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An analytical solution of themagnetohydrodynamic, steady, and incompressible laminar boundary layer flow in the presence of heat
and mass transfer as well as magnetic field on a cone due to a point sink by using the homotopy analysis method (HAM) has been
studied under the radiative fluid properties.The HAM produces an analytical solution of the governing self-similar nonlinear two-
point boundary layer equations.The effects of the suction/injection, magnetic, and radiation parameters over the obtained solution
have been discussed. The effects of Prandtl number on temperature and Schmidt number on concentration profiles have also been
studied. It has been observed that the temperature profiles exhibit an increasing trend with radiation in case of injection while an
opposite trend is observed in case of suction.The results obtained in the present study have also been compared numerically as well
as graphically with the corresponding results obtained by using other methods. An excellent agreement has been found between
them.The analytical solution obtained by the HAM is very near to the exact solution for a properly selected initial guess, auxiliary,
and convergence control parameters and for higher orders of deformations.

1. Introduction

In many areas of applied engineering and industry, we often
come across the boundary layer flow of a steady incompress-
ible laminar fluid flow in the presence of mass transfer and
applied magnetic field. This kind of study is of interest for
the fields of different branches of innovation, for example,
in vortex chambers, magnetohydrodynamic (MHD) power
generators, atomic reactors, and geophysical liquid flow. The
examination of the boundary layer flow of an electrically
conducting fluid on a cone because of a point sink with an
applied magnetic field is significant in the investigation of
conical nozzle or diffuser-flow problems and it was first of all
concentrated on by Choi andWilhelm [1]. Prior to this prob-
lem, Rosenhead [2] studied the same problem in the absence
of magnetic field, mass flux diffusion, and heat transfer.
Ackerberg [3] presented the series solution for the converging
motion of the viscous fluid inside a cone. Takhar et al. [4]
extended the same problem for electrically conducting fluid
and discussed the heat and mass transfer effects. Eswara et
al. [5] investigated the problem for the transient case. Eswara

and Bommaiah [6] revisited the problem by taking into
account temperature dependent viscosity. Turkyilmazoglu [7]
considered the Falkner-Skan flows past stretching boundaries
when the momentum and thermal slip boundary conditions
are allowed at the boundary. Turkyilmazoglu extended the
flow model set-up in a moving convergent channel by
Magyari [8] by taking into consideration the momentum slip
condition at the wall and found exact analytical solutions for
the converging channel, for example, wedge nozzle.

In the context of space technology and processes involv-
ing temperatures, the effects of radiation are of vital signif-
icance. Recent developments in hypersonic flights, missile
reentry, rocket combustion chambers, power plants for inter-
planetary flight, and gas cooled thermal reactors have focused
their attention on thermal radiation as a mode of energy
transfer. As a consequence of this, Vyas and Rai [9] made
an elaborate analysis of the radiative flow inside a circular
cone due to a point sink at the vertex of the cone. It is here
worth mentioning that, unlike convection/conduction, the
radiative heat transfer mechanism is rather more complex.
However, some reasonable approximations have been found
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satisfactory tomake the radiative systems solvable.Theworks
of Sparrow and Cess [10] and Howell [11] describe the
essentials of the radiative heat transfer. Many other pertinent
radiative heat transfer studies for different configurations
have also been reported by authors like Plumb et al. [12],
Hossain and Takhar [13], Raptis [14], Sedeek and Salem [15],
Al-Odat et al. [16], Prasad et al. [17], Mukhopadhyay [18],
Vyas and Srivastava [19], Vyas and Ranjan [20], Chauhan and
Kumar [21], Baoku et al. [22], Babu et al. [23], and so forth.

The objective of the present paper is to extend the work
of Takhar et al. [4] by taking into account the radiative
properties of the fluid at the wall. The flow problem which
is governed by nonlinear equations with two-point bound-
ary conditions has been solved by using HAM. Using the
recursive method derived by Liao [24, 25], rigorous recur-
sive formulae have been developed. Symbolic computation
software and high performance computers have been used
to derive the analytic solutions. The flow characteristics have
been analyzed, and the results have been comparedwith those
of [4] by setting the radiation parameter as zero.

In 1992, Liao [26] investigated the homotopy analysis
method (HAM). The strength of HAM is that it leads to con-
vergent analytic series solutions of strongly nonlinear prob-
lems faster than any other existing methods, independent of
small or large physical parameter/s involved in the problem
[27].This behaviour of HAMmakes it a superior technique to
the conventional perturbation methods. The methods such
as Adomian decomposition method [28–30], 𝛿-expansion
method [31], and Lyapunov artificial small parametermethod
[32] may not be valid for strong nonlinear problems due
to the divergent nature of their obtained solution series.
Liao [33], indeed, showed that HAM is the general case and
the Adomian decomposition method, 𝛿-expansion method
and Lyapunov artificial small parameter method are the
special cases ofHAM.Moreover, He’s homotopy perturbation
method (HPM) [34, 35] is also a special case of the HAM (cf.
Liao [36]). Actually, for some auxiliary linear operators, the
traditional HPM turns out to be the Taylor series expansion
(cf. Turkyilmazoglu [37]).

The HAM has been applied to an extensive variety of
nonlinear problems in science and engineering ever since it
was first introduced in 1992.The problems of viscous flows of
non-Newtonian fluids that have beenmainly tackled byHayat
and his coworkers [38–40] and problems of heat transfer
[41, 42] are some of the examples of applications of HAM.
Even a much wider range of applications of HAM can be
found in [27].

2. Governing Equations

We consider here the boundary layer flow of a fluid which
is electrically conducting. The flow is assumed to be steady,
laminar, incompressible, and axisymmetric in a circular cone
having three-dimensional sink at the vertex (Figure 1).

Here 𝐵0 is the magnetic field applied in 𝑧-direction and
in comparison with the fluid; it is fixed. With a specific end
goal to disregard the induced magnetic field as compared to
the applied magnetic field, the magnetic Reynolds number is
considered to be small. The temperature and concentration
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Figure 1: Schematic diagram of the flow model.

of the wall and the free stream are preserved at constant
level. Importance has been given for studying the effects of
suction/injection, magnetic, and radiation parameters and
hence they have been included in the analysis. On the other
hand, the dissipation terms and the Hall effect have been
neglected. It is also considered that the injected gas and the
boundary layer gas both possess the same physical properties
and are perfect gases. Also, the static temperature of injected
gas is equal to the wall temperature.The basic boundary layer
equations for the MHD flow due to point sink, including the
radiative effect of the fluid at the wall, are (cf. Takhar et al. [4]
and Vyas and Rai [9])

(𝑟𝑢)𝑟 + (𝑟𝑤)𝑧 = 0, (1)

𝑢𝑢𝑟 + 𝑤𝑢𝑧 = −𝜌−1𝑝𝑟 + ]𝑢𝑧𝑧 − 𝜌−1𝜎𝐵20𝑢, (2)

𝑢𝑇𝑟 + 𝑤𝑇𝑧 = 𝛼𝑇𝑧𝑧 − 1𝜌𝐶𝑝
𝜕𝑞𝑟𝜕𝑧 , (3)

𝑢𝐶𝑟 + 𝑤𝐶𝑧 = 𝐷𝐶𝑧𝑧, (4)

where

−𝜌−1𝑝𝑟 = 𝑈𝑈𝑟 + 𝜌−1𝜎𝐵20𝑈, 𝑈 = −𝑚1𝑟2 , 𝑚1 > 0. (5)

Here the subscripts 𝑟 and 𝑧 denote derivatives with respect to𝑟 and 𝑧, respectively, and 𝑝 represents the static pressure.
The boundary conditions are given by

𝑢 (𝑟, 0) = 0,
𝑤 (𝑟, 0) = 𝑤𝑤,
𝑇 (𝑟, 0) = 𝑇𝑤,
𝐶 (𝑟, 0) = 𝐶𝑤,
𝑢 (𝑟,∞) = 𝑈,
𝑇 (𝑟,∞) = 𝑇∞,
𝐶 (𝑟,∞) = 𝐶∞.

(6)

We now use the following similarity transformations in (1)–
(6):

𝜂 = 𝑚11/2𝑧(2]𝑟2)1/2 ,
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𝑟𝑢 = Ψ𝑧,
𝑟𝑤 = −Ψ𝑟,
Ψ = − (2𝑚1]𝑟)1/2 𝑓
𝑢 = 𝑈𝑓󸀠 (𝜂) ,
𝑤 = (𝑚1]2𝑟3 )

1/2 (𝑓 − 3𝜂𝑓󸀠)
𝑇 − 𝑇∞𝑇𝑤 − 𝑇∞ = 𝑔 (𝜂) ,
𝐶 − 𝐶∞𝐶𝑤 − 𝐶∞ = 𝐺 (𝜂) ,

𝑀 = 2𝜎𝐵20𝑟3𝑚1𝜌 ,
Pr = ]𝛼 ,
Sc = ]𝐷,
𝐾𝑤 = 𝑤𝑤 ( 2𝑟3𝑚1])

1/2 ,
𝛼 = 𝜅𝜌𝐶𝑝 ,
𝑁 = 16𝛾∗𝑇∞33𝛼∗𝜅 .

(7)
Here 𝑟 is the distance along the cone from the vertex and𝑢 is the corresponding velocity component along 𝑟 direction,

whereas 𝑧 is the distance perpendicular to the cone; 𝑤 is
velocity component along 𝑧 direction; 𝑅 is radius of the cone
given by 𝑅 = 𝑟 sin𝜙, where 𝜙 is the semivertical angle of the
cone (see Figure 1);Ψ is the dimensional stream function and𝑓 represents the corresponding dimensionless stream func-
tion; 𝐶 is the dimensional concentration and 𝐺 is the corre-
sponding dimensionless concentration; 𝑇 is the dimensional
temperature while 𝑔 represents dimensionless temperature;𝜎, 𝜌, and ] are the electrical conductivity, density, and kine-
matic viscosity, respectively; 𝜂 represents similarity variable;𝐵0 stands for magnetic field; 𝐷 and 𝛼 represent the binary
diffusion coefficient and thermal diffusivity, respectively; 𝑚1
is the strength of point sink; 𝑀 is the magnetic parameter;𝑈 represents the inviscid flow velocity; 𝐾𝑤 denotes the mass
transfer parameter; 𝐶𝑝 is the specific heat at constant pres-
sure; 𝑞𝑟 is the radiative heat flux; 𝜅 is coefficient of thermal
conductivity; 𝑁 is radiation parameter; 𝛾∗ is the Stefan-
Boltzmann constant, and 𝛼∗ is the mean absorption coeffi-
cient.

By using the Rosseland approximation (Brewster [43]),
the radiative heat flux is given by

𝑞𝑟 = −4𝛾∗3𝛼∗ (𝜕𝑇
4

𝜕𝑧 ) . (8)

Here it should be noted that by using the Rosseland approxi-
mation, the present analysis is limited to optically thick fluids.
If the temperature differences within the flow are sufficiently
small, then (8) can be linearized by expanding 𝑇4 into the
Taylor series about 𝑇∞, which after neglecting the higher
order terms takes the form

𝑇4 = 4𝑇∞3𝑇 − 3𝑇∞4. (9)

In view of the result given in (9) and the similarity transfor-
mations given in (7), the continuity equation (1) is satisfied
identically, and (2)–(4) get reduced to self-similar equations
given by

𝑓󸀠󸀠󸀠 − 𝑓𝑓󸀠󸀠 + 4 (1 − 𝑓󸀠2) +𝑀(1 − 𝑓󸀠) = 0, (10)

(1 + 𝑁) 𝑔󸀠󸀠 − Pr𝑓𝑔󸀠 = 0, (11)

𝐺󸀠󸀠 − Sc𝑓𝐺󸀠 = 0. (12)

Also, the boundary conditions (6) get reduced to

𝑓 (0) = 𝐾𝑤,
𝑓󸀠 (0) = 0,
𝑓󸀠 (∞) = 1,

(13)

𝑔 (0) = 1,
𝑔 (∞) = 0, (14)

𝐺 (0) = 1,
𝐺 (∞) = 0, (15)

where Sc and Pr are Schmidt and Prandtl numbers, respec-
tively; the subscripts 𝑤 denote conditions at the wall and∞ denote conditions in the free stream; and prime denotes
derivative with respect to 𝜂.

As pointed out by Rosenhead [2], it is to be noted
that the abovementioned boundary layer approximation is
not valid in the immediate neighbourhood of the hole (cf.
Rosenhead [2], pp. 428). Also for our mathematical analysis,
it is remarked that the mass transfer parameter 𝐾𝑤 is treated
as constant (Ref. Takhar et al. [4]). Also, the magnetic
parameter𝑀 can be treated locally as a constant for a fixed𝑟 as it was first considered by Takhar et al. [44] and then by
Takhar and Nath [45]. Also in a sink flow, 𝐾𝑤 < 0 is referred
to as suction and𝐾𝑤 > 0 as injection (cf. Takhar et al. [4] and
Schlichting and Gersten [46], pp. 294–298).

3. Homotopy Analysis

3.1. Solution for Skin Friction ((10) and (13)). In order to
find the analytic solution of (10) along with the boundary
conditions given by (13), we first select the linear operatorL
as

L = 𝜕3𝜕𝜂3 + 𝛾 𝜕
2

𝜕𝜂2 , (16)
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and we choose 𝑞 as an embedding parameter. We, now,
construct the following zeroth-order deformation equation:

(1 − 𝑞)L [𝑓 (𝜂, ℎ, 𝛾, 𝑞) − 𝑓0 (𝜂)]
= 𝑞ℎN [𝑓 (𝜂, ℎ, 𝛾, 𝑞)]

𝜂 ∈ [0, +∞) , ℎ ̸= 0, 𝛾 > 0, 𝑞 ∈ [0, 1] ,
(17)

with boundary conditions

𝑓 (0, ℎ, 𝛾, 𝑞) = 𝐾𝑤,
𝑓󸀠 (0, ℎ, 𝛾, 𝑞) = 0,

𝑓󸀠 (+∞, ℎ, 𝛾, 𝑞) = 1,
ℎ ̸= 0, 𝛾 > 0, 𝑞 ∈ [0, 1] ,

(18)

where the prime denotes the partial derivative with respect to𝜂 and
N [𝑓 (𝜂, ℎ, 𝛾, 𝑞)] = 𝜕3𝑓 (𝜂, ℎ, 𝛾, 𝑞)𝜕𝜂3

− 𝑓 (𝜂, ℎ, 𝛾, 𝑞) 𝜕2𝑓 (𝜂, ℎ, 𝛾, 𝑞)𝜕𝜂2
+ 4(1 − (𝜕𝑓 (𝜂, ℎ, 𝛾, 𝑞)𝜕𝜂 )2)
+𝑀(1 − 𝜕𝑓 (𝜂, ℎ, 𝛾, 𝑞)𝜕𝜂 ) .

(19)

When 𝑞 = 0, we have
L [𝑓 (𝜂, ℎ, 𝛾, 0) − 𝑓0 (𝜂)] = 0 󳨐⇒

𝑓 (𝜂, ℎ, 𝛾, 0) = 𝑓0 (𝜂) ,
𝜂 ∈ [0, +∞) , ℎ ̸= 0, 𝛾 > 0

(20)

and when 𝑞 = 1, we have
0 =N [𝑓 (𝜂, ℎ, 𝛾, 1)] 󳨐⇒

𝑓 (𝜂, ℎ, 𝛾, 1) = 𝑓 (𝜂) ,
𝜂 ∈ [0, +∞) , ℎ ̸= 0, 𝛾 > 0.

(21)

Hence, as 𝑞 varies from 0 to 1, 𝑓(𝜂, ℎ, 𝛾, 𝑞) varies from
initial solution 𝑓0(𝜂) to the exact solution 𝑓(𝜂).

Here we choose 𝑓0(𝜂), the initial guess, such that it
satisfiesL(𝑓0(𝜂)) = 0 and the boundary conditions (13). We
select

L [𝐶1 + 𝐶2𝜂 + 𝐶3𝑒−𝛾𝜂] = 0, (22)

𝑓0 (𝜂) = 𝑒−𝛾𝜂 − 1𝛾 + 𝐾𝑤 + 𝜂,
𝛾 > 0.

(23)

We here assume that the 𝑘th-order deformation derivative
given by

𝑓[𝑘]0 (𝜂, ℎ, 𝛾) = 𝜕𝑘𝑓 (𝜂, ℎ, 𝛾, 𝑞)𝜕𝑞𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0 , (𝑘 ≥ 1) (24)

exists. By using (20) and Taylor’s formula, we have

𝑓 (𝜂, ℎ, 𝛾, 𝑞) = 𝑓0 (𝜂) + +∞∑
𝑘=1
[𝑓[𝑘]0 (𝜂, ℎ, 𝛾)𝑘! ] 𝑞𝑘. (25)

We here assume that both ℎ and 𝛾 are properly chosen
in such a way that the series (25) is convergent at 𝑞 = 1.
From (21) and (23) at 𝑞 = 1, we find the following relation-
ship between known initial solution 𝑓0(𝜂) and the unknown
solution 𝑓(𝜂):
𝑓 (𝜂) = 𝑓0 (𝜂) + +∞∑

𝑘=1

𝑓[𝑘]0 (𝜂, ℎ, 𝛾)𝑘! = +∞∑
𝑘=0
𝜑𝑘 (𝜂, ℎ, 𝛾) , (26)

where we define

𝜑0 (𝜂, ℎ, 𝛾) = 𝑓0 (𝜂) ,
𝜑𝑘 (𝜂, ℎ, 𝛾) = 𝑓[𝑘]0 (𝜂, ℎ, 𝛾)𝑘! , 𝑘 ≥ 1. (27)

In order to find the𝑚th-order deformation equation, we first
differentiate (17) and (18)𝑚 times with respect to 𝑞 and then
we set 𝑞 = 0, and finally we divide it by𝑚!, to obtain
L [𝜑𝑚 − 𝜒𝑚𝜑𝑚−1] =N𝑚 (𝜂) ,

𝑚 ≥ 1, 𝜂 ∈ [0, +∞) , (28)

with the corresponding boundary conditions

𝜑𝑚 (0, ℎ, 𝛾) = 𝜑󸀠𝑚 (0, ℎ, 𝛾) = 𝜑󸀠𝑚 (+∞, ℎ, 𝛾) = 0,
𝑚 ≥ 1, ℎ ̸= 0, 𝛾 > 0, (29)

N1 (𝜂) = ℎ [𝜑󸀠󸀠󸀠0 (𝜂, ℎ, 𝛾) − 𝜑0 (𝜂, ℎ, 𝛾) 𝜑󸀠󸀠0 (𝜂, ℎ, 𝛾)
+ 4 (1 − 𝜑󸀠20 (𝜂, ℎ, 𝛾)) +𝑀(1 − 𝜑󸀠0 (𝜂, ℎ, 𝛾))] , (30)

N𝑚 (𝜂) = ℎ[𝜑󸀠󸀠󸀠𝑚−1 (𝜂, ℎ, 𝛾)
− 𝑚−1∑
𝑘=0
𝜑𝑚−1−𝑘 (𝜂, ℎ, 𝛾) 𝜑󸀠󸀠𝑘 (𝜂, ℎ, 𝛾)

+ 4𝑚−1∑
𝑘=0
𝜑󸀠𝑘 (𝜂, ℎ, 𝛾) 𝜑󸀠𝑚−1−𝑘 (𝜂, ℎ, 𝛾)

+ 𝑀𝜑󸀠𝑚−1 (𝜂, ℎ, 𝛾)] , 𝑚 > 1,

(31)

where prime denotes the partial derivative with respect to 𝜂.
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Using (23) and (30), we can first calculateN1(𝜂) and then
by solving linear equation (28) with boundary conditions
(29), we can find 𝜑1(𝜂, ℎ, 𝛾). In a similar manner, we can
calculateN2(𝜂) by using (31) and then find 𝜑2(𝜂, ℎ, 𝛾) and so
on. In this way, we solve first few deformation equations by
using symbolic software MATHEMATICA and observe that𝜑𝑚(𝜂, ℎ, 𝛾) can be explicitly expressed as

𝜑𝑚 (𝜂, ℎ, 𝛾) = 𝑚+1∑
𝑘=0
𝜓𝑚,𝑘 (𝜂, ℎ, 𝛾) 𝑒−𝑘𝛾𝜂, (32)

where

𝜓0,0 (𝜂, ℎ, 𝛾) = 𝑏00,0 + 𝑏10,0𝜂,
𝜓0,1 (𝜂, ℎ, 𝛾) = 𝑏00,1,
𝜓𝑚,0 (𝜂, ℎ, 𝛾) = 𝑏0𝑚,0, 𝑚 ≥ 1,
𝜓𝑚,𝑘 (𝜂, ℎ, 𝛾) = 2(𝑚+1)−𝑘∑

𝑘=0
𝑏𝑖𝑚,𝑘𝜂𝑖,

𝑚 ≥ 1, 1 ≤ 𝑘 ≤ 𝑚 + 1.

(33)

The first order of approximation of (10) and (13), calculated
by using MATHEMATICA, is

𝜑1 (𝜂, ℎ, 𝛾) = 5ℎ𝑒−2𝛾𝜂4𝛾3 − 23ℎ4𝛾3 + ℎ𝛾 + ℎ𝐾𝛾2 − ℎ𝑀𝛾3
+ 𝑒−𝛾𝜂 ( 9ℎ2𝛾3 + 7𝜂ℎ𝛾2 − 𝜂

2ℎ2𝛾 − ℎ𝛾 − 𝜂ℎ − ℎ𝐾𝛾2
− 𝜂ℎ𝐾𝛾 + ℎ𝑀𝛾3 + 𝜂ℎ𝑀𝛾2 ) .

(34)

After knowing the structure (32) of 𝜑𝑚(𝜂, ℎ, 𝛾), we deduce
a recurrence formula for the coefficients 𝑏𝑘𝑚,𝑛 of 𝜑𝑚(𝜂, ℎ, 𝛾)
rigorously. Kindly refer to the Appendix for details. Hence,
we obtain an analytic solution explicitly for the MHD flow
equations with heat and mass transfer due to a point sink,
governed by (10) and (13), as

𝑓 (𝜂) = lim
𝑁→+∞

𝑁∑
𝑘=0
𝜑𝑚 (𝜂, ℎ, 𝛾) . (35)

The solution (35) in the form of infinite series contains two
parameters ℎ (ℎ ̸= 0) and 𝛾 (𝛾 > 0).
3.2. Convergence of the Analytic Solution. As suggested by
Liao [33], the auxiliary parameter ℎ plays a significant role in
controlling the convergence and the rate of approximation for
the HAM. It is also to be noted that the HAMprovides a great
deal of flexibility and freedom for choosing appropriate val-
ues of ℎ and 𝛾 so as to ensure the convergence of the solution,
obtained in the form of infinite series, to 𝑓(𝜂). To choose ℎ,
Liao introduced the concept of ℎ-curve that gives an admis-
sible range, called convergence region, for the selection of the
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Figure 2: ℎ-curve for𝑀 = 1, 𝐾𝑤 = 0, and 𝛾 = 2.
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Figure 3: ℎ-curve for𝑀 = 1, 𝐾𝑤 = 2, and 𝛾 = 2.

suitable values of ℎ. It is here to be emphasized that there
exists a value of parameter 𝛾 for every ℎ belonging to the con-
vergence region which is the most suitable value in the sense
that it guarantees the fastest convergence of the given series.

In the present analysis, the values of 𝑓󸀠󸀠(0) for each
particular solution of the distinct magnetic parameter 𝑀
and mass transfer parameter 𝐾𝑤 have been found by way of
selecting suitable values of ℎ and 𝛾 with the help of ℎ-curves
given in Figures 2–4. These values have been found after
appropriate orders of approximations.These values agree well
with the corresponding numerical values of Takhar et al. [4]
who tackled the problem by shooting method in conjunction
with Runge-Kutta fourth order method. Figure 7 is also an
indicator of the fact that 𝑓󸀠(𝜂) obtained from the series given
in (35) is also in good agreementwith Takhar et al.’s numerical
solution.

It is obvious that if (35) converges, its second-order
derivative with respect to 𝜂 at 𝜂 = 0, say,

+∞∑
𝑘=0
𝜑󸀠󸀠𝑘 (0, ℎ, 𝛾) (36)

must converge. By using (A.5), we have its𝑚th-order approx-
imation as

𝜎𝑚 = 𝑚∑
𝑘=0
𝜑󸀠󸀠𝑘 (0, ℎ, 𝛾) = 𝑚∑

𝑘=0

𝑘+1∑
𝑛=1
𝑐0𝑘,𝑛. (37)
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Figure 4: ℎ-curve for𝑀 = 1, 𝐾𝑤 = −2, and 𝛾 = 3.
In this context, it is worth mentioning that Turkyilma-

zoglu [47] has also proposed a new and novel way of finding
the optimum value of convergence control parameter ℎ to
ensure the convergence of the HAM series in the fastest
manner. The proposed method constitutes an alternative to
the classical ℎ-level curves method (refer to Liao [33]) and
the squared residual approach proposed by Liao [48] for the
determination of optimal value of the convergence control
parameter.

3.3. Solutions for Temperature and Concentration ((11)–(15)).
The heat and concentration equations can now easily be
solved, for the velocity equation (10) with boundary condi-
tions (13) already possesses a suitable and accurate solution.
It is very much precise to obtain the solution of (11) by using
boundary conditions (14), as

𝑔 (𝜂) = 1 − ∫𝜂0 𝑒Pr
∗ ∫
𝑥

0
𝑓(𝑦)𝑑𝑦𝑑𝑥

∫∞0 𝑒Pr∗ ∫𝑥0 𝑓(𝑦)𝑑𝑦𝑑𝑥 ,

𝑔󸀠 (𝜂) = − 𝑒Pr∗ ∫𝜂0 𝑓(𝑦)𝑑𝑦
∫∞0 𝑒Pr∗ ∫𝑥0 𝑓(𝑦)𝑑𝑦𝑑𝑥 .

(38)

So, the heat transfer parameter is given by

𝑔󸀠 (0) = − 1
∫∞0 𝑒Pr∗ ∫𝑥0 𝑓(𝑦)𝑑𝑦𝑑𝑥 , (39)

where Pr∗ = Pr /(𝑁 + 1). Similarly, the corresponding solu-
tion of (12), along with the conditions (15), can be obtained
from (38)-(39) simply by replacing 𝑔 by 𝐺 and Pr∗ by Sc.

4. Results and Discussion

By using the recurrence formula (37), the numerical values of
the skin-friction parameter𝑓󸀠󸀠(0) for different values of mag-
netic parameter𝑀 and mass transfer parameter𝐾𝑤 (for suc-
tion and injection both) have been calculated and are given
in Tables 1 and 2. From Table 1, it is obvious that the skin-
friction parameter 𝑓󸀠󸀠(0) increases along with the increasing
values of the mass suction parameter 𝐾𝑤(< 0) and magnetic
parameter (𝑀). From Table 2, it is clear that the skin-friction

Table 1: Values of 𝑓󸀠󸀠(0) for different values of𝑀 and 𝐾𝑤 < 0.
𝑀 𝐾𝑤 Present Takhar et al. [4]

0 −2 3.5211 3.5182−1 2.8517 2.8772

0.5 −2 3.6172 3.6162−1 2.9554 3.0231

1 −2 3.7098 3.7124−1 3.0542 3.1121

Table 2: Values of 𝑓󸀠󸀠(0) for different values of𝑀 and 𝐾𝑤 > 0.
𝑀 𝐾𝑤 Present Takhar et al. [4] Rosenhead [2]

0
0 2.2721 2.2728

2.2731 1.7861 1.7505
2 1.4167 1.4121

0.5
0 2.3827 2.392
1 1.9117 1.973
2 1.5232 1.5529

1
0 2.4604 2.4552
1 2.0158 2.0825
2 1.6252 1.6345

parameter 𝑓󸀠󸀠(0) increases along with the increasing values
of the magnetic parameter (𝑀) but decreases with the
increasing values of the mass injection parameter 𝐾𝑤(> 0).
The reason for such a behaviour is that both the suction
and the magnetic parameters reduce the thickness of the
momentum boundary layer which results in an increase in
skin friction. The effect of injection is just opposite.

The numerical values of the skin-friction parameter𝑓󸀠󸀠(0) for the present case and for the case of Takhar et
al. [4] have been given in the Tables 1 and 2 for different
values of mass suction/injection and magnetic parameters.
These results are in excellent agreement with each other. The
skin-friction parameter 𝑓󸀠󸀠(0) and the mass flux diffusion
parameter (−𝑔󸀠(0)) have been plotted in Figures 5 and
6, respectively, for different values of the magnetic and
mass transfer parameters. The graphs thus obtained exhibit
excellent agreement with the corresponding graphical results
obtained by [4] who visited the problem in the absence of
radiation parameter (𝑁).

From Figure 6, it is evident that the heat transfer parame-
ter (−𝑔󸀠(0)) decreases for increasing values of the magnetic
parameter but increases with increasing values of mass
suction (𝐾𝑤 < 0). On the other hand, the parameter −𝑔󸀠(0)
decreases with the increasing values of both themagnetic and
mass injection parameters. As a result, the suction (𝐾𝑤 < 0)
reduces the thermal boundary layer, whereas the injection
(𝐾𝑤 > 0) and the magnetic parameters increase them.

It is here to be noted that the mass flux diffusion
parameter (−𝐺󸀠(0)) is similar to the heat transfer parameter
(−𝑔󸀠(0)) in the absence of radiative fluid properties (i.e.,
for 𝑁 = 0). So, the parameter −𝐺󸀠(0) will exhibit similar
behaviour as −𝑔󸀠(0) shown in Figure 6.
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Figure 5: Variation of skin friction with𝐾𝑤 for𝑀 = 0, 1, 2 (cf. [4]).
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Figure 6: Variation of heat transfer and mass diffusion parameters
with 𝐾𝑤 for𝑀 = 0, 1, 2 and Pr = Sc = 0.7, 𝑁 = 0 (cf. with [4]).

From Figure 7, it is evident that the velocity profiles
exhibit an increasing trendwith increasing values of themag-
netic parameter (𝑀) in both the cases of suction and injec-
tion.

From Figure 7, it is also clear that the velocity profiles due
to suction (𝐾𝑤 < 0) are steeper than those due to injection
(𝐾𝑤 > 0).

As the velocity increases with an increase in magnetic
parameter (𝑀), the thickness of the momentum boundary
layer also decreases. This happens due to Lorentz’s force
arising from the interaction of themagnetic and electric fields
during the motion of the electrically conducting fluid.

In Figure 8, the nature of temperature profiles with the
Prandtl number (Pr) for a fixed value of magnetic parameter
(𝑀) has been studied in the absence of the radiative fluid
properties (i.e., 𝑁 = 0). From Figure 8, it is clear that
the Prandtl number Pr and hence the Schmidt number Sc,
respectively, have significant effects on temperature and con-
centration profiles. Both Pr and Sc, respectively, increase the
temperature and concentration profiles in case of injection.
An opposite trend is observed in case of suction.
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Figure 7: Variation of velocity profiles with 𝐾𝑤 (−2, 0, 2) for𝑀 =0, 1, 2.
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Figure 8: Variation of temperature profiles for 𝑀 = 1, Pr (=0.7, 7), 𝑁 = 0, and 𝐾𝑤 (= −2, 0, 2).

In Figure 9, the effects of suction and injection parameters
on temperature profiles have been studied for fixed values of
the magnetic parameter (𝑀), radiation parameter (𝑁), and
Prandtl number (Pr). In both the cases of suction and injec-
tion, the temperature profiles are showing a decreasing trend
along with the similarity variable 𝜂. However, the decreasing
trend is more effective in case of suction as compared to that
of injection.

Figures 10 and 11 show the variation of temperature
profiles with Prandtl number Pr for fixed values of the mag-
netic and radiation parameters. Figure 10 shows that the tem-
perature profiles exhibit an increasing trend with increasing
Pr in case of injection. But an opposite trend is observed in
case of suction, as is clear from the Figure 11.

In Figures 12 and 13, the variation of the temperature
profiles along with the radiation parameter (𝑁) has been
shown for fixed values of magnetic parameter (𝑀) and
Prandtl number (Pr) in cases of injection and suction both.
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Figure 9: Variation of temperature profiles with𝐾𝑤 (= −2, 0, 2) for𝑀 = 𝑁 = 1, Pr = 0.7.
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Figure 10: Variation of temperature profiles with Pr for𝑀 = 𝑁 = 1
and 𝐾𝑤 = 2.

From Figure 12, it is obvious that the temperature profiles
exhibit an increasing trend with increasing values of 𝑁 in
case of injection. But an opposite trend is observed in case
of suction (see Figure 13).

5. Concluding Remarks

(1) Our results for 𝑁 = 0 have been found in good
agreement with those obtained by Takhar et al. [4]
which verifies the great potential and validity of the
HAM.

(2) The skin-friction increases with increasing magnetic
field.The skin friction is greater for suction parameter(𝐾𝑤 < 0) as compared to injection parameter (𝐾𝑤 >0).

(3) The skin-friction (𝑓󸀠󸀠(0)), heat transfer parameter
(−𝑔󸀠(0)), and mass flux diffusion parameter (−𝐺󸀠(0))
decrease by injection (𝐾𝑤 > 0) and increase by suc-
tion (𝐾𝑤 < 0).
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Figure 11: Variation of temperature profiles with Pr for𝑀 = 𝑁 = 1
and 𝐾𝑤 = −2.
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Figure 12: Variation of temperature profiles with𝑁 for𝑀 = 1, Pr =0.7, and 𝐾𝑤 = 2.

(4) The effect of magnetic field on the skin friction, heat
transfer, and mass flux diffusion is less than the effect
of mass transfer.

(5) The temperature and concentration profiles get
affected by Prandtl number and Schmidt number,
respectively.

(6) To get better results, that is, to get better approxi-
mations, HAM can offer us large flexibility and great
freedom to choose better auxiliary linear operator
(L), nonzero auxiliary parameters (ℎ), and spatial-
scale parameter (𝛾) for satisfying the rule for solution
expression and initial approximations.

(7) With the help of high-speed computers and symbolic
computation software like MATHEMATICA, Maple,
and so forth, the HAMmight become more powerful
and perfect analytic tool to solve rigorous non-linear
problems in science and engineering.

(8) HAM is much superior and accurate method as
compared to the shooting method used by Takhar et
al. [4] to solve the present problem, for the shooting
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Figure 13: Variation of temperature profiles with𝑁 for𝑀 = 1, Pr =0.7, and 𝐾𝑤 = −2.
method gives numerical solution to the problem and
HAM gives an analytic solution very near to the exact
solution of the problem. So, the results obtained in the
present study by using HAM are more credible than
those of Takhar et al. [4]. The essence of the shooting
method to solve a boundary value problem (BVP) is
to convert it into a system of initial value problems
where systematic guesses are made for unknown
quantities till the end conditions are satisfied. As a
consequence of this, this method involves a large
number of repetitions if the initial value of the step
size (ℎ, say) is far away from the optimal value. So, for
the solution of every boundary value problem, there
is an optimum step size. For large ℎ, the accuracy in
the results diminishes, and if ℎ is too small, the round-
off errors would dominate and reduce the accuracy of
results.

Appendix

Derivation of the Coefficients in (32)

(i) It is to be noted that the real valued function 𝜓𝑚,𝑘(𝜂, ℎ, 𝛾)
is defined by (33) and the initial guess 𝑓0(𝜂) defined in (23)
has the same structure as (32).

(ii) It can be proved that 𝜑𝑚(𝜂, ℎ, 𝛾) too has the same
structure as (32), if we consider that the (𝑚 − 1) solutions𝜑𝑘(𝜂, ℎ, 𝛾) (𝑘 = 0, 1, 2, 3, . . . , 𝑚 − 1) have the same structure
as (32).

We redefine the real function 𝜓𝑚,𝑘(𝜂, ℎ, 𝛾) by introducing𝜆𝑖𝑚,𝑘 for the sake of ease of calculations as (cf. Liao [25])
𝜓𝑚,𝑘 (𝜂, ℎ, 𝛾) = 2(𝑚+1)−𝑘∑

𝑘=0
𝜆𝑖𝑚,𝑘𝑏𝑖𝑚,𝑘𝜂𝑖,

0 ≤ 𝑘 ≤ 𝑚 + 1, 𝑚 ≥ 0,
(A.1)

where

𝜆𝑖𝑚,𝑘 =
{{{{{{{{{{{{{{{{{{{{{

0, 𝑖 = 𝑗 = 0, 𝑘 ≥ 2
0, 𝑖 > 0, 𝑗 = 0, 𝑘 ≥ 1
0, 𝑗 > 𝑖 + 1
0, 𝑘 > 2 (𝑖 + 1) − 𝑗
1, otherwise.

(A.2)

Now we compute 𝜑󸀠𝑚(𝜂, ℎ, 𝛾), 𝜑󸀠󸀠𝑚(𝜂, ℎ, 𝛾), 𝜓󸀠𝑚,𝑘(𝜂, ℎ, 𝛾), and𝜓󸀠󸀠𝑚,𝑘(𝜂, ℎ, 𝛾) as follows:
𝜑󸀠𝑚 (𝜂, ℎ, 𝛾) = 𝑚+1∑

𝑘=0
[𝜓󸀠𝑚,𝑘 − 𝑘𝛾𝜓𝑚,𝑘] 𝑒−𝑘𝛾𝜂,

𝜑󸀠󸀠𝑚 (𝜂, ℎ, 𝛾)
= 𝑚+1∑
𝑘=0
[𝜓󸀠󸀠𝑚,𝑘 − 2𝑘𝛾𝜓󸀠𝑚,𝑘 + (𝑘𝛾)2 𝜓𝑚,𝑘] 𝑒−𝑘𝛾𝜂,

𝜓󸀠𝑚,𝑘 (𝜂, ℎ, 𝛾) = 2(𝑚+1)−𝑘∑
𝑖=0

(𝑖 + 1) 𝜆𝑖+1𝑚,𝑘𝑏𝑖+1𝑚,𝑘𝜂𝑖,
𝜓󸀠󸀠𝑚,𝑘 (𝜂, ℎ, 𝛾) = 2(𝑚+1)−𝑘∑

𝑖=0
(𝑖 + 2) (𝑖 + 1) 𝜆𝑖+2𝑚,𝑘𝑏𝑖+2𝑚,𝑘𝜂𝑖.

(A.3)

By using (A.1)–(A.3), we have

𝜑󸀠𝑚 (𝜂, ℎ, 𝛾) = 𝑚+1∑
𝑘=0
(2(𝑚+1)−𝑘∑
𝑖=0

𝑎𝑖𝑚,𝑘𝜂𝑖)𝑒−𝑘𝛾𝜂, (A.4)

𝜑󸀠󸀠𝑚 (𝜂, ℎ, 𝛾) = 𝑚+1∑
𝑘=0
(2(𝑚+1)−𝑘∑
𝑖=0

𝑐𝑖𝑚,𝑘𝜂𝑖)𝑒−𝑘𝛾𝜂, (A.5)

𝜑󸀠󸀠󸀠𝑚 (𝜂, ℎ, 𝛾) = 𝑚+1∑
𝑘=0
(2(𝑚+1)−𝑘∑
𝑖=0

𝑑𝑖𝑚,𝑘𝜂𝑖)𝑒−𝑘𝛾𝜂, (A.6)

where

𝑎𝑖𝑚,𝑘 = (𝑖 + 1) 𝜆𝑖+1𝑚,𝑘𝑏𝑖+1𝑚,𝑘 − (𝑘𝛾) 𝜆𝑖𝑚,𝑘𝑏𝑖𝑚,𝑘,
𝑐𝑖𝑚,𝑘 = (𝑖 + 1) (𝑖 + 2) 𝑏𝑖+2𝑚,𝑘𝜆𝑖+2𝑚,𝑘

− 2 (𝑘𝛾) (𝑖 + 1) 𝑏𝑖+1𝑚,𝑘𝜆𝑖+1𝑚,𝑘 + (𝑘𝛾)2 𝑏𝑖𝑚,𝑘𝜆𝑖𝑚,𝑘,
𝑑𝑖𝑚,𝑘 = (𝑖 + 1) 𝜆𝑖+1𝑚,𝑘𝑐𝑖+1𝑚,𝑘 − (𝑘𝛾) 𝜆𝑖𝑚,𝑘𝑐𝑖𝑚,𝑘.

(A.7)

Now we build recurrence formulae for 𝜑𝑚−1−𝑘𝜑󸀠󸀠𝑘 , 𝜑󸀠𝑚−1−𝑘𝜑󸀠𝑘
in order to find N𝑚. When 0 ≤ 𝑘 ≤ 𝑚 − 1, we get by using
(32), (A.2), and (A.5)

𝜑𝑚−1−𝑘𝜑󸀠󸀠𝑘 = [𝑚−𝑘∑
𝑟=0
(2(𝑚−𝑘)−𝑟∑
𝑠=0

𝜆𝑠𝑚−𝑖−𝑘,𝑟𝑏𝑠𝑚−1−𝑘,𝑟𝜂𝑠)𝑒−𝑟𝛾𝜂][[
𝑘+1∑
𝑗=1
(2(𝑘+1)−𝑗∑
𝑖=0

𝑐𝑖𝑘,𝑗𝜂𝑖)𝑒−𝑗𝛾𝜂]]
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= 𝑘+1∑
𝑗=1

𝑚−𝑘∑
𝑟=0
(2(𝑘+1)−𝑗∑
𝑖=0

2(𝑚−𝑘)−𝑟∑
𝑠=0

𝑐𝑖𝑘,𝑗𝜆𝑠𝑚−1−𝑘,𝑟𝑏𝑠𝑚−1−𝑘,𝑟𝜂𝑖+𝑠)𝑒−(𝑗+𝑟)𝛾𝜂

= 𝑚+1∑
𝑛=1

min{𝑛,𝑘+1}∑
𝑗=max{1,𝑛−(𝑚−𝑘)}

(2(𝑚+1)−𝑛∑
𝑝=0

min{𝑝,2(𝑘+1)−𝑗}∑
𝑖=max{0,𝑝−2(𝑚−𝑘)+𝑛−𝑗}

𝑐𝑖𝑘,𝑗𝜆𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗𝑏𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗𝜂𝑝)𝑒−𝑛𝛾𝜂

= 𝑚+1∑
𝑛=1
(2(𝑚+1)−𝑛∑
𝑝=0

( min{𝑛,𝑘+1}∑
𝑗=max{1,𝑛−(𝑚−𝑘)}

min{𝑝,2(𝑘+1)−𝑗}∑
𝑖=max{0,𝑝−2(𝑚−𝑘)+𝑛−𝑗}

𝑐𝑖𝑘,𝑗𝜆𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗𝑏𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗)𝜂𝑝)𝑒−𝑛𝛾𝜂.
(A.8)

Hence,

−𝑚−1∑
𝑘=0
𝜑𝑚−1−𝑘𝜑󸀠󸀠𝑘 = −𝑚−1∑

𝑘=0

𝑚+1∑
𝑛=1
(2(𝑚+1)−𝑛∑
𝑝=0

( min{𝑛,𝑘+1}∑
𝑗=max{1,𝑛−(𝑚−𝑘)}

min{𝑝,2(𝑘+1)−𝑗}∑
𝑖=max{0,𝑝−2(𝑚−𝑘)+𝑛−𝑗}

𝑐𝑖𝑘,𝑗𝜆𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗𝑏𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗)𝜂𝑝)𝑒−𝑛𝛾𝜂

= −𝑚+1∑
𝑛=1
(2(𝑚+1)−𝑛∑
𝑝=0

(𝑚−1∑
𝑘=0

min{𝑛,𝑘+1}∑
𝑗=max{1,𝑛−(𝑚−𝑘)}

min{𝑝,2(𝑘+1)−𝑗}∑
𝑖=max{0,𝑝−2(𝑚−𝑘)+𝑛−𝑗}

𝑐𝑖𝑘,𝑗𝜆𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗𝑏𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗)𝜂𝑝)𝑒−𝑛𝛾𝜂

= −𝑚+1∑
𝑛=1
(2(𝑚+1)−𝑛∑
𝑝=0

𝛿𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂,

(A.9)

where

𝛿𝑝𝑚,𝑛 = −𝑚−1∑
𝑘=0

min{𝑛,𝑘+1}∑
𝑗=max{1,𝑛−(𝑚−𝑘)}

min{𝑝,2(𝑘+1)−𝑗}∑
𝑖=max{0,𝑝−2(𝑚−𝑘)+𝑛−𝑗}

𝑐𝑖𝑘,𝑗𝜆𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗𝑏𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗 ∀1 ≤ 𝑛 ≤ 𝑚 + 1, (A.10)

0 ≤ 𝑝 ≤ 2(𝑚 + 1) − 𝑛.
Here, we point out that 𝛿2𝑚+1𝑛,1 = 0 for all 𝑚 ≥ 1. Hence,

we have from (A.9) and (A.10) for𝑚 ≥ 1
−𝑚−1∑
𝑘=0
𝜑𝑚−1−𝑘𝜑󸀠󸀠𝑘 = 𝑚+1∑

𝑛=1
(2(𝑚+1)−𝑛∑
𝑝=0

𝛿𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂

= −𝑒−𝛾𝜂2𝑚+1∑
𝑝=0
𝛿𝑝𝑚,1𝜂𝑝

− 𝑚+1∑
𝑛=2
(2(𝑚+1)−𝑛∑
𝑝=0

𝛿𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂

= −𝑒−𝛾𝜂 2𝑚∑
𝑝=0
𝛿𝑝𝑚,1𝜂𝑝

− 𝑚+1∑
𝑛=2
(2(𝑚+1)−𝑛∑
𝑝=0

𝛿𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂.

(A.11)

Similarly, we have

4𝑚−1∑
𝑘=0
𝜑󸀠𝑘𝜑󸀠𝑚−1−𝑘 = 𝑚+1∑

𝑛=0
(2(𝑚+1)−𝑛∑
𝑝=0

Δ𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂, (A.12)

where
Δ𝑝𝑚,𝑛
= 4𝑚−1∑
𝑘=0

min{𝑛,𝑘+1}∑
𝑗=max{0,𝑛+𝑘−𝑚}

min{𝑝,2(𝑘+1)−𝑗}∑
𝑖=max{0,𝑝−2(𝑚−𝑘)+𝑛−𝑗}

𝑎𝑖𝑘,𝑗𝑎𝑝−𝑖𝑚−1−𝑘,𝑛−𝑗. (A.13)

Now, (A.12) leads to

4𝑚−1∑
𝑘=0
𝜑󸀠𝑘𝜑󸀠𝑚−1−𝑘 = 2𝑚+1∑

𝑝=0
(Δ𝑝𝑚,1𝜂𝑝) 𝑒−𝛾𝜂

+ 𝑚+1∑
𝑛=2
(2(𝑚+1)−𝑛∑
𝑝=0

Δ𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂.
(A.14)

But it is observed that Δ2𝑚+1𝑚,1 = 0 for𝑚 ≥ 1.
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So, we have

4𝑚−1∑
𝑘=0
𝜑󸀠𝑘𝜑󸀠𝑚−1−𝑘 = 2𝑚∑

𝑝=0
Δ𝑝𝑚,1𝜂𝑝𝑒−𝛾𝜂

+ 𝑚+1∑
𝑛=2
(2(𝑚+1)−𝑛∑
𝑝=0

Δ𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂.
(A.15)

Finally, putting all these in (31),N𝑚 becomes

N𝑚 = 𝑒−𝛾𝜂( 2𝑚∑
𝑝=0
Γ𝑝𝑚,1𝜂𝑝)

+ 𝑚+1∑
𝑛=2
(2(𝑚+1)−𝑛∑
𝑝=0

Γ𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂,
(A.16)

where, for𝑚 ≥ 1,
Γ𝑝𝑚,1 = ℎ (𝑑𝑝𝑚−1,1 + 𝛿𝑝𝑚,1 + Δ𝑝𝑚,1 +𝑀𝑎𝑝𝑚−1,1)∀0 ≤ 𝑝 ≤ 2𝑚 − 1
Γ2𝑚𝑚,1 = ℎ (𝛿2𝑚𝑚,1 + Δ2𝑚𝑚,1)

Γ𝑝𝑚,𝑚+1 = ℎ (𝛿𝑝𝑚,𝑚+1 + Δ𝑝𝑚,𝑚+1) ∀0 ≤ 𝑝 ≤ 𝑚 + 1
(A.17)

and, for 2 ≤ 𝑛 ≤ 𝑚,

Γ𝑝𝑚,𝑛 =
{{{{{{{{{

ℎ (𝑑𝑝𝑚−1,𝑛 + 𝛿𝑝𝑚,𝑛 + Δ𝑝𝑚,𝑛 +𝑀𝑎𝑝𝑚−1,𝑛) , 0 ≤ 𝑝 ≤ 2𝑚 − 𝑛
ℎ (𝛿𝑝𝑚,𝑛 + Δ𝑝𝑚,𝑛) , 2𝑚 − 𝑛 + 1 ≤ 𝑝 ≤ 2𝑚 − 𝑛 + 2
0, otherwise.

(A.18)

Hence, by substituting (A.16) into (28), we have the𝑚th-order
deformation equation

L [𝜑𝑚 − 𝜒𝑚𝜑𝑚−1] = 𝑒−𝛾𝜂( 2𝑚∑
𝑝=0
Γ𝑝𝑚,1𝜂𝑝)

+ 𝑚+1∑
𝑛=2
(2(𝑚+1)−𝑛∑
𝑝=0

Γ𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂.
(A.19)

That is,

L [𝑌𝑚] = 𝑒−𝛾𝜂( 2𝑚∑
𝑝=0
Γ𝑝𝑚,1𝜂𝑝)

+ 𝑚+1∑
𝑛=2
(2(𝑚+1)−𝑛∑
𝑝=0

Γ𝑝𝑚,𝑛𝜂𝑝)𝑒−𝑛𝛾𝜂,
(A.20)

where 𝑌𝑚 = 𝜑𝑚 − 𝜒𝑚𝜑𝑚−1 andL is given by (16).
Hence,

𝑌𝑚 = 𝐶𝑚1 + 𝐶𝑚2 𝜂 + 𝐶𝑚3 𝑒−𝛾𝜂 + 2𝑚∑
𝑝=0
Γ𝑝𝑚,1𝐿−1 (𝜂𝑝𝑒−𝛾𝜂)

+ 𝑚+1∑
𝑛=2

2(𝑚+1)−𝑛∑
𝑝=0

Γ𝑝𝑚,𝑛𝐿−1 (𝜂𝑝𝑒−𝑛𝛾𝜂) = 𝐶𝑚1 + 𝐶𝑚2 𝜂

+ 𝐶𝑚3 𝑒−𝛾𝜂 + 2𝑚∑
𝑝=0
Γ𝑝𝑚,1 1𝐷2 (𝐷 + 𝛾) (𝜂𝑝𝑒−𝛾𝜂)

+ 𝑚+1∑
𝑛=2

2(𝑚+1)−𝑛∑
𝑝=0

Γ𝑝𝑚,𝑛 1𝐷2 (𝐷 + 𝛾) (𝜂𝑝𝑒−𝑛𝛾𝜂) = 𝐶𝑚1
+ 𝐶𝑚2 𝜂 + 𝐶𝑚3 𝑒−𝛾𝜂 + 2𝑚∑

𝑝=0
Γ𝑝𝑚,1 1𝐷2 𝑒−𝛾𝜂

⋅ ∫ (𝑒𝛾𝜂𝜂𝑝𝑒−𝛾𝜂) 𝑑𝜂 + 𝑚+1∑
𝑛=2

2(𝑚+1)−𝑛∑
𝑝=0

Γ𝑝𝑚,𝑛 1𝐷2 𝑒−𝑛𝛾𝜂

⋅ ∫ (𝑒𝑛𝛾𝜂𝜂𝑝𝑒−𝑛𝛾𝜂) 𝑑𝜂 = 𝐶𝑚1 + 𝐶𝑚2 𝜂 + 𝐶𝑚3 𝑒−𝛾𝜂

+ 2𝑚∑
𝑝=0
Γ𝑝𝑚,1 1𝐷2 𝜂

𝑝+1𝑒−𝛾𝜂𝑝 + 1 + 𝑚+1∑
𝑛=2

2(𝑚+1)−𝑛∑
𝑝=0

Γ𝑝𝑚,𝑛 1𝐷2 𝑒−𝑛𝛾𝜂

⋅ ( 𝑝∑
𝑗=0

𝑝!𝑗! 𝜂𝑗
((𝑛 − 1) 𝜂)𝑝−𝑗+1) = 𝐶𝑚1 + 𝐶𝑚2 𝜂

+ 𝐶𝑚3 𝑒−𝛾𝜂 + 2𝑚∑
𝑝=0
Γ𝑝𝑚,1 ∫∫ 𝜂𝑝+1𝑒−𝛾𝜂𝑝 + 1 𝑑𝜂 𝑑𝜂

+ 𝑚+1∑
𝑛=2

2(𝑚+1)−𝑛∑
𝑝=0

Γ𝑝𝑚,𝑛
⋅ ∫∫ 𝑒−𝑛𝛾𝜂 𝑝∑

𝑗=0

𝑝!𝑗! 𝜂𝑗
((𝑛 − 1) 𝜂)𝑝−𝑗+1 𝑑𝜂 𝑑𝜂 = 𝐶𝑚1

+ 𝐶𝑚2 𝜂 + 𝐶𝑚3 𝑒−𝛾𝜂

+ 𝑒−𝛾𝜂 [[
2𝑚∑
𝑝=0
Γ𝑝𝑚,1𝜇𝑝𝑚,1 + 2𝑚+1∑

𝑘=1
𝜂𝑘( 2𝑚∑
𝑞=𝑘−1

Γ𝑝𝑚,1𝜇𝑝1,𝑘)]]
− 𝑚+1∑
𝑛=2
𝑒−𝑛𝛾𝜂 [[

2(𝑚+1)−𝑛∑
𝑘=0

𝜂𝑘(2(𝑚+1)−𝑛∑
𝑝=𝑘

Γ𝑝𝑚,𝑛𝜇𝑝𝑛,𝑘)]] ,
(A.21)
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where 𝐶𝑚1 , 𝐶𝑚2 , and 𝐶𝑚3 are the integral constants:
𝜇𝑝1,𝑘 = 𝑝! (𝑝 − 𝑘 + 2)𝑘!𝛾𝑝−𝑘+3 , 0 ≤ 𝑘 ≤ 𝑝 + 1, 𝑝 ≥ 0,
𝜇𝑝𝑛,𝑘 = 𝑝! (𝑝 − 𝑘 + 2)

𝑘! (𝑛 − 1)𝑝−𝑘+1 𝛾𝑝−𝑘+3 (1 − (1 − 1𝑛)
𝑝−𝑘+1

⋅ [(𝑝 − 𝑘 + 2) − (𝑝 − 𝑘 + 1) (1 − 1𝑛)]) ,
0 ≤ 𝑘 ≤ 𝑝, 𝑝 ≥ 0, 𝑛 ≥ 2.

(A.22)

Now applying boundary conditions 𝑓(0) = 𝐾𝑤, 𝑓󸀠(0) = 0,
and 𝑓󸀠(∞) = 1 we get

𝐶𝑚1 = 2𝑚∑
𝑝=0
Γ𝑝𝑚,1 (𝛾−1𝜇𝑝1,1 − 𝜇𝑝1,0) + 𝑚+1∑

𝑛=2
[𝑛Γ0𝑚,𝑛𝜇0𝑛,0

+ 2(𝑚+1)−𝑛∑
𝑝=1

Γ𝑝𝑚,𝑛 (𝑛𝜇𝑝𝑛,0 − 𝛾−1𝜇𝑝𝑛,1)] ,
𝐶𝑚2 = 0,
𝐶𝑚3 = −𝐶𝑚1 − 2𝑚∑

𝑝=0
Γ𝑝𝑚,1𝜇𝑝1,0 + 𝑚+1∑

𝑛=2

2(𝑚+1)−𝑛∑
𝑝=0

Γ𝑝𝑚,𝑛𝜇𝑝𝑛,0.

(A.23)

This shows that 𝜑𝑚 has the same structure as (32) and hence
the related coefficients 𝑏𝑘𝑚,𝑛 can be obtained by the following
recurrence relations:

𝑏0𝑚,0 = 𝜒𝑚𝑏0𝑚−1,0 − 𝛾−1 2𝑚∑
𝑝=0
Γ𝑝𝑚,1𝜇𝑝1,1

− 𝑚+1∑
𝑛=2
[(𝑛 − 1) Γ0𝑚,𝑛𝜇0𝑛,0

+ 2(𝑚+1)−𝑛∑
𝑝=1

Γ𝑝𝑚,𝑛 (𝑛𝜇𝑝𝑛,0 − 𝜇𝑝𝑛,0 − 𝛾−1𝜇𝑝𝑛,1)] ,
𝑏1𝑚,0 = 0,
𝑏0𝑚,1 = 𝜒𝑚𝑏0𝑚−1,1 + 𝛾−1 2𝑚∑

𝑝=0
Γ𝑝𝑚,1𝜇𝑝1,1 + 𝑚+1∑

𝑛=2
[𝑛Γ0𝑚,𝑛𝜇0𝑛,0

+ 2(𝑚+1)−𝑛∑
𝑝=1

Γ𝑝𝑚,𝑛 (𝑛𝜇𝑝𝑛,0 − 𝛾−1𝜇𝑝𝑛,1)] ,

𝑏𝑘𝑚,1 = 𝜒𝑚𝑏𝑘𝑚−1,1 + 2𝑚∑
𝑝=𝑘−1

Γ𝑝𝑚,1𝜇𝑝1,𝑘, 1 ≤ 𝑘 ≤ 2𝑚 − 1,

𝑏𝑘𝑚,1 = 2𝑚∑
𝑝=𝑘−1

Γ𝑝𝑚,1𝜇𝑝1,𝑘, 2𝑚 ≤ 𝑘 ≤ 2𝑚 + 1,

𝑏𝑘𝑚,𝑛 = 𝜒𝑚𝑏𝑘𝑚−1,𝑛 − 2(𝑚+1)−𝑛∑
𝑝=𝑘

Γ𝑝𝑚,𝑛𝜇𝑝𝑛,𝑘,
0 ≤ 𝑘 ≤ 2𝑚 − 𝑛, 2 ≤ 𝑛 ≤ 𝑚,

𝑏𝑘𝑚,𝑛 = −2(𝑚+1)−𝑛∑
𝑝=𝑘

Γ𝑝𝑚,𝑛𝜇𝑝𝑛,𝑘,
2𝑚 − 𝑛 + 1 ≤ 𝑘 ≤ 2𝑚 − 𝑛 + 2, 2 ≤ 𝑛 ≤ 𝑚,

𝑏𝑘𝑚,𝑚+1 = −𝑚+1∑
𝑝=𝑘
Γ𝑝𝑚,𝑚+1𝜇𝑝𝑚+1,𝑘, 0 ≤ 𝑘 ≤ 𝑚 + 1.

(A.24)
(iii) In (i), we remarked that the initial guess approxima-

tion 𝜑0(𝜂) = 𝑓0(𝜂) has the same structure as (32). In (ii),
we derived all the recurrence formulae (A.1)–(A.24) and also
we have proved that 𝜑𝑚(𝜂, ℎ, 𝛾) (𝑚 ≥ 1) too should have the
same structure as (32), if we consider that the first (𝑚−1) solu-
tions 𝜑𝑘(𝜂, ℎ, 𝛾) (𝑘 = 0, 1, 2, 3, . . . , 𝑚−1) have the same struc-
ture as (32). Hence, from (i) and (ii), all 𝜑𝑘(𝜂, ℎ, 𝛾) (𝑘 ≥ 0)
have the same structure as (32). Along these lines, we can
figure all coefficients 𝑏𝑘𝑚,𝑛 in a steady progression by utilizing
the initial four known coefficients:𝑏00,0 = 𝐾𝑤 − 𝛾−1,

𝑏10,0 = 1,
𝑏00,1 = −𝛾−1,
𝑏10,1 = 0,

(A.25)

which are dictated by the initial guess estimation 𝑓0(𝜂)
characterized by (13).
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