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We consider a natural integrable generalization of nonlinear Schrödinger equation to 2 + 1 dimensions. By studying the associated
spectral operator we discover a rich discrete spectrum associated with regular rationally decaying solutions, the lumps, which
display interesting nontrivial dynamics and scattering. Particular interest is placed in the dynamical evolution of the associated
pulses. For all cases under study we find that the relevant dynamics corresponds to a central configuration of a certain 𝑁-body
problem.

1. The Physical System

In this paper we consider the system of equations:

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2𝑢𝜕𝑥𝑛 = 0,
𝑛𝑦 + |𝑢|2 = 0, (1)

where 𝑢(𝑥, 𝑦, 𝑡) is a complex function, depending on three
real variables 𝑥, 𝑦, 𝑡. We derive via the inverse scattering
method several large classes of solutions that satisfy the
boundary conditions (𝑟2 ≡ 𝑥2 + 𝑦2),

lim
𝑟→∞

|𝑢| (𝑥, 𝑦, 𝑡) = 1,
lim
𝑟→∞

𝑢𝑥 = 0,
𝑛 (𝑥, 𝑦 = −∞, 𝑡) = 0.

(2)

Note that in this case the system reads

𝑖𝑢𝑡 + 𝑢𝑥𝑥 + 2𝑢𝜕𝑥 ∫𝑦
−∞

(1 − |𝑢|2) d𝑦󸀠 = 0,
𝑛 (𝑥, 𝑦, 𝑡) = −𝑦 + ∫𝑦

−∞
(1 − |𝑢|2 (𝑥, 𝑦󸀠)) d𝑦󸀠. (3)

Due to the overall simplicity, elegance, and potential physical
interest, the above system is a natural interesting nonlinear2+1-dimensional integrable equation to study, even though it
has not been related to any physical situation so far. To further
motivate its study we note the following:

(1) The more general problem corresponding to the
boundary conditions

lim
𝑟→∞

|𝑢| (𝑥, 𝑦, 𝑡) = 𝐶,
lim
𝑟→∞

𝑢𝑥 = 𝑛 (𝑥, 𝑦 = −∞, 𝑡) = 0, (4)

where 𝐶 > 0 is a given nonnull constant is also solv-
able and reducible to problem (2) as follows. Let𝑢̂(𝑥, 𝑦, 𝑡) be the unique solution to (1) under the
boundary conditions (2). Then one proves easily that𝑢(𝑥, 𝑦, 𝑡) ≡ 𝐶𝑢̂(𝐶𝑥, 𝐶𝑦, 𝐶2𝑡) also solves (1) and sat-
isfies (4).

(2) System (3) arises as the compatibility of a Lax pair (see
Section 2 below) and hence it is integrable. We show
here that the operator has also a discrete spectrum,
corresponding to potentials that solve (1) and (2): that
is, it can be written as 𝑢 = 1 + 𝑢̃, where 𝑢̃ is a regular,
weakly decaying function.
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(3) If 𝑢 and 𝑛 only satisfy |𝑢|2 ∈ 𝐿1(R2) and
lim𝑦→−∞𝑛(𝑥, 𝑦) = 0, then (1) reads

𝑖𝑢𝑡 + 𝑢𝑥𝑥 − 2𝑢𝜕𝑥 ∫𝑦
−∞

d𝑦󸀠 |𝑢|2 = 0,
𝑛 (𝑥, 𝑦, 𝑡) = ∫𝑦

−∞
|𝑢|2 (𝑥, 𝑦󸀠, 𝑡) d𝑦󸀠. (5)

This equation was first noticed to be integrable by
Fokas [1] and also in Shul’man [2] who also embedded
it into a general multiparameter family of equations.
Note that in potentials satisfying |𝑢|2 ∈ 𝐿1(R2) there
is not discrete spectrum (see [3, 4]).

(4) The further reduction to the manifold 𝑥 = 𝑦 yields
the nonlinear Schrödinger (NLS) equation. Hence (1)
generalizes NLS to 2 + 1 dimensions.

(5) The relationship between the previous problem and
that corresponding to the boundary conditions (2)
and

𝜆𝑛 (𝑥, 𝑦 = −∞, 𝑡) + (1 − 𝜆) 𝑛 (𝑥, 𝑦 = ∞, 𝑡) = 0, (6)

where 𝜆 ∈ R and 𝑟2 ≡ 𝑥2 + 𝑦2, has been investigated
in [5]. We note that the conserved quantities depend
on the election of 𝜆.

(6) There is an infinite number of conservation laws for
this equation (see [5]), which includes, in particular,
the functional

𝑀(𝑡) ≡ ∫ (|𝑢|2 (𝑥, 𝑦) − 1) d𝑥 d𝑦. (7)

We note that the “amplitude” |𝑢|2(𝑥, 𝑦) − 1 of inter-
esting solutions to (3) is naturally expected to be
the physical observable but it is not definite positive;
hence, the renormalized mass of the field𝑀 ≡ 𝑀+ −𝑀− can take both signs.

(7) An interesting parabolic real version of (1) (i.e., letting𝑖𝑢𝑡 → 𝑢𝑡) is obtained as a particular reduction of the
Self-Dual Yang Mills Equations; see [6].

Lump configurations (i.e., regular and rationally decaying
solutions) are paradigmatic solutions of integrable equations
in 2 + 1 dimensions and as such they have been extensively
studied in the last years.Their spectral interpretationwas first
unlocked in relation to KPI [7] (see also [8, 9]). A description
of the KP equation, its physical origins, integrability, and
soliton solutions can be found in [10]. Subsequently, lumps
have been found in other integrable equations like Davey-
Stewartdon II (DSII) (see [11]) and the 2 + 1-Toda lattice (see
[12–14]).

The dynamics of standard lumps on the plane is trivial: the
motion is uniform; further, upon interaction, only a parallel
shift on the asymptotic trajectory is to be found. Suchuniform
motion has been considered to rule the dynamics of localized
pulses of integrable equations up until the late nineties.
Remarkably it was found that KPI possess a new class of
localized, real valued solutions that have a nontrivial asymp-
totic dynamics. Even though the simplest of these solutions

has been known for a long time, the interesting scattering
properties that they exhibit went unnoticed up until 1995
[15, 16]. The spectral interpretation along with a derivation
of the general class of those solutions was unlocked in [17,
18]. Nonstandard lumps were found to be associated with a
new discrete spectrum of the time dependent Schrödinger
operator corresponding tomeromorphic eigenfunctionswith
poles of highermultiplicity and to what we term nonstandard
pole divisors. (A comprehensive account of the spectrum of
both KPI and KPII is given in [19].) The extension of these
ideas and solutions to DSII equation via spectral analysis of
the Dirac operator on the plane has been considered in [20].
We also note that KPI possesses, in addition, other localized,
nondecaying solutions like line solitons [21, 22]. The solution
of the Cauchy problem in such a background is considered in
[14, 23].

In this paper we show that the spectral operator that
linearizes (3) possesses a rich discrete spectrum correspond-
ing to smooth, rationally “decaying” lump configurations
whose dynamical evolution and scattering are nontrivial. The
physical behavior of these solutions is reminiscent to the
aforementioned discrete spectrum and nonstandard lumps
for KPI. We find that they are associated with higher-
order pole meromorphic eigenfunctions of a similar discrete
spectrum. Characterization of the discrete spectrum of this
operator involves giving the polemultiplicity and an adequate
pole divisor, which could be, in the spirit of the ideas of
[18, 20], associated with integer winding numbers.

Direct methods to study this class of solutions have also
been developed; see [24, 25] for KPI and [26] for DSII. See
also [27] for related ideas. These direct algebraic methods,
although they do not shed any light on the associated spectral
problem, are quite powerful to undertake a general classifi-
cation of the relevant class of solutions. In this regard note
that in [28–31] Painleve’s test for (3) was first considered and
some special solutions, like line solitons, lumps, and dromion
solutions, were found.

The organization of the paper is as follows. A convenient
form of the linearizing Lax pair associated with (3) with
boundary conditions (2) is introduced in Section 2, following
the ideas of [32]. In Section 3 we study the discrete spectrum
of meromorphic eigenfunctions. Different relations between
the Laurent coefficients (LC) compatible with the Lax pair
are established. In Section 4 we study several classes of lump
solutions and their dynamics and physical properties. Partic-
ular interest is addressed to the problem of determining the
number of solitons that ensue from given analytic structure
and to determine the motion of these entities. We find that
typically lump’s dynamics is a superposition of the “center of
mass” motion, which proceeds in a uniformway and individ-
ual, lump depending, motion that behaves as |𝑡|𝑟 with 𝑟 < 1.
Interestingly for all cases analyzed the dynamics corresponds
to a central configuration of a certain 𝑁-body problem (a
central configuration of the Euler-Lagrange𝑁-body problem
corresponds to interacting point masses wherein for each
body the acceleration vector is directed towards the center of
mass and proportional to the distance to the center of mass)
where they fall to the mass center. Particularly interesting is
the case, similar to the “homothetic Lagrange” solution in the
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tree body problem, when pulses are located at the vertexes of
an equilateral triangle which collapses to the center along a
straight line as 𝑡1/3.
2. Linear Problem

As we have already pointed out system (3) arises as the
compatibility of a pair of operators; see [1, 10, 33, 34] for
genial ideas. Here we restrict our study to the class 𝑢(𝑥, 𝑦)
of potentials that are nonsingular and satisfy (2). Under
these boundary conditions a convenient form of the Lax pair,
depending on a complex spectral parameter 𝑘, is given by the
pair of operators:

𝐿𝜇 ≡ 𝜇𝑥𝑦 + 1𝑘𝜇𝑥 + 𝜇𝑦 (𝑘 − 𝑢𝑥𝑢 )
+ 𝜇(1 − 1𝑘 𝑢𝑥𝑢 − |𝑢|2) = 0, (8)

𝑀𝜇 ≡ 𝜇𝑥𝑥 + 𝑖𝜇𝑡 + 2𝑘𝜇𝑥 + 2𝑚𝑥𝜇 = 0. (9)

We assume the existence of an eigenfunction normalized
to 1 as |𝑘| → ∞. Then, (8) implies that 𝜇(𝑘) has the asymp-
totic expansion (with asymptotic coefficients𝑚1, 𝑚2, . . .):
𝜇 = 1 + 𝑚1𝑘 + 𝑚2𝑘2 + ⋅ ⋅ ⋅ ,

|𝑘| 󳨀→ ∞ where |𝑢|2 = 1 + 𝜕𝑦𝑚1. (10)

This expression permits recovering the physical amplitude|𝑢|2. To determine the phase of the potential 𝑢 consideration
of the next order in the expansion is required. We find

𝑢𝑥𝑢 = (𝜕𝑥𝑦𝑚1 + 𝜕𝑦𝑚2 − 1/2𝜕𝑦 (𝑚1)2)(1 + 𝜕𝑦𝑚1) . (11)

Thus, the potential is determined from

|𝑢|2 = 1 + 𝜕𝑦𝑚1,
𝑖𝜕𝑥 arg 𝑢 = 12𝜕𝑦 (𝜕𝑥𝑚1 − 𝑚

2
1 + 2𝑚2)(1 + 𝜕𝑦𝑚1) . (12)

3. Discrete Spectrum and Relationships among
Laurent Coefficients

Basic Assumption. The basic assumption of this work is the
existence of a solution to (8) and (9), which has a finite or
denumerable number of singularities {𝑘𝑛, 𝑛 = 1, . . . ,∞}. We
suppose that all singularities are higher-order poles and that𝜇(𝑘) is analytic away from the singularities.Thus, around any
pole 𝑘 = 𝑘1, 𝜇(𝑘)must have a local Laurent expansion:

𝜇 (𝑘) = 𝜇𝑘1)sing. (𝑘) + 𝜇𝑘1)reg. (𝑘) , (13)

where

𝜇𝑘1)reg. (𝑘) ≡ ∞∑
𝑟=0

]𝑟 (𝑘 − 𝑘1)𝑟 ,
𝜇𝑘1)sing. (𝑘) ≡ 𝑚∑

𝑟=1

𝜙𝑟(𝑘 − 𝑘1)𝑟 ,
(14)

are, respectively, the regular and singular parts of the eigen-
function at the pole and 𝜙𝑟 = 𝜙𝑟(𝑥, 𝑦, 𝑡), ]𝑟 = ]𝑟(𝑥, 𝑦, 𝑡)
are the Laurent coefficients (LC). Notice that 𝜇𝑘1)sing.(𝑘) is also
termed the singularity principal part or the pole divisor.

Unlike what happens in the regular case, where the
eigenfunction is fixed by the corresponding 𝜕-problem, when
singularities exist the inverse problem does not fix uniquely
the singular part. Additional information relating different
coefficients of the poles divisor is required. In this section we
consider examples of meromorphic eigenfunctions related to
nonsingular potentials and determine different relationships
between coefficients of the poles divisor.Weposit the existence
of a linear relationship between coefficients of the Laurent
expansion in the form

]𝑟 = 𝑟−1∑
𝑗=−𝑚

𝑓𝑗 (𝑥, 𝑦, 𝑡) ]𝑗 for a certain 𝑟 ≥ 0, (15)

where 𝑚 is the pole multiplicity and 𝑓𝑗 are certain functions
to be determined. We say that the integer 1 + 𝑟 is the index.
3.1. Simple Poles. We shall first suppose that 𝜇 ≡ 𝜇(𝑥, 𝑦, 𝑡, ⋅) is
an eigenfunction of (8), (9) with a meromorphic dependence
on 𝑘 and assume that 𝑘1 is a simple pole of 𝜇. Let 𝜙1,𝑘1 ≡ 𝜙 be
the residue of 𝜇(𝑘) at 𝑘1. Equation (14) reads

𝜇 (𝑥, 𝑦, 𝑡, 𝑘) = 𝜙 (𝑥, 𝑦, 𝑡)𝑘 − 𝑘1 + 𝜇𝑘1)reg. (𝑥, 𝑦, 𝑡, 𝑘) . (16)

Indeed, letting 𝑘 → 𝑘1 in (8), (9) we obtain, at dominant
orders, that 𝜙 and ] ≡ ]0must satisfy the system of equations:

𝜙𝑥𝑦 + 1𝑘1 𝜙𝑥 + 𝜙𝑦 (𝑘1 − 𝑢𝑥𝑢 )
+ 𝜙(1 − 1𝑘1 𝑢𝑥𝑢 − |𝑢|2) = 0, (17)

]𝑥𝑦 + 1𝑘1 ]𝑥 + ]𝑦 (𝑘1 − 𝑢𝑥𝑢 ) + ](1 − 1𝑘1 𝑢𝑥𝑢 − |𝑢|2)
+ (𝜙𝑦 − 1𝑘21 𝜙𝑥 + 1𝑘21 𝑢𝑥𝑢 𝜙) = 0, (18)

𝜙𝑥𝑥 + 𝑖𝜙𝑡 + 2𝑘1𝜙𝑥 + 2𝑚𝑥𝜙 = 0,
]𝑥𝑥 + 𝑖]𝑡 + 2𝑘1]𝑥 + 2𝑚𝑥] + 2𝜙𝑥 = 0. (19)

3.1.1. Simple Poles of IndexOne. Wefirst consider the simplest
linear relationship when

𝑟 = 0,
] = 𝑓𝜙 for certain 𝑓 (𝑥, 𝑦, 𝑡) . (20)
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Then, from the previous equations 𝑓(𝑥, 𝑦, 𝑡)must satisfy

(𝑓𝑥𝑦 + 𝑓𝑥𝑘1 + 𝑘1𝑓𝑦 − (𝑓𝑦 − 1𝑘21) 𝑢𝑥𝑢 )𝜙 + 𝜙𝑦 (𝑓𝑥 + 1)
+ 𝜙𝑥 (𝑓𝑦 − 1𝑘21) = 0,

𝜙 (𝑓𝑥𝑥 + 𝑖𝑓𝑡 + 2𝑘1𝑓𝑥) + 2𝜙𝑥 (𝑓𝑥 + 1) = 0.
(21)

We can satisfy these equations by requiring 𝑓 to solve the
following system of constant differential equations:

𝑓𝑦 − 1𝑘21 = 𝑓𝑥 + 1 = 𝑓𝑥𝑥 + 𝑖𝑓𝑡 + 2𝑘1𝑓𝑥 = 0. (22)

It follows that

𝑓 = −𝑥 − 2𝑖𝑘1𝑡 + 𝑦𝑘21 + 𝛾, where 𝛾 ≡ 𝛾𝑅 + 𝑖𝛾𝐼 ∈ C. (23)

Therefore, eigenfunctions of (8) with the structure (16) can
be constructed by requiring that 𝜙 solves (17) and that the
relationship

]0 = (−𝑥 − 2𝑖𝑘1𝑡 + 𝑦𝑘21 + 𝛾)𝜙 (24)

holds for some complex constant 𝛾. A similar relationwas first
established for KPI in [7]. Whenever such a situation holds
we say that the pole divisor is standard. We next study the
possibility of having nonstandard pole divisors.

3.1.2. Simple Poles of Index 2. We now show that the analytic
structure (16) for eigenfunctions of (8) does not necessarily
imply that (24) holds and different linear relationship between
the LCs may hold; concretely we consider here the case when
]1, ]0, ]−1 ≡ 𝜙 are related as

𝑟 = 1,
]1 = 𝑓]0 + 𝑔𝜙 for certain 𝑓 (𝑥, 𝑦, 𝑡) , 𝑔 (𝑥, 𝑦, 𝑡) . (25)

In this case we also need to supplement (17), (18) with higher-
order equations:

(𝜕𝑥𝑥 + 𝑖𝜕𝑡 + 2𝑘𝜕𝑥 + 2𝑚𝑥) ]1 + 2𝜕𝑥]0 = 0, (26)

]1𝑥𝑦 + 1𝑘1 ]1𝑥 + (𝑘1 − 𝑢𝑥𝑢 ) ]1𝑦
+ (1 − 1𝑘1 𝑢𝑥𝑢 − |𝑢|2) ]1 − ]0𝑥𝑘21 + ]0𝑦 + 𝑢𝑥𝑘21𝑢]0 = 0.

(27)

By insertion of (25) into (26) we obtain

𝑓𝑥𝑥]0 + 𝑔𝑥𝑥𝜙 + 2𝑓𝑥]0𝑥 + 2𝑔𝑥𝜙𝑥 + 𝑖 (𝑓𝑡]0 + 𝑔𝑡𝜙)
+ 2𝑘1 (𝑓𝑥]0 + 𝑔𝑥𝜙) + 2]0𝑥 − 2𝑓𝜙𝑥 = 0. (28)

This equation will be satisfied if 𝑓 is again given by (23) and𝑔 solves

𝑔𝑥𝑥 + 𝑖𝑔𝑡 + 2𝑘1𝑔𝑥 = 0, 𝑔𝑥 = 𝑓. (29)

By integration

]1 = 𝑓]0 + 𝑔𝜙
≡ (−𝑥 − 2𝑖𝑘1𝑡 + 𝑦𝑘21 + 𝛾) ]0

− (𝑓22 + 𝑖𝑡 + 𝑦𝑘31 − 𝛿)𝜙,
(30)

where 𝛾 and 𝛿 are complex constants. Equation (30) gives yet
another relationship between the three first LCs 𝜙, ]0, and ]1
of simple pole eigenfunctions compatible with the Lax pair.

3.2. Poles of Order Two. We now show how the above ideas
can be extended to cover the case when the eigenfunction has
a pole of multiplicity 2 at some point 𝑘 = 𝑘1: that is, 𝑚 = 2
in (14) and 𝜇𝑘1)sing.(𝑘) ≡ 𝜓/(𝑘 − 𝑘1)2 + 𝜙/(𝑘 − 𝑘1), where, to
avoid an awkward notation, we write 𝜙2,𝑘1 ≡ 𝜓, 𝜙1,𝑘1 ≡ 𝜙 and
also ]0,𝑘1 ≡ ]. By letting 𝑘 → 𝑘1 in (8) we find that the main
coefficients must satisfy 𝜓𝑥𝑥 + 𝑖𝜓𝑡 + 2𝑘1𝜓𝑥 + 2𝑚𝑥𝜓 = 0, and
also

𝜓𝑥𝑦 + 𝜓𝑥𝑘1 + (𝑘1 − 𝑢𝑥𝑢 )𝜓𝑦
+ (1 − 1𝑘1 𝑢𝑥𝑢 − |𝑢|2)𝜓 = 0,

𝜙𝑥𝑦 + 1𝑘1 𝜙𝑥 + (𝑘1 − 𝑢𝑥𝑢 ) 𝜙𝑦 + (1 − 1𝑘1 𝑢𝑥𝑢 − |𝑢|2)𝜙
+ 𝜓𝑦 − 1𝑘21𝜓𝑥 + 1𝑘21 𝑢𝑥𝑢 𝜓 = 0,

]𝑥𝑦 + 1𝑘1 ]𝑥 + (𝑘1 − 𝑢𝑥𝑢 ) ]𝑦 + (1 − 1𝑘1 𝑢𝑥𝑢 − |𝑢|2) ]

− 1𝑘21 𝜙𝑥 + 𝜙𝑦 + 1𝑘21 𝑢𝑥𝑢 𝜙 + 1𝑘31𝜓𝑥 − 1𝑘31 𝑢𝑥𝑢 𝜓 = 0,
𝜙𝑥𝑥 + 𝑖𝜙𝑡 + 2𝑘1𝜙𝑥 + 2𝑚𝑥𝜙 + 2𝜓𝑥 = 0,
]𝑥𝑥 + 𝑖]𝑡 + 2𝑘1]𝑥 + 2𝑚𝑥] + 2𝜙𝑥 = 0.

(31)

Again, the assumed analytic structure does not fix
uniquely the way LCs are related. We next consider several
possibilities.

3.2.1. Poles of Order Two and Index Two. We first assume that
the span ⟨𝜓, 𝜙, ]0⟩ of all linear combinations of 𝜓, 𝜙 and ]0 ≡
] with coefficients dependent on 𝑥, 𝑦, 𝑡 is generated by just
one of them; concretely we require

Dim. ⟨𝜓, 𝜙, ]⟩ = 1;
alternatively 𝜙 = 𝑓𝜓,

] = ℎ𝜓,
(32)
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where 𝑓, ℎ depend on 𝑥, 𝑦, 𝑡. As previously mentioned, from
the 𝜙-equations we find 𝑓 to be given by (23), while the
remaining equations yield that ℎmust satisfy

ℎ𝑥𝑥 + 𝑖ℎ𝑡 + 2𝑘1ℎ𝑥 + 2𝑓𝑥 = 0, ℎ𝑥 + 𝑓 = 0 (33)

or, alternatively, ℎ𝑓 − 𝑓 = 0, 𝑖ℎ𝑡 = 1. It follows that (32) is
compatible with the given analytic structure provided 𝑓 is
given by (23) and for some complex constants 𝛾, 𝛿

ℎ = 𝑓22 − 𝑖𝑡 − 𝑦𝑘31 + 𝛿. (34)

3.2.2. Poles of Order Two and Index Three. A different possi-
bility obtains by requiring now

Dim. ⟨𝜓, 𝜙⟩ = 1,
Dim. ⟨𝜓, 𝜙, ]0, ]1⟩ = 2, (35)

or 𝜙 = 𝑓𝜓,
]1 = 𝐴 (𝑥, 𝑦, 𝑡) ]0 + 𝐵 (𝑥, 𝑦, 𝑡) 𝜓. (36)

In this case, letting 𝑘 → 𝑘1 in (8) we obtain that

𝜓𝑥𝑥 + 𝑖𝜓𝑡 + 2𝑘1𝜓𝑥 + 2𝑚𝑥𝜓 = 0,
𝜓𝑥𝑦 + 𝜓𝑥𝑘1 + (𝑘1 − 𝑢𝑥𝑢 )𝜓𝑦
+ (1 − 1𝑘1 𝑢𝑥𝑢 − |𝑢|2)𝜓 = 0,

]1𝑥𝑦 + ]1𝑥𝑘1 + (𝑘1 − 𝑢𝑥𝑢 ) ]1𝑦 + (1 − 1𝑘1 𝑢𝑥𝑢 − |𝑢|2) ]1

− 1𝑘21 ]0𝑥 + ]0𝑦 + 1𝑘21 𝑢𝑥𝑢 ]0 + 1𝑘31 𝜙𝑥 − 1𝑘31 𝑢𝑥𝑢 𝜙
− 1𝑘41𝜓𝑥 + 1𝑘41 𝑢𝑥𝑢 𝜓 = 0,

(𝜕𝑥𝑥 + 𝑖𝜕𝑡 + 2𝑘1𝜕𝑥 + 2𝑚𝑥) ]1 + 2𝜕𝑥]0 = 0.

(37)

Hence, in view of (36)

𝐴𝑥𝑥]0 + 𝐵𝑥𝑥𝜓 + 2𝐴𝑥]0𝑥 + 2𝐵𝑥𝜓𝑥 + 𝑖 (𝐴 𝑡]0 + 𝐵𝑡𝜓)
+ 2𝑘1 (𝐴𝑥]0 + 𝐵𝑥𝜓) + 2]0𝑥 − 2𝐴 (𝑓𝜓𝑥 − 𝜓)

= 0.
(38)

Requiring independence of ]0, 𝜓 we obtain that 𝐴, 𝐵 must
solve

𝐴𝑥𝑥 + 𝑖𝐴 𝑡 + 2𝑘1𝐴𝑥 = 𝐴𝑥 + 1 = 0,
𝐵𝑥𝑥 + 𝑖𝐵𝑡 + 2𝑘1𝐵𝑥 + 2𝐴 = 𝐵𝑥 − 𝐴𝑓 = 0. (39)

Hence, we obtain that 𝐴 = 𝑓 + 𝜂 and 𝐵 = (−1/3)(𝑓3 +(3/2)𝜂𝑓2) + 𝑖𝜂𝑡 + 𝑟(𝑦)where 𝜂 is a complex constant and 𝑟(𝑦)
an arbitrary function of 𝑦. The 𝑦-equation gives

−𝐵𝑦 − 1𝑘31𝑓 + 1𝑘41 − 𝐴𝑘21𝑓 + 𝐴𝑘31 = 0 (40)

or 𝑟 (𝑦) = ( 𝜂𝑘31 + 1𝑘41)𝑦 + 𝑟0. (41)

Thus, (36) is satisfied provided 𝑓 is given by (23) and

𝐴 = (𝑓 + 𝜂) ,
𝐵 = −13 (𝑓3 + 32𝜂𝑓2) + 𝑖𝜂𝑡 + ( 𝜂𝑘31 + 1𝑘41)𝑦 + 𝑟0.

(42)

4. Determination of Classes of Potentials

In this section we determine several classes solutions of (1) by
considering proper election of meromorphic eigenfunctions
and relationships between LCs of the form (15).

4.1. Potentials Corresponding to Simple Poles of Index One.
Suppose first that 𝜇(𝑘) is a meromorphic eigenfunction that
has the representation (14)with a finite even number 2𝑁 < ∞
of simple poles.Wemake the following assumptions (denoted
as condition C1):

(1) Poles come in pairs 𝑘𝑗, 𝑘𝑗+𝑁 with corresponding
residues 𝜙𝑗, 𝜙𝑗:

𝜇 (𝑘) = 1 + 𝑁∑
𝑗=1

( 𝜙𝑗𝑘 − 𝑘𝑗 +
𝜙𝑗𝑘 + 𝑘𝑗) . (43)

(2) At every pole 𝑘𝛼, 𝛼 = 1, . . . , 2𝑁 the pole divisor is
standard and hence satisfies (24):

(3) 𝑘𝑗𝑅 ̸= 0,
𝑘𝑗+𝑁 = −𝑘𝑗,
𝛾𝑗+𝑁 = 𝛾𝑗,

∀𝑗 = 1, . . . , 𝑁.
(44)

Suppose that𝜇 has just two poles 𝑘1,−𝑘1. In this case from
the previous assumptions and (24) we must have

]0 (𝑘1) ≡ 1 + 𝜙1𝑘1 + 𝑘1 = 𝑓1𝜙1,
]0 (−𝑘1) ≡ 1 − 𝜙1𝑘1 + 𝑘1 = 𝑓1𝜙1.

(45)

Solving this system of linear equations and using (10) we find
the potential

|𝑢|2 = 1 + 𝜕𝑦 (𝜙1 + 𝜙1) = 1 − 𝜕𝑦𝑥 logΔ
while 𝑛 = −𝑦 + 𝜕𝑥 logΔ, (46)



6 Advances in Mathematical Physics

where Δ is the determinant of the associated matrix:

Δ ≡ 𝑓1𝑓1 + 1
(𝑘1 + 𝑘1)2 . (47)

The field 𝑢 given by (46) will be called the basic lump
solution of (3). Obviously, if 𝑘1 ≡ 𝑘1𝑅 + 𝑖𝑘1𝐼 ≡ 𝑎 + 𝑖𝑏, where𝑎 ≡ 𝑘1𝑅 ̸= 0, the solution is regular on the entire plane and
decreases rationally.

Consider a new Galilean frame (𝑥󸀠, 𝑦󸀠) moving with
velocities (𝑐, −𝑏𝑐2):

𝑥󸀠 = 𝑥 − 𝑐𝑡 − 𝛾̃,
𝑦󸀠 = 𝑦 + 𝑏𝑐2𝑡 + 𝛾0𝐼𝜌 , (48)

𝑐 = 𝑎2 + 𝑏2𝑏 ,
𝛽 = 𝑎2 − 𝑏2(𝑎2 + 𝑏2)2 ,
𝜌 = − 2𝑎𝑏(𝑎2 + 𝑏2)2 ,
𝛾̃ ≡ 𝛾0𝑅 − 𝑎2 − 𝑏22𝑎𝑏 𝛾0𝐼.

(49)

One finds also convenient to go to a frame of skew coordi-
nates 𝑧,𝑦󸀠where𝑥󸀠, and𝑦󸀠 are defined in (48) and 𝑧 ≡ 𝑥󸀠−𝛽𝑦󸀠
is a shear transformation along the 𝑥-axis, where 𝛽 represents
a slanting coefficient. In this frame the potential reads

𝜐 ≡ |𝑢|2 − 1
= −2𝛽(𝑧2 + 𝜌2𝑦󸀠𝛽 (𝛽𝑦󸀠 − 2𝑥󸀠) − 14𝑎2) 1Δ2 ,

where Δ = 𝑧2 + 𝜌2𝑦󸀠2 + 14𝑎2 .
(50)

Thus, in this inertial frame the solution is at rest for all
time (objects moving uniformly with velocities (𝑐, −𝑏𝑐2)
in the unprimed frame remain at rest in the transformed
primed frame) and strongly localized. However, the maxima
structure is richer than what might have been expected.
Inspection shows that critical points solve 𝑥󸀠 = 𝜎𝑦󸀠/(𝑎2 + 𝑏2),𝜎 = ±1. With 𝜎 = 1 we find that critical points are (𝑥󸀠, 𝑦󸀠) =(0, 0) and

𝑥󸀠 = ± 14𝑎𝑏√3𝑏2 − 𝑎2,
𝑦󸀠 = ±𝑎2 + 𝑏24𝑎𝑏 √3𝑏2 − 𝑎2 (51)

while for 𝜎 = −1 one has
𝑦󸀠 = ±𝑎2 + 𝑏24𝑎2 √3𝑎2 − 𝑏2,
𝑥󸀠 = ∓ 14𝑎2√3𝑎2 − 𝑏2.

(52)

These points are all candidates to maxima and minima; the
number of them will vary depending on the values of the
parameters. The parameter space is a two-dimensional plane
deprived of the straight line 𝑎 = 0. To describe the situation
in the general case we restrict, with no loss of generality, to
the first quadrant on the parameter space.The situation varies
according to which of the regions

𝐶1 ≡ {(𝑎, 𝑏) : 𝑎 ≤ 𝑏√3} ,
𝐶2 ≡ {(𝑎, 𝑏) : 𝑏√3 ≤ 𝑎 ≤ √3𝑏} ,
𝐶3 ≡ {(𝑎, 𝑏) : 0 ≤ √3𝑏 ≤ 𝑎}

(53)

do parameters belong. If (𝑎, 𝑏) is in the interior of 𝐶2 then
two of the four points described above are maxima and the
other two are minima. Point (𝑥󸀠, 𝑦󸀠) = (0, 0) is a saddle point
between the formers at which |𝑢| = |3𝑎2 − 𝑏2|/(𝑎2 + 𝑏2).

Particular cases are 𝑏 = 0 (previously studied) and 𝑎 = 𝑏.
In this case

𝜐 ≡ |𝑢|2 − 1 = 𝑥󸀠𝑦󸀠𝑎4 (𝑥󸀠2 + 𝑦󸀠2/4𝑎4 + 1/4𝑎2)2 . (54)

It has two symmetric maxima located at 𝑝 = ±√2(1/4𝑎, 𝑎/2)
at which 𝜐 ≡ |𝑢|2 − 1 = 1 while minima are to be found at the
mirror images points at which 𝜐 = −1.

When parameters satisfy 𝑎 = √3𝑏 we obtain a configu-
ration having a maximum (𝑥󸀠, 𝑦󸀠) = (0, 0) at which 𝜐 = 3;
the minimum lump’s amplitude 𝜐 = −1 is to be found at the
points (𝑥󸀠, 𝑦󸀠) = ±(√8/12𝑏)(1, −4𝑏2). At the other boundary
point 𝑏 = √3𝑎 > 0 the situation is opposite and is rather
reminiscent of dark solitons; it corresponds to a configuration
having minimum amplitude 𝜐 = −1 at the origin and
maximum amplitude 𝜐 = 3/25 at the points (𝑥󸀠, 𝑦󸀠) =±(√8/4√3𝑎)(1, 4𝑎2). Thus, generically the configuration is
multipeaked, localized on an entire region containing several
maxima.

4.2. Potentials Corresponding to Index Two. Here we investi-
gate potentials associated with meromorphic eigenfunctions
satisfying the following conditions (C2):

(1) Poles come in pairs 𝑘𝑗, 𝑘𝑗+𝑁, 𝑗 = 1, . . . , 𝑁with 𝑘𝑗+𝑁 =−𝑘𝑗:
𝜇 (𝑘) = 1 + 𝑁∑

𝑗=1

( 𝜙𝑗𝑘 − 𝑘𝑗 +
𝜙𝑗𝑘 + 𝑘𝑗 +

𝜓𝑗(𝑘 + 𝑘𝑗)2) . (55)

(2) For 𝑗 = 1, . . . , 𝑁 the poles 𝑘𝑗 are simple with index 2
(i.e., they satisfy (30)). Besides 𝑘𝑗, 𝑗 = 𝑁 + 1, . . . , 2𝑁,
are double poles with index 2 in the sense of (32), (34)
with constants satisfying 𝑘𝑗𝑅 ̸= 0, 𝛾𝑗 = 𝛾𝑗, 𝛿𝑗 = −𝛿𝑗.

We suppose that 𝜇 has just two poles 𝑘1, −𝑘1 with the
above properties. In this case one can prove that

|𝑢|2 = 1 + 𝜕𝑦 (𝜙1 + 𝜙1) = 1 − 𝜕𝑦𝑥 logΔ, (56)
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where Δ is the following definite-positive polynomial:

Δ ≡ 󵄨󵄨󵄨󵄨ℎ1󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓1 + 12𝑎 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 14𝑎2 + 116𝑎4 ,

ℎ1 = −(𝑓212 + 𝑖𝑡 + 𝑦𝑘31 − 𝛿) ,
𝑓1 = −𝑥 − 2𝑖𝑘1𝑡 + 𝑦𝑘21 + 𝛾.

(57)

Note how it depends on 3 complex parameters 𝑘1, 𝛾1, 𝛿.
We next study the dynamical properties of the field 𝑢 of

(56), (57). Clearly |𝑢|2 is a rational function, regular on the
entire plane which decreases as 1/𝑟2 as 𝑟2 ≡ 𝑥2 + 𝑦2 → ∞.
Againwe find it convenient to use coordinates defined by (48)
(see also (49)) in terms of which the “𝜏”-function reads (we
drop some irrelevant parameters)

Δ = ℎ2𝑅 + ℎ2𝐼 + 14𝑎2 [(𝑧 + 12𝑎)
2 + 𝜌2𝑦󸀠2] + 116𝑎4 . (58)

Note also that

ℎ𝑅 = 12𝑧2 − 𝜌
2𝑦󸀠22 + 𝜀( 𝑏𝑦󸀠(𝑎2 + 𝑏2)2 − 𝑡) ,

ℎ𝐼 = −𝜌𝑧𝑦󸀠 + 𝑏 (3𝑎2 − 𝑏2)(𝑎2 + 𝑏2)3 𝑦󸀠 − 4𝑎2𝑎2 + 𝑏2 𝑡,
(59)

where 𝑧 ≡ 𝑥󸀠−𝛽𝑦󸀠, 𝜀 = ((𝑎2−3𝑏2)/(𝑎2+𝑏2))(𝑎/𝑏), 𝑘1 ≡ 𝑎+𝑖𝑏,ℎ1 = ℎ𝑅 + 𝑖ℎ𝐼.
Inspection of the solution shows that it corresponds to

a coherent two pulsed structures. Each of the pulses has a
rich internal structure with several maxima and minima in
a similar disposition to that corresponding to the standard
lump.

The dynamical behavior of this configuration is different
and far more subtle than previously found. It turns out that
lumps are not at rest in any inertial frame.

As indicated we consider a system of skew coordinates 𝑧,𝑦󸀠 defined in (48). We claim that the solutions to

Δ (𝑧±∞, 𝑦󸀠±∞, 𝑡) = 𝑂 (𝑡) ,
where (𝑧±∞ (𝑡) , 𝑦󸀠±∞ (𝑡)) ≡ 𝑝±∞ (60)

give the pulse’s positions as 𝑡 → ±∞. Indeed,

𝜕𝑦Δ, 𝜕𝑧Δ (𝑧±∞, 𝑦󸀠±∞) = 𝑂 (𝑡) ,
𝑢 (𝑧±∞, 𝑦󸀠±∞, 𝑡) = 𝑂 (1) . (61)

Note that −𝑝±∞ solves (60) if 𝑝±∞ does; thus, the second
pulse is the mirror image of the first respect to the origin, and
it suffices to describe the motion of the first of them.

x󳰀

y󳰀

In

In

Out

Out

Out[1]=

105−5−10

−3

−2

−1
Ω

1

2

3

Figure 1:Thepath of the twopulses for the cases incoming (𝑡 = −∞)
and outgoing (𝑡 = ∞) corresponding to 𝑎 = 0.3 with the scattering
angle indicated.

We first consider the case 𝑎 = 𝑏 for which the dynamics
and scattering process are easier to understand. In this case
the moving frame (48) and solution are given by

𝑥󸀠 = 𝑥 − 2𝑎𝑡 − 𝛾𝑅,
𝑦󸀠 = 𝑦 + 4𝑎3𝑡 + 2𝑎2𝛾0𝐼,
𝜌 = − 12𝑎2 ,
Δ = (𝑥󸀠22 − 𝑦󸀠28𝑎4 − 𝑦󸀠4𝑎3 + 𝑡)

2

+ (𝑥󸀠𝑦󸀠2𝑎2 + 𝑦󸀠4𝑎3 − 2𝑡)
2

+ 14𝑎2 [(𝑥󸀠 + 12𝑎)
2 + 𝑦󸀠24𝑎4 + 14𝑎2] .

(62)

We then find from (60) that asymptotically the first of the
pulses has coordinates 𝑝±∞(𝑡) ≡ (𝑥󸀠±∞(𝑡), 𝑦󸀠±∞(𝑡)), where𝜁± = (√5 ∓ 1)1/2, 𝜄± = ±4𝑎2/𝜁±, and

𝑥󸀠±∞ = 𝜁±√|𝑡| + 𝑥±∞0 + 𝑂 (|𝑡|−1/2) ,
𝑦󸀠± = 𝜄±√|𝑡| + 𝑦±0 + 𝑂 (|𝑡|−1/2) . (63)

Thus, in the moving reference frame the trajectories as𝑡 → ±∞ are straight lines with different slopes. Notice that
initially (𝑡 → −∞) pulses are located in the second and
fourth quadrants and will move to the first and third ones as𝑡 → ∞. For moderate times they collide head-on henceforth
undergoing a scattering process. In Figures 1 and 2 we show
the collision path and form of the pulses in solution (57)
before and after scattering. The scattering angle Ω is easily
found to be given by

cosΩ = 1 − 4𝑎4
√(1 + 4𝑎4)2 + 4𝑎4 . (64)

Note that cosΩ attains a maximum value 1 if (formally) 𝑎 =0 and decreases towards cosΩ = −1 as 𝑎 → ∞. Thus,
transparent scattering is obtained when 𝑎 = 𝑏 = 0 while per-
pendicular scattering corresponds to lumps with 𝑎2 = 1/2.

In the rest at frame the motion is the composition of
a uniform motion (2𝑎𝑡, −4𝑎3𝑡) and the slower one given
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Figure 2: Location and form of the two pulses: incoming (𝑡 = −10) and outgoing (𝑡 = 10) corresponding to the election of 𝑎 = 𝑏 = 1. The
scattering process is clear.

by (63). Indeed when 𝑎 = 𝑏 both coordinate frames are
related by a pure Galilean transformation and objects at rest
in the primed frame pick a uniform motion with velocities(2𝑎, −4𝑎3) in the original frame. Hence, in the stationary
frame the path of the second pulse is no longer the mirror
image of the first.

4.3. Potentials Corresponding toDouble Poles with IndexThree.
We now study potentials that correspond to eigenfunctions
with double poles with index three. Concretely, assume the
following:

(1) Poles come in pairs 𝑘𝑗, 𝑘𝑗+𝑁, 𝑗 = 1, . . . , 𝑁with 𝑘𝑗+𝑁 =−𝑘𝑗 ≡ 𝑘𝑗. Hence,
𝜇 (𝑘) = 1 + 𝑁∑

𝑗=1

( 𝜙𝑗𝑘 − 𝑘𝑗 +
𝜓𝑗(𝑘 − 𝑘𝑗)2 +

𝜙𝑗𝑘 + 𝑘𝑗
+ 𝜓𝑗(𝑘 + 𝑘𝑗)2) .

(65)

(2) The multiplicity of every pole is two and the index
three; namely, all pole divisors satisfy (36).

We consider the simplest such potential when𝑁 = 1.
4.3.1. Pulses of IndexThree. We consider in detail the physical
properties and dynamics in the case 𝑁 = 1. The potential is
given by formula (46) where the tau function is

Δ = 󵄨󵄨󵄨󵄨𝐵 (𝑘1)󵄨󵄨󵄨󵄨2 + 4(2𝑎)6 +
󵄨󵄨󵄨󵄨𝑓 (𝑘1)󵄨󵄨󵄨󵄨4(2𝑎)2 + 4(Im𝑓 (𝑘1))2(2𝑎)4

≥ 0.
(66)

Here 𝑘1 ≡ 𝑎 + 𝑖𝑏 and 𝜂, 𝛿 are complex constants, V, 𝜌 are
defined in (49), and

𝐶 ≡ −𝑖𝜂 + 𝑏V2𝜔, 𝜔 = 1𝑘31 ( 1𝑘1 + 𝜂) . (67)

The position and dynamics of the associated pulses are
determined mainly by the constant 𝜂 (alternatively by 𝐶 ≡𝐶𝑅 + 𝑖𝐶𝐼). Concretely, we have the following.
Proposition 1. (1) If the constant 𝐶 = 0 the solution is a
multipeaked traveling wave of solitonic nature (i.e., stationary
in the frame moving with the soliton).

(2) When 𝐶 ̸= 0 the solution is nonstationary. There are
exactly three traveling pulses describing “homothetic motion.”
Namely, the motion in the frame at rest is a superposition of a
“center of mass” uniformmotion and an individual and slower
motion proportional to 𝑡1/3.

(3) In the “center of mass frame” pulses are located at the
vertex of a triangle with center of gravity at the origin (see
Figure 3 where this situation is shown). The time evolution
contracts but does not deform the whole structure. As a result,
pulses collapse onto the origin whereupon the configuration
regains shape. No deflection angle appears.

To prove the claims we note that the solution reads neater
with a skew transformation and a dilatation of coordinates
defined by (48) and 𝑧 ≡ 𝑥󸀠 − 𝛽𝑦󸀠, 𝜉 = 𝜌𝑦󸀠. Then dropping
some irrelevant constants we have (see (42))

𝐵 ≡ 𝐵𝑅 + 𝑖𝐵𝐼 = −𝑓33 − 𝜂𝑓22 + 𝜔𝑦󸀠 − 𝐶𝑡,
𝐵𝑅 = −𝑧33 + 𝜉2𝑧 − 𝜂𝑅2 (𝑧2 − 𝜉2) + 𝜂𝐼𝜉𝑧 + 𝜔𝑅𝜉 − 𝑡𝐶𝑅,
𝐵𝐼 = 𝜉33 − 𝜉𝑧2 − 𝜂𝐼2 (𝑧2 − 𝜉2) − 𝜂𝑅𝜉𝑧 + 𝜔𝐼𝜉 − 𝑡𝐶𝐼.

(68)
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Figure 3: Homothetic solution at 𝑡 = −200. The equilateral triangle
is easily appreciated.

We simply consider here the case when 𝐶 = 0, namely,
when the parameters are chosen to satisfy

𝑏V2 (1 + 𝜂𝑘1) = 𝑖𝜂𝑘41. (69)

The 𝑡-dependence of Δ drops out and hence the entire
configuration 𝑢(𝑥, 𝑦, 𝑡) moves, with respect to the frame at
rest, with constant velocity given by (V, −𝑏V2). A plot of 𝑢
shows that |𝑢|2 −1 decreases to zero away from three regions.
Thus, the configuration behaves like amultipeaked solution of
solitonic nature.

Appendix

Mittag-Leffler Expansions of Eigenfunctions

Recall that we assume that higher-order poles are the only
singularities of 𝜇(𝑘); in particular, we exclude the possibility
of having essential singularities and/or accumulation points
of pole singularities in the finite plane.We study here the pos-
sibility of certainMittag-Leffler expansions of eigenfunctions
(see [35] for general ideas).

Theorem A.1. Let 𝜇(𝑘) be a meromorphic eigenfunction hav-
ing poles at 𝑆 ≡ {𝑘𝑛}𝑛=1,...,∞, with canonical normalization.
Suppose that

(1) the distance between eigenvalues is bounded below: 𝛿 ≡
sup𝑛|𝑘𝑛+1 − 𝑘𝑛| > 0,

(2) 𝜇(𝑘) is uniformly bounded away from eigenvalues.

Then, for 𝑘 ∉ 𝑆, 𝜇(𝑘) can be represented as

𝜇 (𝑘) = 1 + ∑
𝑘𝑗∈𝑆

𝜇𝑘𝑗)sing. (𝑘) ≡ 1 + ∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

𝜙𝑗,𝑟(𝑘 − 𝑘𝑗)𝑟 , (A.1)

where 𝑚𝑗 is the multiplicity of 𝑘𝑗 and 𝜇𝑘𝑗)sing.(𝑘) the pole divisor
at 𝑘𝑗.

Reciprocally, if 𝜇(𝑘) is given by the formal series (A.1),
condition (1) is satisfied and

∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

󵄨󵄨󵄨󵄨󵄨𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨 < ∞,
∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

󵄨󵄨󵄨󵄨󵄨𝜕𝑦𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨 < ∞,
∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

𝑘𝑗 󵄨󵄨󵄨󵄨󵄨𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨 < ∞, 𝑀 ≡ sup
𝑛
𝑚𝑛 < ∞.

(A.2)

Then 𝜇 is a meromorphic eigenfunction satisfying both condi-
tion (2) and also lim𝑘→∞𝜇(𝑘) = 1 along any curveL such that
Dist(L, 𝑆) > 0. Further,

|𝑢|2 = 1 + ∑
𝑘𝑗∈𝑆

𝜕𝑦𝜙𝑗,1. (A.3)

Proof. The proposition is trivial if the number of pole singu-
larities is finite so we shall assume an infinite number. Note
then that (1) implies that they cannot accumulate anywhere
on the finite plane. Thus, with no loss of generality we can
assume that singularities pile up at infinity but not too quickly.
We can order the eigenvalues so that |𝑘𝑛| ≤ |𝑘𝑛+1|. Next, let
set 𝑆󸀠 ⊂ 𝑆 ≡ {𝑘𝑛}𝑛=1,...,∞ be the set obtained by choosing
one eigenvalue from all those that have the same modulus.
Let 𝑎𝑛 ≡ |𝑘𝑛|, 𝑘𝑛 ∈ 𝑆󸀠. It follows that the sequence {𝑎𝑛} is
strictly increasing: 𝑎𝑛 < 𝑎𝑛+1 and satisfies lim𝑛→∞𝑎𝑛 = ∞,𝛿 ≡ inf𝑛|𝑎𝑛 − 𝑎𝑛+1| > 0. Further, (2) implies that for all 𝑙 ∈ R

there exists 𝜖(𝑙) such that |𝜇(𝑘)| ≤ 𝑙 for all 𝑘𝑛 ∈ 𝑆 such that|𝑘 − 𝑘𝑛| ≥ 𝜖(𝑙). It follows that there exists 𝐶 > 0 such that
if 𝑧 ∈ R𝑛, the unit circle of radius 𝑅𝑛 ≡ (𝑎𝑛 + 𝑎𝑛+1)/2; then|𝜇(𝑧)| ≤ 𝐶 uniformly in 𝑛 and 𝑧: sup𝑛sup𝑧∈R𝑛 |𝜇(𝑧)| ≤ 𝐶. For
fixed 𝑘 ∉ 𝑆 the function 𝜇̃(𝑧) ≡ 𝜇(𝑧)/(𝑧 − 𝑘) has poles with
multiplicity𝑚𝑛 at 𝑘𝑛 and a simple pole at 𝑘 with residue 𝜇(𝑘).
At the former an easy calculation shows that Res 𝜇̃(𝑧)𝑧=𝑘𝑛 =−𝜇𝑘𝑛)sing.(𝑘). Thus, Cauchy’s theorem yields that

12𝜋 ∫
2𝜋

0
𝑑𝜑𝜇 (𝑅𝑛𝑒𝑖𝜑)𝑅𝑛𝑒𝑖𝜑 − 𝑘𝑅𝑛𝑒𝑖𝜑 = 12𝜋𝑖 ∫R𝑛 𝜇 (𝑧)𝑧 − 𝑘𝑑𝑧

= 𝜇 (𝑘) − ∑
𝑗:|𝑘𝑗|<𝑅𝑛

𝜇𝑘𝑗)sing. (𝑘) ,
(A.4)

where the sum extends to all eigenvalues 𝑘𝑗 satisfying |𝑘𝑗| <𝑅𝑛.
Given such a fixed 𝑘 let 𝜖 be the minimum distance

between 𝑘 and allR𝑛: 𝜖 = min𝑛∈N,𝑧∈R𝑛 |𝑧−𝑘| (note that 𝜖 > 0).
We can bound the integrand, uniformly in 𝑛 as follows:

sup
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜇 (𝑅𝑛𝑒𝑖𝜑)𝑅𝑛𝑒𝑖𝜑 − 𝑘𝑅𝑛𝑒𝑖𝜑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
𝐶𝜖 ∈ 𝐿1 ([0, 2𝜋] , 𝑑𝜑) , (A.5)
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where we recall that |𝜇(𝑅𝑛𝑒𝑖𝜑)| ≤ 𝐶, say. Further, lim𝑛→∞𝑅𝑛 =∞, lim𝑅𝑛→∞𝜇(𝑅𝑛𝑒𝑖𝜑) = 1. By the theorem of dominated
convergence we find that for fixed 𝑘 ∉ 𝑆

lim
𝑅𝑛→∞

∫
R𝑛

𝜇 (𝑧)𝑧 − 𝑘𝑑𝑧 = 𝑖 ∫
2𝜋

0
𝑑𝜑 lim
𝑅𝑛→∞

𝜇 (𝑅𝑛𝑒𝑖𝜑)𝑅𝑛𝑒𝑖𝜑 − 𝑘𝑅𝑛𝑒𝑖𝜑
= 2𝜋𝑖.

(A.6)

Sending 𝑛 → ∞ the result follows.
Reciprocally, if 𝜇(𝑘) is given by the formal series (A.1) and

condition (1) is satisfied (with 𝛿 ≤ 1, say), we see that 𝜇(𝑘)
exists and, by formally commuting the limit 𝑘 → ∞ with the
sum, find that 𝜇(𝑘) tends to 1 at infinity. The interchange of
limit and sum is validated by noting that if Dist(L, 𝑆) ≥ 𝜖 > 0,

∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

󵄨󵄨󵄨󵄨󵄨𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘 − 𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑟 ≤
1𝜖𝑀 ∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

󵄨󵄨󵄨󵄨󵄨𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨 < ∞. (A.7)

To prove that the potential is bounded, we use (10):

𝜇1) = lim
𝑘→∞

𝑘∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

𝜙𝑗,𝑟(𝑘 − 𝑘𝑗)𝑟
= ∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

lim
𝑘→∞

𝑘(𝑘 − 𝑘𝑗)𝑟 𝜙𝑗,𝑟 = ∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

𝜙𝑗,𝑟,
(A.8)

where we have taken the limit under the sum. To validate
this note that if Dist(L, 𝑆) ≥ 𝜖 > 0, the modulus-maximum
principle yields the estimate uniform on 𝑘:󵄨󵄨󵄨󵄨󵄨𝑘𝜙𝑟,𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘 − 𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑟 ≤

1𝜖𝑟 (𝜖 + 󵄨󵄨󵄨󵄨󵄨𝑘𝑗󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨󵄨𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘𝜙𝑗,𝑟(𝑘 − 𝑘𝑗)𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ ∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

1𝜖𝑟 󵄨󵄨󵄨󵄨󵄨𝜖 + 𝑘𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨
≤ 1𝜖𝑀 ∑

𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

(|𝜖| + 󵄨󵄨󵄨󵄨󵄨𝑘𝑗󵄨󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨󵄨𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨 < ∞.
(A.9)

Thus, if the conditions hold we are guaranteed that 𝜇(𝑘)
has an asymptotic expansion𝜇(𝑘) = 1+𝜇1)+𝑂(1/𝑘), where𝜇1)
is given by (A.8). Operating with 𝜕𝑦 and since (A.2) validates
differentiation under the sumwe arrive to Formula (A.3).

The above result can be sharpened when eigenvalues are
disposed along a curve.

PropositionA.2. Suppose that the set 𝑆 is contained in a given
line H ≡ {𝑘 ∈ C : 𝑘 = 𝑟𝑒𝑖𝜑, 0 < 𝑟 < ∞} for some 𝜑 and
satisfies condition (1). Suppose that the formal series (A.1) ≡𝜇(𝑘) satisfies all conditions (A.2) but the third; that is, we drop
the requirement ∑𝑘𝑗 ∑𝑚𝑗𝑟=1 𝑘𝑗|𝜙𝑗,𝑟| < ∞. For any 𝜖 > 0 let 𝐷𝜖 ⊃
H be the cone of complex numbers whose phase 𝜗 satisfies 𝜑 −𝜖 < 𝜗 < 𝜑 + 𝜖. Then, 𝜇(𝑘) has, along any curve contained in

C−𝐷𝜖, an asymptotic expansion 𝜇(𝑘) = 1+𝜇1)+𝑂(1/𝑘), where𝜇1) is given by (A.8). Hence, it is associated with a nonsingular
potential 𝑢 given again by (A.3).

Proof. We have the uniform bound:

sup
𝑘∈C−𝐷𝜖

󵄨󵄨󵄨󵄨󵄨𝑘𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘 − 𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑟 = sup
𝑘∈𝜕𝐷𝜖

󵄨󵄨󵄨󵄨󵄨𝑘𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘 − 𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑟 ≤ |sin 𝜖|
−𝑟 󵄨󵄨󵄨󵄨󵄨𝜙𝑗,𝑟󵄨󵄨󵄨󵄨󵄨 , (A.10)

where we use first the modulus-maximum principle for ana-
lytic functions and then, with no loss of generality, suppose|𝑘| ≥ 1. For given 𝑘𝑗 the sup is attained at the normal pro-
jection of 𝑘𝑗 onto the ray 𝜕𝐷𝜖 (note that this estimate can be
sharpened but with no further gain). It implies that, along any
curve contained in C − 𝐷𝜖,

𝜇1) = lim
𝑘→∞

𝑘∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

𝜙𝑗,𝑟(𝑘 − 𝑘𝑗)𝑟 = ∑
𝑘𝑗∈𝑆

𝑚𝑗∑
𝑟=1

𝜙𝑗,𝑟. (A.11)

Proposition A.3. Suppose that 𝜇(𝑘) is given by the formal
series (A.1) and conditions (1) and (2) are satisfied. Suppose
that the set 𝑆 is contained in a given line H ≡ {𝑘 ∈ C : 𝑘 =𝑟𝑒𝑖𝜑, 0 < 𝑟 < ∞} for some 𝜑. With no loss of generality order
eigenvalues are such that |𝑘𝑛| ≤ |𝑘𝑛+1|. Further suppose that∑∞𝑛=1(1/|𝑘𝑛|) < ∞. Then the formal series (A.1) is convergent
to 𝜇(𝑘) having canonical normalization and is associated with
a nonsingular potential 𝑢.

A proof of this assertion follows by noting that (24) imply
that for long 𝑛, 𝜙𝑛 can be expanded as

𝜙𝑛 = 1𝑥 + 2𝑖𝑘𝑛𝑡 − 𝑦/𝑘2𝑛 + 𝑂( 1𝑘2𝑛) . (A.12)

For 𝑡 ̸= 0 both conditions of (A.2) are satisfied. This implies
the claim.

Competing Interests

The authors declare herewith that there is no conflict of
interests regarding the publication of this article. Our pro-
fessional judgment concerning the validity of research is not
influenced by a secondary interest such as financial gain.

Acknowledgments

The authors acknowledge support from the Spanish Min-
isterio de Economı́a y Competitividad under Contracts
MTM2012-38445, MAT2013-46308, and Junta de Castilla y
Leon SA226U13.

References

[1] A. S. Fokas, “On the simplest integrable equation in 2+1,” Inverse
Problems, vol. 10, no. 2, pp. L19–L22, 1994.

[2] E. I. Shul’man, “On the integrability of equations of Davey-
Stewartson type,”Theoretical and Mathematical Physics, vol. 56,
no. 1, pp. 720–724, 1983.



Advances in Mathematical Physics 11

[3] M. Boiti, J. J. P. Leon, and F. Pempinelli, “Spectral transform for
a two spatial dimension extension of the dispersive long wave
equation,” Inverse Problems, vol. 3, no. 3, pp. 371–387, 1987.

[4] M. Boiti, F. Pempinelli, and A. Pogrebkov, “Solutions of the KPI
equation with smooth initial data,” Inverse Problems, vol. 10, no.
3, pp. 505–519, 1994.

[5] J. Villarroel and J. Prada, “Considerations on conserved quanti-
ties and boundary conditions of the 2+1-dimensional nonlinear
Schrödinger equation,” Physica D: Nonlinear Phenomena, vol.
300, pp. 15–25, 2015.

[6] S. Chakravarty, L. Kent, and T. Newmann, “Some reductions of
the self−dual Yang-Mills equations to integrable systems in 2 + 1
dimensions,” Journal of Mathematical Physics, vol. 36, no. 2, pp.
763–772, 1995.

[7] A. S. Fokas andM. J. Ablowitz, “On the inverse scattering of the
time dependent schrödinger equation and the associated KPI
equation,” Studies in AppliedMathematics, vol. 69, no. 3, pp. 211–
228, 1983.

[8] A. S. Fokas and M. J. Ablowitz, “The inverse scattering trans-
form for multidimensional (2+1) problems,” in Nonlinear Phe-
nomena, K. B. Wolf, Ed., vol. 189 of Lecture Notes in Physics, pp.
137–183, Springer, Berlin, Germany, 1983.

[9] M. J. Ablowitz and A. Fokas, “Comments on the inverse scat-
tering transform and related nonlinear evolution equations,” in
Nonlinear Phenomena, vol. 189 of Lecture Notes in Physics, pp.
4–23, Springer, Berlin, Germany, 1983.

[10] M. J. Ablowitz and P. A. Clarkson, Solitons, Non-linear Evolution
Equations & Inverse Scattering, Cambridge University Press,
Cambridge, UK, 1992.

[11] V. A. Arkadiev, A. K. Pogrebkov, and M. C. Polivanov, “Inverse
scattering transform method and soliton solutions for Davey-
Stewartson II equation,” Physica D: Nonlinear Phenomena, vol.
36, no. 1-2, pp. 189–197, 1989.

[12] V. Lipovski and V. Shirokov, “2 + 1 Toda chain. I. Inverse
scattering method,” Theoretical and Mathematical Physics, vol.
75, no. 3, pp. 555–566, 1988.

[13] J. Villarroel and M. J. Ablowitz, “On the inverse scattering
transform of the 2 + 1 Toda equation,” Physica D: Nonlinear
Phenomena, vol. 65, no. 1-2, pp. 48–70, 1993.

[14] J. Villarroel and M. J. Ablowitz, “On the initial value problem
for the KPII equation with data that do not decay along a line,”
Nonlinearity, vol. 17, no. 5, pp. 1843–1866, 2004.

[15] V. M. Galkin, D. E. Pelinovsky, and Y. A. Stepanyants, “The
structure of the rational solutions to the Boussinesq equation,”
Physica D: Nonlinear Phenomena, vol. 80, no. 3, pp. 246–255,
1995.

[16] K. A. Gorshov, D. E. Pelinovskii, and Yu. A. Stepanyants, “Nor-
mal and anomalous scattering, formation and decay of bound
states of two-dimensional solitons described by the Kadomtsev-
Petviashvili equation,” Journal of Experimental and Theoretical
Physics, vol. 77, no. 2, pp. 237–245, 1993.

[17] M. J. Ablowitz and J. Villarroel, “Solutions to the time depen-
dent Schrödinger and the Kadomtsev-Petviashvili equations,”
Physical Review Letters, vol. 78, no. 4, pp. 570–573, 1997.

[18] J. Villarroel and M. J. Ablowitz, “On the discrete spectrum of
the nonstationary Schrödinger equation and multipole lumps
of the Kadomtsev-Petviashvili I equation,” Communications in
Mathematical Physics, vol. 207, no. 1, pp. 1–42, 1999.

[19] M. J. Ablowitz and J. Villarroel, New Trends in Integrability,
Kluwer Academic, New York, NY, USA, 2004.

[20] J. Villarroel and M. J. Ablowitz, “On the discrete spectrum of
systems in the plane and the davey—stewartson II equation,”
SIAM Journal onMathematical Analysis, vol. 34, no. 6, pp. 1253–
1278, 2003.

[21] G. Biondini and S. Chakravarty, “Soliton solutions of the Kad-
omtsev-Petviashvili II equation,” Journal of Mathematical
Physics, vol. 47, no. 3, Article ID 033514, 2006.

[22] S. Chakravarty and Y. Kodama, “Soliton solutions of the KP
equation and application to shallow water waves,” Studies in
Applied Mathematics, vol. 123, no. 1, pp. 83–151, 2009.

[23] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and B. Prinari, “Inverse
scattering theory of the heat equation for a perturbed one-
soliton potential,” Journal of Mathematical Physics, vol. 43, no.
2, pp. 1044–1062, 2002.
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[26] M.Mañas and P.M. Santini, “Solutions of theDavey-Stewartson
II equation with arbitrary rational localization and nontrivial
interaction,” Physics Letters. A, vol. 227, no. 5-6, pp. 325–334,
1997.

[27] A. S. Fokas, D. E. Pelinovsky, and C. Sulem, “Interaction of
lumps with a line soliton for the DSII equation,” Physica D:
Nonlinear Phenomena, vol. 152-153, pp. 189–198, 2001.

[28] R. Radha and M. Lakshmanan, “Exotic coherent structures in
the (2 + 1)-dimensional long dispersive wave equation,” Journal
of Mathematical Physics, vol. 38, no. 1, pp. 292–299, 1997.
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[33] J.M. Cerveró and P. G. Estévez, “Miura transformation between
two non-linear equations in 2 + 1 dimensions,” Journal of
Mathematical Physics, vol. 39, no. 5, pp. 2800–2807, 1998.
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