (3) 𝜆1 comes with a plus sign in front of the
square root function, whereas 𝜆2 exhibits the minus sign. In
general, at a saddle-node bifurcation of a two-dimensional

dynamical system there is one eigenvalue equal to zero while
the other is negative. Using the aforementioned plus and
minus sign convention of (3), at the saddle-node bifurcation,
we have det(𝐽) = 0, Tr(𝐽) < 0, 𝜆1 = 0, and 𝜆2 < 0. From
det(𝐽) = 0 it follows that

𝑎11𝑎22 = 𝑎12𝑎21. (5)

Moreover, substituting det(𝐽) = 0 into (3) we obtain
𝜆2 = Tr (𝐽) . (6)

It is useful to summarize this intermediate result. Let 𝛼(crit)
denote a critical value at which the saddle-node bifurcation
occurs. Consequently, at 𝛼 = 𝛼(crit) we have 𝜆1 = 0 and𝜆2 < 0 and (5) holds. If we shift next 𝛼 away from the critical
value by a small amount such that the pathway is monostable,𝛼 = 𝛼(crit)+𝜇, where 𝜇 is small, then there are two directions
in the two-dimensional state space. In one direction the
dynamics evolves relatively slowly whereas in the direction
orthogonal to that direction the dynamics evolves relatively
fast because for 𝜇 = 0 we have 𝜆1 = 0 as compared to 𝜆2 < 0.
In linewith synergetics, the direction associatedwith the slow
dynamics corresponds to the unstable mode at 𝜇 = 0 and
dominates the behavior of the whole system; that is, themode
can be considered as the order parameter [11]. In particular,
the mode dominates the signaling pathway even when 𝜇 is
not zero but a small parameter. This holds for perturbations
that drive the system temporarily away from the fixed point𝑥(st), 𝑦(st) in the bistable parameter domain and for the
transient dynamics in the monostable domain that describes
the transition from the disappearing fixed point 𝑥(st), 𝑦(st) to
the alternative fixed point that is still stable in themonostable
domain.

Let us determine the unstablemode. In general, that is, for
arbitrary eigenvalues 𝜆1 and 𝜆2, the eigenvectors normalized
to unity are given in components by

V𝑗,𝑥 = 1
√1 + ((𝑎11 − 𝜆𝑗) /𝑎12)2

,

V𝑗,𝑦 = √1 − V2𝑗,𝑥

(7)

for 𝑗 = 1, 2. At the saddle-node bifurcation point, we have𝜆1 = 0 and the corresponding eigenvector represents the
unstablemode or order parameter. Consequently, at a saddle-
node bifurcation the order parameter of a bistable signaling
pathway described by a two-species model given in terms of
two coupled ODEs is defined by

V1,𝑥 = 1
√1 + (𝑎11/𝑎12)2

,

V1,𝑦 = √1 − V21,𝑥.
(8)
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2.2. The Signaling Pathway Model by Markevich et al. (2004)

2.2.1. Definition of the Model. Markevich et al. (2004) [5] dis-
cussed the following two-species signaling pathway model:

𝑑𝑑𝑡𝑥 = 𝑓 (𝑥, 𝑦) = 𝐴 1 − 𝑥 − 𝑦𝐾 + 1 − 𝑥 − 𝐵 𝑥𝐾 + 1 − 𝑦,
𝑑𝑑𝑡𝑦 = 𝑔 (𝑥, 𝑦) = 𝐶 1 − 𝑥 − 𝑦𝐾 + 1 − 𝑦 − 𝐷 𝑥𝐾 + 1 − 𝑥

(9)

with 𝐴, 𝐵, 𝐶, 𝐷, and 𝐾 > 0. The concentration levels
are normalized such that 𝑥(𝑡) and 𝑦(𝑡) are restricted to the
interval [0, 1]. The model and generalizations of it have also
been discussed in subsequent studies [10, 12].

2.2.2. Nullcline Approach. For sake of simplicity, we intro-
duce the new parameters:

𝑟1 = 𝐴𝐵 ,
𝑟2 = 𝐶𝐷,
𝐾∗ = 𝐾 + 1.

(10)

The nullclines are given by

𝑥 = −ℎ1 (𝑦)2 ± √ℎ21 (𝑦)4 − 𝑟1 (𝑦2 − (1 + 𝐾∗) 𝑦 + 𝐾∗), (11)

𝑦 = −ℎ2 (𝑥)2 ± √ℎ22 (𝑥)4 − 𝑟2 (𝑥2 − (1 + 𝐾∗) 𝑥 + 𝐾∗) (12)

with ℎ1(𝑦) = (𝑟2𝑦 − 𝐾∗(1 + 𝑟2))/2 and ℎ2(𝑥) = (𝑟1𝑥 −𝐾∗(1 + 𝑟1))/2. Using the nullclines we would like to illustrate
the characteristic features of the pathway model. After that, a
more detailed analysis will be conducted.

In order to illustrate the characteristic features of the
pathway model, we consider first the symmetric case given
by 𝑟1 = 𝑟2 = 𝑟. In this case, the model can exhibit a single
asymptotically stable fixed point (Figure 1) or three fixed
points (Figure 2). In the latter case, the pathway model is
bistable. The fixed point on the diagonal is unstable. Note
that in the symmetric case the number of fixed points only
depends on a single parameter 𝑟 as we will see later. In par-
ticular, at a critical value of 𝑟, there is a pitchfork bifurcation
connecting the monostable and bistable parameter domains.
We are interested in the switch-like functioning of bistable
pathway models and the order parameter that characterizes
the switching from one state to another state. With respect to
the model byMarkevich et al. (2004) [5], we need to consider
the asymmetric case. As we will see below, if 𝑟1 is much
larger than 𝑟2 the model is monostable with the species 𝑥
dominating the species 𝑦. In contrast, if 𝑟2 is much larger
than 𝑟1 then the model is monostable with the species 𝑦
dominating the species 𝑥. Consequently, if we start initially
with a large ratio 𝑟2/𝑟1 then the pathway exhibits a high state
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Figure 1: Nullclines as defined by (11) (dashed line) and (12) (solid
line) for the monostable case. Parameters: 𝐾 = 0.01 (as in [10]) and𝑟 = 0.7. All parameters are in arbitrary units.
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Figure 2: It is as in Figure 1 but for the bistable case. Parameters:𝐾 = 0.01 and 𝑟 = 1.5.

for 𝑦 and a low state for 𝑥. If we gradually decrease the ratio,
then the fixed point for 𝑦(high) and 𝑥(low) will converge
towards the unstable fixed point of the pathway model. The
two fixed points will merge and disappear in a saddle-node
bifurcation. This is shown in Figures 3 and 4. The pathway
will switch to the alternative state with a relatively high state
for 𝑥 and a relatively low state for 𝑦.

Figures 1, 2, 3, and 4 illustrate the two basic mechanisms
leading to the saddle-node bifurcation underlying the switch-
like functioning of the model. First, in the symmetric case,
the model is bistable. Second, when breaking the symmetry,
in the asymmetric case, the bistable domain can be destroyed
via a saddle-node bifurcation resulting in a switch from the
state𝑥(low),𝑦(high) to the state𝑥(high),𝑦(low) or vice versa.
Let us analyze these mechanisms in more detail. To this end,
we derive a fixed point equation.
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Figure 3: Illustration of the saddle-node bifurcation (part I) for
the asymmetric pathway model. The stable fixed point given by𝑦(high) and 𝑥(low) is about to merge with the unstable fixed point.
Parameters: 𝐾 = 0.01, 𝑟1 = 2.2, and 𝑟2 = 1.8.
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Figure 4: Illustration of the saddle-node bifurcation (part II). The
pathway has become monostable. Magnification (not shown) of the
top left corner of the phase space reveals that the nullclines do not
intersect each other in this area.This is because the asymmetry of the
pathway model has increased as compared to Figure 3. Parameters:𝐾 = 0.01, 𝑟1 = 2.8, and 𝑟2 = 1.2.

2.2.3. Cubic Fixed Point Equation and Bifurcation Diagram.
In order to determine the fixed point semianalytically, we put
the left-hand sides of (9) equal to zero. From the two relations
in (9) we can obtain the following relations:

𝐴𝐵 𝐾∗ − 𝑦(𝐾∗ − 𝑥) 𝑥 = 11 − 𝑥 − 𝑦 = 𝐶𝐷 𝐾∗ − 𝑥(𝐾∗ − 𝑦) 𝑦 󳨐⇒
𝑟1 𝐾∗ − 𝑦(𝐾∗ − 𝑥) 𝑥 = 𝑟2 𝐾∗ − 𝑥(𝐾∗ − 𝑦) 𝑦 ,

(13)

𝐴𝐵 1 − 𝑥 − 𝑦𝑥 = 𝐾∗ − 𝑥𝐾∗ − 𝑦 = 𝐷𝐶 𝑦1 − 𝑥 − 𝑦 󳨐⇒
𝑟1 1 − 𝑥 − 𝑦𝑥 = 1𝑟2

𝑦1 − 𝑥 − 𝑦.
(14)

It is useful to introduce the new variables 𝑢 and V like

𝑥 = 𝑢2,
𝑦 = V2

⇕
𝑢 = √𝑥,
V = √𝑦.

(15)

Moreover, we introduce the new parameters 𝜉 and 𝑠 like
𝜉 = 𝐵𝐷𝐴𝐶 = 1𝑟1𝑟2 > 0,
𝑠 = 𝐵𝐶𝐴𝐷 = 𝑟2𝑟1 > 0.

(16)

The parameter 𝑠 measures the degree of asymmetry. In the
symmetric case we have 𝑠 = 1. From (14) we obtain the
intermediate result:

1 − 𝑢2 − V2 = √𝜉𝑢V (17)

and finally

𝑢 (V; 𝜉) = −12√𝜉V + √1 + (𝜉4 − 1) V2. (18)

In deriving (18) we used 𝑢 > 0. The variable 𝑢 as a function
of V defined by (18) is a monotonically decaying function for
any parameter 𝜉. For 𝜉 → 0 we have 𝑢 = SQRT(1 − V2).
Importantly, from (17), it follows that for any parameter 𝜉 the
solutions of (18) are symmetric; that is, if 𝑢 = 𝑎 and V = 𝑏 is a
solution, then 𝑢 = 𝑏 and V = 𝑎 is a solution as well. From (14)
it follows that

𝑓𝐿 (V) = 𝑓𝑅 (𝑢 (V; 𝜉) ; 𝑠) (19)

with

𝑓𝐿 (V) = (𝐾∗ − V2) V,
𝑓𝑅 (𝑢 (V; 𝜉) ; 𝑠) = √𝑠 (𝐾∗ − 𝑢2) 𝑢. (20)

Equation (19) is a cubic equation in the variable V. Therefore,
there are maximal three solutions. If 𝑠 = 1 then the equation
is symmetric in 𝑢 and V. Therefore, in view of the symmetry
property of (18) for any parameter 𝜉 and the symmetry
property of (19) in the special case 𝑠 = 1, we conclude that
if 𝑠 = 1 then the number of solutions is either 1 or 3. From
(19) it follows that in the symmetric case 𝑠 = 1 (which implies
by 𝑟1 = 𝑟2 = 𝑟) the parameter 𝜉 = 1/𝑟2 acts as control
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Figure 5: Bifurcation diagram of the bistable pathway model (9)
acting as a switch for a particular value of𝐾when varying the degree
of asymmetry. The stationary solutions 𝑥(st) are plotted versus the
control parameter values 𝛼.The solutions 𝑥(st)were computed from
(18), (19), (20), and (21). Solid line: asymptotically stable fixed points
of the state 𝑥(low), 𝑦(high). Dotted line: unstable fixed points in the
bistable parameter domain. Dashed line: asymptotically stable fixed
points of the state 𝑥(high), 𝑦(low). Parameters: 𝐾 = 0.01, 𝐴 = 0.5,
and 𝐵 = 3.5.

parameter and induces a pitchfork bifurcation. For example,
for 𝐾 = 0.01 (𝐾∗ = 1.01) and 𝑠 = 1 numerical evaluation
of (19) shows (see below) that for 𝑟 = 2 (19) exhibits three
admissible solutions (i.e., solutions in the interval between 0
and 1).

For any given set of parameters 𝜉, 𝑠, and 𝐾, the stable
and unstable fixed points 𝑥(st) and 𝑦(st) of the signaling
pathwaymodel (9) can be determined numerically by finding
the solutions (roots) of the cubic equation defined by (19) in
combination with (18) and (20). In doing so, the bifurcation
diagram can be constructed when defining a suitable control
parameter 𝛼. In order to focus on switch-like functioning we
vary the degree of asymmetry like

𝑟1 = 𝐴 + 𝛼,
𝑟2 = 𝐵 − 𝛼,

𝛼 ∈ [0, 𝐵 − 𝐴]
(21)

with 𝐵 > 𝐴. In particular, for 𝛼 = (𝐵 − 𝐴)/2 we have the
symmetric case with 𝑠 = 1 and 𝑟1 = 𝑟2 = 𝑟 = (𝐴 + 𝐵)/2. We
choose the parameters 𝐴 and 𝐵 sufficiently large such that in
this (symmetric) case the model is bistable. Figure 5 presents
the bifurcation diagram thus obtained for a fixed value of𝐾. Figures 6, 7, and 8 depict the functions 𝑓𝐿 and 𝑓𝑅 of the
implicit equation (19) for the symmetric case (Figure 7) and
the critical values at which saddle-node bifurcations occur
(Figures 6 and 8).

2.2.4. Order Parameters. Our next objective is to determine
the order parameters or unstable modes at the saddle-node
bifurcation points shown in the bifurcation diagram; see
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Figure 6: Illustration of the saddle-node bifurcation using the cubic
fixed point equation (19). The functions 𝑓𝐿 (solid line) and 𝑓𝑅
(dashed line) of (19) are plotted versus V at the saddle-node bifur-
cation point in which the states 𝑥(high) and 𝑦(low) emerge or dis-
appear. Parameters: 𝛼 = 0.8; all other parameters are as in Figure 5.
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Figure 7: The functions 𝑓𝐿 (solid line) and 𝑓𝑅 (dashed line) of (19)
in the symmetric case. The signaling pathway model is bistable.
Parameters: 𝛼 = 1.5 (𝑟1 = 𝑟2 = 𝑟 = 2); all other parameters are
as in Figure 5.

Figure 5. From (1), (2), and (9) it follows that the coefficients
of the Jacobi matrix 𝐽 read

𝑎11𝐵 = 𝑟1 1 − 𝐾∗ − 𝑦
(𝐾∗ − 𝑥)2 − 1𝐾∗ − 𝑦,

𝑎12𝐵 = −( 𝑟1𝐾∗ − 𝑥 + 𝑥
(𝐾∗ − 𝑦)2) ,

𝑎21𝐷 = −( 𝑟2𝐾∗ − 𝑦 + 𝑦
(𝐾∗ − 𝑥)2) ,𝑎22𝐷 = 𝑟2 1 − 𝐾∗ − 𝑥

(𝐾∗ − 𝑦)2 −
1𝐾∗ − 𝑥.

(22)
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Figure 8: Saddle-node bifurcation illustrated by means of the
cubic fixed point equation (19). The functions 𝑓𝐿 (solid line) and𝑓𝑅 (dashed line) of (19) are plotted versus V at the saddle-node
bifurcation point in which the state 𝑥(low), 𝑦(high) emerges or
disappears. Parameters: 𝛼 = 2.2; all other parameters are as in
Figure 5.
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Figure 9: Eigenvalues 𝜆1 (a) and 𝜆2 (b) computed from (3), (4),
and (22) for the state 𝑥(low), 𝑦(high) (solid lines) and the state𝑥(high), 𝑦(low) (dashed line) shown in Figure 5 as functions of 𝛼.
Magnifying (not shown) the top parts of the two panels reveals that𝜆1 converges to zero when approaching the saddle-node bifurcation
points, whereas 𝜆2 assumes a finite negative value. Parameters: 𝐵 =𝐷 = 1; all other parameters are as in Figure 5.

We computed the matrix coefficients for the asymptotically
stable fixed points 𝑥(low), 𝑦(high) and 𝑥(high), 𝑦(low)
shown in Figure 5 as functions of the control parameter 𝛼.
Using (3) we computed the eigenvalues. Figure 9 presents
the eigenvalues as functions of 𝛼. We found that both
eigenvalues were real-valued in the considered parameter
domain. Importantly, as expected, 𝜆1 converged to zero when
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Figure 10: Determinant of the Jacobian matrix 𝐽 as computed from
(4) and (22) for the state 𝑥(low), 𝑦(high) (solid line) and the state𝑥(high), 𝑦(low) (dashed line) shown in Figure 5 and as function of𝛼. Parameters: 𝐵 = 𝐷 = 1; all other parameters are as in Figure 5.

approaching the saddle-node bifurcation points, whereas 𝜆2
assumed a finite negative value. The convergence of one of
the eigenvalues to zero can be seen even more clearly when
studying the determinant of the Jacobian matrix as function
of 𝛼. We computed det(𝐽) from (4). The result is shown in
Figure 10. As expected, det(𝐽) converged to zero at the saddle-
node bifurcation points. Finally, we computed the eigenvector
associated with 𝜆1 from (7) for the asymptotically stable fixed
points 𝑥(low), 𝑦(high) and 𝑥(high), 𝑦(low) shown in Figure 5
and as functions of the control parameter𝛼. Figure 11 presents
the eigenvector components thus obtained.The order param-
eters of the signaling pathway model correspond to the
eigenvectors at the two saddle-node bifurcation points.These
order parameters (order parameter vectors) are highlighted
in Figure 11 by circles. Figure 11 demonstrates explicitly how
the general methodology outlined in Section 2.1 can be used
to determine order parameters of bistable signaling pathways
at saddle-node bifurcation points.

3. Discussion

Bistable signaling pathways that function as switches and can
be described by means of two-variable ODE models were
considered. It was demonstrated that in general the switching
behavior involves so-called order parameters that identify
directions in which the dynamics evolves relatively slowly. As
it is known from synergetics [11], a theory of self-organization
and pattern formation, these directions play a special role
because they dominate in a particular sense the dynamics of
the whole system. For amodel of a bistable signaling pathway
proposed byMarkevich et al. (2004) [5], the order parameters
at the two switching points described by the pathway model
were determined explicitly.

In previous studies, much effort has been devoted to
determine the bifurcation diagrams of bistable multispecies
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Figure 11: Eigenvector components of the first eigenvector and
order parameters at the saddle-node bifurcation points. The eigen-
vector components V1,𝑥 (a) and V1,𝑦 (b) as computed from (3) and
(4) are shown for the state 𝑥(low), 𝑦(high) (solid line) and the
state 𝑥(high), 𝑦(low) (dashed line) reported in Figure 5 and as
functions of 𝛼. At the saddle-node bifurcation points (circles), these
components constitute the respective order parameters.

signaling pathways either numerically or by means of ana-
lytical methods [3, 5–7, 10, 12]. The present study adds a
novel perspective to these studies and to similar studies.
Accordingly, in the mathematical space spanned by the
biochemical species of bistable signaling pathways exhibiting
switch-like functioning there exist particular directions that
determine (in the sense of synergetics) the emerging order
when a switch occurs. For signaling pathways described
by means of two-variable models these directions can be
determined in terms of order parameter vectors (or unstable
modes) as outlined in Section 2.1.

The method presented in Section 2.1 in principle can be
generalized and applied to signaling pathways characterized
by more than two biochemical species. For such higher
dimensional problems, it might be difficult to determine
analytical expressions for eigenvalues and eigenvectors. If so,
itmight be still possible to carry out the procedure sketched in
Section 2.1 by means of numerical solution methods. Future
work might be devoted to address this issue.
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