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This article aimed to study and explore conformal vector fields on doubly warped product manifolds as well as on doubly warped
spacetime. Then we derive sufficient conditions for matter and Ricci collineations on doubly warped product manifolds. A special
attention is paid to concurrent vector fields. Finally, Ricci solitons on doubly warped product spacetime admitting conformal vector
fields are considered.

1. An Introduction

Bishop andO’Neill introduced Riemannian warped products
to construct manifolds with negative sectional curvature
[1]. Since then warped product structures have been widely
studied.Doublywarped products are generalizations of singly
warped products. Beem, Ehrilish, and Powell noticed that
there are many exact solutions to Einstein’s field equation
in the form of warped product manifolds. Since then singly
and doubly warped product manifolds have became more
indispensable to physicians and mathematicians than ever.
In [2], Beem and Powell studied Lorentzian doubly warped
product manifolds. Allison studied causal properties, pseu-
docovexity, and hyperbolicity of doubly warped product
manifolds [3, 4]. Gebarowski considered doubly warped
products with harmonic Weyl conformal curvature tensor in
[5] and conformally flat and conformally recurrent doubly
warped product manifolds in [6, 7]. Ünal studied geodesic
completeness of Riemannian and Lorentzian doubly warped
products [8]. He also studied hyperbolicity of generalized
Robertson–Walker spacetime with doubly warped product
fibre. In this paper, Ünal finally considered some results
about conformal vector fields of doubly warped products.
Doubly warped product submanifolds have also been studied
by many authors in various settings such as Faghfouri and

Majidi in [9], Olteanu in [10, 11], Perktas and Kilic in [12], and
many others. Doubly warped spacetime is good example of
Lorentzian doublywarped productmanifolds.This spacetime
is of interest since it produces many exact solutions to
Einstein’s field equations.

In physics, symmetry assumptions are used to understand
the relation between geometry andmatter of spacetime given
by Einstein’s field equation. For example, the metric tensor of
(pseudo-)Riemannian manifold does not change under the
flowof aKilling vector field; that is, the flowof aKilling vector
field generates spacetime symmetry.The number of indepen-
dent Killing vector fields measures the degree of symmetry
of a (pseudo-)Riemannian manifold. Conformal vector fields
have also a well-known geometrical and physical inter-
pretations and have been studied on (pseudo-)Riemannian
manifolds for a long time.The existence of a conformal vector
field on spacetime is especially useful to study its geometry.
Theflowof a conformal vector consists of conformal transfor-
mations of the Riemannian manifold. Thus, the problems of
existence and characterization of different types of conformal
vector fields in different spaces are important and are widely
discussed by both mathematicians and physicists (e.g., see
[13–18] and further references contained therein).

The aim of the present paper is to study and explore
conformal vector fields on doubly warped product manifolds
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as well as doubly warped spacetime. We derive many charac-
terizations of conformal vector fields on doublywarped prod-
uct manifolds and doubly warped spacetime. Then, we study
matter and Ricci collineation on doubly warped manifolds.
One may notice that after Pereleman used Ricci soliton to
solve the Poincaré conjecture posed in 1904, a growing body
of research has continued to study Ricci soliton. Accordingly,
we study Ricci solitons on doubly warped product spacetime
admitting many types of conformal vector fields. We get
some partial answers of the following questions: What do
doubly warped Ricci soliton factors inherit? Andwhat are the
conditions under which doubly warped spacetime is a doubly
warped Ricci soliton?

This article is organized as follows. Section 2 represents
some connection and curvature related formulas on doubly
warped product manifolds. In Section 3, we study conformal
vector fields on doubly warped product manifolds. Then
we study conformal and concurrent vector fields on doubly
warped spacetime in two subsections. Finally, Section 4 com-
prises a study of Ricci soliton on doubly warped spacetime
admitting these types of vector fields. Almost all considera-
tions and statements in this work are local.

2. Preliminaries

This section represents connection and curvature related
formulas on doubly warped product manifolds as a general-
ization of similar results on singly warped products [1, 19].
Also, we will provide basic definitions and properties of
conformal vector fields.

Let (𝑀𝑖, 𝑔𝑖, 𝐷𝑖) be two (pseudo-)Riemannian manifolds
with metrics 𝑔𝑖 and Levi-Civita connections 𝐷𝑖 and let 𝑓𝑖 :𝑀𝑖 → (0,∞) be a positive function, where 𝑖 = 1, 2. Also,
suppose that 𝜋𝑖 : 𝑀1 × 𝑀2 → 𝑀𝑖 is the natural projection
map of the Cartesian product 𝑀1 × 𝑀2 onto 𝑀𝑖, where𝑖 = 1, 2. The (pseudo-)Riemannian manifolds doubly warped
product manifold 𝑀=𝑓2𝑀1 ×𝑓1𝑀2 is the product manifold𝑀 = 𝑀1 ×𝑀2 furnished with the metric tensor

𝑔 = (𝑓2 ∘ 𝜋2)2 𝜋∗1 (𝑔1) ⊕ (𝑓1 ∘ 𝜋1)2 𝜋∗2 (𝑔2) , (1)

where ∗ denotes the pull-back operator on tensors. The
functions 𝑓𝑖, 𝑖 = 1, 2, are called the warping functions
of the warped product manifold 𝑀. In particular, if, for
example, 𝑓2 = 1, then 𝑀 = 𝑀1 ×𝑓1𝑀2 is called a (singly)
warped productmanifold. A singly warped productmanifold𝑀1×𝑓1𝑀2 is said to be trivial if the warping function𝑓1 is also
constant [6, 8, 9, 12, 20, 21]. It is clear that the submanifolds𝑀1 × {𝑞} and {𝑝} × 𝑀2 are homothetic to 𝑀1 and 𝑀2,
respectively, for each 𝑝 ∈ 𝑀1 and 𝑞 ∈ 𝑀2. We shall refer
to these factor submanifolds as𝑀1 and𝑀2. The lift 𝑋(𝑝,𝑞) of
a tangent vector 𝑋𝑝 ∈ 𝑇𝑝𝑀1, 𝑞 ∈ 𝑀2, is the unique vector in𝑇(𝑝,𝑞)𝑀 such that

𝜋∗1 (𝑋(𝑝,𝑞)) = 𝑋𝑝,
𝜋∗2 (𝑋(𝑝,𝑞)) = 0. (2)

Similarly, if 𝑋𝑖 ∈ X(𝑀𝑖), then the lift of 𝑋𝑖 to X(𝑀1 × 𝑀2)
is the unique vector field in X(𝑀1 × 𝑀2), that is, 𝜋𝑖 related

to 𝑋𝑖 and 𝜋𝑗 related to zero vector field in X(𝑀𝑗), 𝑖 ̸= 𝑗; that
is, a vector field 𝑋𝑖 on 𝑀𝑖 is identified with the horizontal
or the vertical vector field on 𝑀1 × 𝑀2, that is, 𝜋𝑖 related to𝑋𝑖. Throughout this article we use the same notation for a
vector field and for its lift to the productmanifold. A function𝜔𝑖 on 𝑀𝑖 will be identified with 𝜔𝑖 ∘ 𝜋𝑖. Thus, we have two
different meanings for the gradient of 𝜔𝑖, namely, grad (𝜔𝑖 ∘𝜋𝑖) ∈ X(𝑀1 × 𝑀2) and the lift of the gradient ∇𝑖𝜔𝑖 of 𝜔𝑖 to
X(𝑀1 ×𝑀2). In fact, we have

𝑔 (𝑋𝑖, grad (𝜔𝑖 ∘ 𝜋𝑖)) = 𝑋𝑖 (𝜔𝑖 ∘ 𝜋𝑖) = 𝑋𝑖 (𝜔𝑖) ∘ 𝜋𝑖
= 1
𝑓2𝑗 𝑔 (𝑋𝑖, ∇

𝑖𝜔𝑖) . (3)

Therefore, grad (𝜔𝑖 ∘ 𝜋𝑖) = (1/𝑓2𝑗 )∇𝑖𝜔𝑖 (note that we use
the same notation for the vector field ∇𝑖𝜔𝑖 and for its lift to
X(𝑀1 ×𝑀2)).

Let (𝑀, 𝑔,𝐷) be a pseudo-Riemannian doubly warped
product manifold of (𝑀𝑖, 𝑔𝑖, 𝐷𝑖), 𝑖 = 1, 2, with dimensions𝑛𝑖, where 𝑛 = 𝑛1 +𝑛2. 𝑅, 𝑅𝑖 and Ric, Ric𝑖 denote the curvature
tensor and Ricci curvature tensor on 𝑀,𝑀𝑖, respectively.
Moreover, ∇𝑖𝑓𝑖 and△𝑖𝑓𝑖 denote gradient and Laplacian of 𝑓𝑖
on𝑀𝑖 and 𝑓⬦𝑖 = 𝑓𝑖△𝑖𝑓𝑖 + (𝑛𝑗 −1)𝑔𝑖(∇𝑖𝑓𝑖, ∇𝑖𝑓𝑖), 𝑖 ̸= 𝑗. For the
connection and curvatures formulas of a pseudo-Riemannian
doubly warped product manifold see, for example, [20, 22].

A vector field 𝜁 on a (pseudo-)Riemannian manifold(𝑁, ℎ) with metric ℎ is called a conformal vector field with
conformal factor 𝜌 if

L𝜁ℎ = 𝜌ℎ, (4)

where L𝜁 is the Lie derivative on 𝑁 with respect to 𝜁. If 𝜌
is constant or zero, 𝜁 is called a homothetic or Killing vector
field on 𝑁, respectively. One can redefine conformal vector
fields using the following identity. Let 𝜁 be a vector field on𝑀, and then

(L𝜁ℎ) (𝑋, 𝑌) = ℎ (𝐷𝑋𝜁, 𝑌) + ℎ (𝑋,𝐷𝑌𝜁) (5)

for any vector fields 𝑋,𝑌 ∈ X(𝑁). A vector field 𝜁 on a
manifold (𝑁, ℎ) is called a concurrent vector field if

𝐷𝑋𝜁 = 𝑋 (6)

for any vector field 𝑋 ∈ X(𝑁) [23]. Let 𝜁 be a concurrent
vector field, and then

(L𝜁ℎ) (𝑋, 𝑌) = 2ℎ (𝑋, 𝑌) (7)

and so 𝜁 is homothetic with factor 𝜌 = 2. A zero vector field
is not concurrent. If both 𝜁 and 𝜉 are concurrent vector fields,
then

𝐷𝑋 [𝜁, 𝜉] = 0. (8)

Also both 𝜁+𝜉 and𝜆𝜁 are not concurrent vector fields. Finally,
a Killing vector field is not concurrent. For example, a vector
field 𝛼𝜕𝑥 is a concurrent vector field on (R, 𝑑𝑥2) if

𝐷𝜕𝑥 (𝛼𝜕𝑥) = 𝜕𝑥; (9)
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that is, 𝛼 = 𝑥 + 𝑎. Thus concurrent vector fields on (R, 𝑑𝑥2)
are of the form (𝑥 + 𝑎)𝜕𝑥.

The following result represents a simple characterization
of Killing vector fields, if (𝑁, ℎ) is a pseudo-Riemannian
manifold with Riemannian connection 𝐷. A vector field 𝜁 ∈
X(𝑁) is a Killing vector field if and only if

ℎ (𝐷𝑋𝜁, 𝑋) = 0 (10)

for any vector field𝑋 ∈ X(𝑁).
The following discussion represents a good tool to char-

acterize Killing vector fields on pseudo-Riemannian warped
product manifolds. In [24, 25], the authors obtained many
characterizations of Killing vector fields on warped product
manifolds and on standard static spacetime using these
results. Let𝑀 = 𝑀1 ×𝑓𝑀2 be a pseudo-Riemannian warped
product manifold with warping function 𝑓. Let 𝜁 = 𝜁1 + 𝜁2 ∈
X(𝑀) be a vector field on𝑀. Then

𝑔 (𝐷𝑋𝜁, 𝑋) = 𝑔1 (𝐷1𝑋1𝜁1, 𝑋1) + 𝑓2𝑔2 (𝐷2𝑋2𝜁2, 𝑋2)
+ 𝑓𝜁1 (𝑓) 󵄩󵄩󵄩󵄩𝑋2󵄩󵄩󵄩󵄩22

(L𝜁𝑔) (𝑋, 𝑌) = (L1𝜁1𝑔1) (𝑋1, 𝑌1)
+ 𝑓2 (L2𝜁2𝑔2) (𝑋2, 𝑌2)
+ 2𝑓𝜁1 (𝑓) 𝑔2 (𝑋2, 𝑌2)

(11)

for any vector field 𝑋 = 𝑋1 + 𝑋2 ∈ X(𝑀), where L𝑖𝜁𝑖 is the
Lie derivative on𝑀𝑖 with respect to 𝜁𝑖, for 𝑖 = 1, 2.

A pseudo-Riemannian manifold 𝑀 is said to admit a
Ricci curvature collineation if there is a vector field 𝜁 ∈ X(𝑀)
such that

L𝜁Ric = 0, (12)

where Ric is the Ricci curvature tensor [26]. Finally, space-
time 𝑀 is said to admit a matter collineation if there is a
vector field 𝜁 ∈ X(𝑀) such that

L𝜁𝑇 = 0, (13)

where 𝑇 is the energy-momentum tensor [27]. Einstein’s field
equation with cosmological constant 𝜆 is given by

Ric − 𝑟
2𝑔 = 𝜅𝑇 − 𝜆𝑔, (14)

where 𝑟 is the scalar curvature. Suppose that 𝜁 is a Killing
vector field, and then

L𝜁𝑇 = 0; (15)

that is, 𝜁 is amatter collineationwhereas amatter collineation
need not be a Killing vector field. Also, a Killing vector field is
a Ricci curvature collineation. The converse is not generally
true.

3. Conformal Vector Fields on Doubly
Warped Products

In this section we investigate the relation between conformal
vector fields on doubly warped product manifolds and those
conformal vector fields on the product factors. Throughout
this section, let 𝑀=𝑓2𝑀1 ×𝑓1𝑀2 be a pseudo-Riemannian
doubly warped product manifold with the metric tensor𝑔 = 𝑓22 𝑔1 ⊕ 𝑓21 𝑔2 and 𝑓𝑖 : 𝑀𝑖 → (0,∞) is a smooth
function, where 𝑖 = 1, 2 and (𝑀𝑖, 𝑔𝑖) are pseudo-Riemannian
manifolds.The following result gives us an important identity
to study such relation [8].

Proposition 1. Suppose that 𝜁1, 𝑋1, 𝑌1 ∈ X(𝑀1) and𝜁2, 𝑋2, 𝑌2 ∈ X(𝑀2), and then
(L𝜁𝑔) (𝑋, 𝑌) = 𝑓22 (L1𝜁1𝑔1) (𝑋1,Y1)

+ 𝑓21 (L2𝜁2𝑔2) (𝑋2, 𝑌2)
+ 2𝑓1𝜁1 (𝑓1) 𝑔2 (𝑋2, 𝑌2)
+ 2𝑓2𝜁2 (𝑓2) 𝑔1 (𝑋1, 𝑌1) ,

(16)

where 𝜁 = 𝜁1 + 𝜁2,𝑋 = 𝑋1 +𝑋2, and 𝑌 = 𝑌1 +𝑌2 are elements
in X(𝑀).

In [8], the author considered a characterization of con-
formal vector fields on doubly warped product manifolds. In
fact, it is just a characterization of homothetic vector fields.
The following theorem represents a new characterization of
conformal vector fields on doubly warped product manifolds
but the assumption here is less restrictive.

Theorem2. A vector field 𝜁 = 𝜁1+𝜁2 on a pseudo-Riemannian
doubly warped product𝑀=𝑓2𝑀1 ×𝑓1𝑀2 is a conformal vector
field with conformal factor 𝜌 if and only if

(1) 𝜁𝑖 is a conformal vector field on 𝑀𝑖 with conformal
factor 𝜌𝑖, 𝑖 = 1, 2,

(2) 𝜌1 + 2𝜁2(ln𝑓2) = 𝜌2 + 2𝜁1(ln𝑓1).
Moreover, the conformal factor of 𝜁 is 𝜌 = 𝜌𝑖 +2𝜁𝑗(ln𝑓𝑗), 𝑖 ̸= 𝑗.
Before proceeding further, one may notice that a doubly

warped product metric 𝑔 on 𝑀 can be expressed as a
conformal metric to a product metric on𝑀1 ×𝑀2 as follows:

𝑔 = 𝑓21𝑓22 ( 1
𝑓21 𝑔1 +

1
𝑓22 𝑔2) = 𝑓21𝑓22 (𝑔1 + 𝑔2)

= 𝑓21𝑓22 𝑔.
(17)

Let us consider the effect of replacing the metric 𝑔 on 𝑀 by𝑔 = 𝑔1+𝑔2. A similar discussion on 4-dimensional spacetime
is considered in [26, Chapter 11]. Suppose that 𝜁 = 𝜁1 + 𝜁2 is a
conformal vector field on (𝑀, 𝑔) with factor 𝜌, and then

L𝜁𝑔 = [2𝜁2 (ln𝑓2) + 2𝜁1 (ln𝑓1) + 𝜌] 𝑔. (18)
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Therefore, 𝜁 is a conformal vector field on (𝑀, 𝑔) with factor𝜌 = 𝜌+2𝜁2(ln𝑓2)+2𝜁1(ln𝑓1). A similar conclusion applies to(𝑀𝑖, 𝑔𝑖) and (𝑀𝑖, 𝑔𝑖), where 𝜌𝑖 = 𝜌 − 𝜁𝑖(ln𝑓𝑖). Thus, by using
results in [28, Theorem 1], one can easily get the following.

Theorem 3. Let 𝑀=𝑓2𝑀1 ×𝑓1𝑀2 be a pseudo-Riemannian
doubly warped product equipped with the metric tensor 𝑔 =𝑓22 𝑔1 + 𝑓21 𝑔2 and let 𝑔 = 𝑔1 + 𝑔2, where 𝑔𝑖 = (1/𝑓2𝑖 )𝑔𝑖. Then,

(1) a Killing vector field 𝜁 = 𝜁𝑖 on (𝑀𝑖, 𝑔𝑖), for each 𝑖 = 1, 2,
is a Killing vector field on (𝑀, 𝑔),

(2) (𝑀, 𝑔) admits a homothetic vector field if and only if(𝑀𝑖, 𝑔𝑖) admits a homothetic vector field for each 𝑖 =1, 2,
(3) each conformal vector field on (𝑀, 𝑔) is a conformal

vector field on (𝑀, 𝑔).
The above theorem together with Theorem 2 implies the

following results.

Theorem 4. Let 𝜁 = 𝜁1 + 𝜁2 be a vector field on a
pseudo-Riemannian doubly warped product𝑀=𝑓2𝑀1 ×𝑓1𝑀2
equipped with the metric tensor 𝑔 = 𝑓22 𝑔1 + 𝑓21 𝑔2. Assume
that 𝜁𝑖 is a Killing vector field on (𝑀𝑖, 𝑔𝑖) for each 𝑖 = 1, 2 and𝜁1(ln𝑓1) = 𝜁2(ln𝑓2). Then 𝜁 is a conformal vector field on𝑀.

Theorem 5. Let 𝜁𝑖 ∈ X(𝑀𝑖) be homothetic vector fields on(𝑀𝑖, 𝑔𝑖) with factors 𝑎𝑖 for each 𝑖 = 1, 2. Assume that 𝜁1(𝑓1) =𝜁2(𝑓2) = 0. Then, 𝜁 = 𝑎2𝜁1 + 𝑎1𝜁2 is a homothetic vector field
on (𝑀, 𝑔) with factor 𝑎1𝑎2.
Corollary 6. The dimension of the conformal group 𝐶(𝑀, 𝑔)
on a pseudo-Riemannian doubly warped product 𝑀=𝑓2𝑀1 ×𝑓1𝑀2 is at least

dim𝐾1 (𝑀1, 𝑔1) + dim𝐾1 (𝑀2, 𝑔2) , (19)

where𝐾𝑖(𝑀𝑖, 𝑔𝑖) is the isometry group of (𝑀𝑖, 𝑔𝑖).
Again Theorem 2 together with Lemma 2.1 in [16] yields

the following result.

Theorem 7. Let 𝜁 = 𝜁1 + 𝜁2 be a vector field on a pseudo-
Riemannian doubly warped product 𝑀=𝑓2𝑀1 ×𝑓1𝑀2 such
that

(1) 𝜁𝑖 is a conformal vector field on 𝑀𝑖 with conformal
factor 𝜌𝑖, 𝑖 = 1, 2,

(2) 𝜌1 + 2𝜁2(ln𝑓2) = 𝜌2 + 2𝜁1(ln𝑓1).
Then, 𝜁 preserves the Ricci curvature if and only if𝐻𝑢 = 0,

where 𝑢 = 𝜌2 +2𝜁1(ln𝑓1). Moreover, 𝜁 preserves the conformal
class of the Ricci tensor (i.e.,L𝜁Ric = 𝜆𝑔 for some function 𝜆)
if and only if ∇(div(𝜁)) is a conformal vector field.

Theorem 8. Let 𝜁 = 𝜁1 + 𝜁2 be a vector field on a pseudo-
Riemannian doubly warped product 𝑀=𝑓2𝑀1 ×𝑓1𝑀2. 𝜁 has
constant length along the integral curve𝛼 of the vector field𝑋 =𝑋1 + 𝑋2 ∈ X(𝑀) if one of the following conditions holds:

(1) 𝑋𝑖(𝑓𝑖) = 0 and 𝜁𝑖 is parallel along𝜋𝑖∘𝛼 for each 𝑖 = 1, 2.

(2) 𝑋𝑖(𝑓𝑖) = 0 and 𝜁𝑖 has a constant length along 𝜋𝑖 ∘ 𝛼 for
each 𝑖 = 1, 2.

Proof. Let 𝜁 = 𝜁1 + 𝜁2 ∈ X(𝑀) be a vector field on𝑀. Then,

𝑔 (𝐷𝑋𝜁, 𝜁) = 𝑔 (𝐷𝑋1+𝑋2𝜁1 + 𝜁2, 𝜁)
= 𝑔 (𝐷𝑋1𝜁1 + 𝐷𝑋1𝜁2 + 𝐷𝑋2𝜁1 + 𝐷𝑋2𝜁2, 𝜁)
= 𝑓22 𝑔1 (𝐷1𝑋1𝜁1, 𝜁1) + 𝑓21 𝑔2 (𝐷2𝑋2𝜁2, 𝜁2)

+ 𝑓1𝑋1 (𝑓1) 󵄩󵄩󵄩󵄩𝜁2󵄩󵄩󵄩󵄩22 + 𝑓2𝑋2 (𝑓2) 󵄩󵄩󵄩󵄩𝜁1󵄩󵄩󵄩󵄩21 .

(20)

In both cases𝑋𝑖(𝑓𝑖) = 0, and hence

𝑔 (𝐷𝑋𝜁, 𝜁) = 𝑓22 𝑔1 (𝐷1𝑋1𝜁1, 𝜁1) + 𝑓21 𝑔2 (𝐷2𝑋2𝜁2, 𝜁2) . (21)

The first condition implies that 𝐷𝑖𝑋𝑖𝜁𝑖 = 0 and so 𝑔𝑖(𝐷𝑖𝑋𝑖𝜁𝑖,𝜁𝑖) = 0.The second condition implies that 𝑔𝑖(𝜁𝑖, 𝜁𝑖) is constant
and so

0 = 2𝑔𝑖 (𝐷𝑖𝑋𝑖𝜁𝑖, 𝜁𝑖) (22)

and therefore

𝑔 (𝐷𝑋𝜁, 𝜁) = 0; (23)

that is, 𝜁 has a constant length along the integral curve 𝛼 of
the vector field𝑋
Theorem 9. Let 𝜁 = 𝜁1 + 𝜁2 ∈ X(𝑀) be a conformal vector
field on a pseudo-Riemannian doubly warped product 𝑀=𝑓2𝑀1 ×𝑓1𝑀2 along a curve 𝛼 with unit tangent vector 𝑇 = 𝑉1 +𝑉2. Then,

div (𝜁) = 𝑛 [𝑓22 𝑔1 (𝐷1𝑉1𝜁1, 𝑉1) + 𝑓21 𝑔2 (𝐷2𝑉2𝜁2, 𝑉2)
+ 𝑓2𝜁2 (𝑓2) 󵄩󵄩󵄩󵄩𝑉1󵄩󵄩󵄩󵄩21 + 𝑓1𝜁1 (𝑓1) 󵄩󵄩󵄩󵄩𝑉2󵄩󵄩󵄩󵄩22] .

(24)

Proof. Let 𝜁 be a conformal vector field with conformal factor𝜌. Then,

(L𝜁𝑔) (𝑋, 𝑌) = 𝜌𝑔 (𝑋, 𝑌) . (25)

Let𝑋 = 𝑌 = 𝑇, then
2𝑔 (𝐷𝑇𝜁, 𝑇) = 𝜌𝑔 (𝑇, 𝑇) , (26)

and then the conformal factor 𝜌 is given by

𝜌 = 2𝑔 (𝐷𝑇𝜁, 𝑇) . (27)

Suppose that 𝜁 = 𝜁1 + 𝜁2 and 𝑇 = 𝑉1 + 𝑉2, and then

𝜌 = 2𝑔 (𝐷𝑉1𝜁1 + 𝐷𝑉1𝜁2 + 𝐷𝑉2𝜁1 + 𝐷𝑉2𝜁2, 𝑇)
= 2𝑓22 𝑔1 (𝐷1𝑉1𝜁1, 𝑉1) + 2𝑓21 𝑔2 (𝐷2𝑉2𝜁2, 𝑉2)

+ 2𝑓2𝜁2 (𝑓2) 󵄩󵄩󵄩󵄩𝑉1󵄩󵄩󵄩󵄩21 + 2𝑓1𝜁1 (𝑓1) 󵄩󵄩󵄩󵄩𝑉2󵄩󵄩󵄩󵄩22 .
(28)

But the conformal factor is given by

2 div (𝜁) = 𝜌𝑛 (29)

which completes the proof.
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3.1. Conformal Vector Fields on Doubly Warped Spacetime.
Doubly warped spacetime is a doubly warped product man-
ifold 𝑀=𝑓2𝑀1×𝑓1𝑀2, where one of the factors, say 𝑀1, has
a Lorentz signature and the second is Riemannian. Ramos et
al. considered an invariant characterization of 4-dimensional
doubly warped spacetime [21]. Among many other results,
they obtained necessary and sufficient conditions for (locally)
double warped spacetime to be conformally related to 1 + 3
or 2 + 2 decomposable spacetime. Then they studied the
conformal algebra of 2+2 decomposable spacetime in section
IV and 1 + 3 decomposable spacetime in section V. For a
detailed discussion of conformally related 1 + 3 and 2 + 2
reducible spacetime see [29, 30] and, for an extensive self-
contained study of conformal symmetry of 4-dimensional
spacetime, the reader is referred to [26].

We restrict our study of conformal vector fields on
doubly warped spacetime to dim(𝑀1) ≤ 2 since this case
generalizes some well-known exact solutions for the Einstein
field equations and the beginning of this section represents
such study irrespective of the dimension of the factors. For
this case, either dim(𝑀1) = 1 or dim(𝑀1) = 2. In the
following we deal with both subcases separately. Let us first
consider doubly warped spacetime with a 1-dimensional
base.

Let (𝑀, 𝑔) be a Riemannian manifold and 𝐼 be an
open connected interval equipped with the metric −𝑑𝑡2.
Doubly warped spacetime𝑀=𝑓 𝐼 ×𝜎𝑀 is the product 𝐼 ×𝑀
furnished with the metric

𝑔 = −𝑓2𝑑𝑡2 ⊕ 𝜎2𝑔, (30)

where 𝑓 : 𝑀 → (0,∞) and 𝜎 : 𝐼 → (0,∞) are smooth
functions. 𝑀 is generalized Robertson–Walker spacetime if𝑓 is constant and standard static spacetime if 𝜎 is constant.

An investigation of 4-dimensional spacetime that is
conformally related to 1 + 3 reducible spacetime was carried
out with many examples in the aforementioned references
[21, 30]. A classification of this spacetime according to its
conformal algebra is considered in the first reference whereas
a special attention is paid to gradient conformal vector fields
in the second reference.

Theorem 10. A time-like vector field 𝜁 = ℎ𝜕𝑡 is a conformal
vector field on doubly warped spacetime 𝑀=𝑓 𝐼 ×𝜎𝑀 if and
only if ℎ = 𝑎𝜎, where 𝑎 is a nonnegative constant. Moreover,
the conformal factor is 𝜌 = 2ℎ̇.
Proof. If ℎ = 0, then 𝑎 = 0 and the result is obvious. Now, we
assume that ℎ ̸= 0. Using (16), we get that
(L
𝜁
𝑔) (𝑋, 𝑌) = −2𝑥𝑦𝑓2 [ℎ̇ + 𝜁 (ln𝑓)]

+ 𝜎2 (L𝜁𝑔) (𝑋, 𝑌) + 2ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌)
= −2𝑥𝑦𝑓2ℎ̇ + 2ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌)
= 2ℎ̇𝑓2𝑔𝐼 (𝑥𝜕𝑡, 𝑦𝜕𝑡) + 2ℎ𝜎̇

𝜎 𝜎2𝑔 (𝑋, 𝑌) .

(31)

Suppose that ℎ = 𝑎𝜎, and then

(L
𝜁
𝑔) (𝑋, 𝑌) = 2ℎ̇𝑔 (𝑋, 𝑌) ; (32)

that is, 𝜁 = ℎ𝜕𝑡 is a conformal vector field with conformal
factor 𝜌 = 2ℎ̇. Conversely, suppose that 𝜁 = ℎ𝜕𝑡 ∈ X(𝑀) is a
conformal vector field with factor 𝜌, and then

(L
𝜁
𝑔) (𝑋, 𝑌) = 𝜌𝑔 (𝑋, 𝑌) (33)

for any vector fields𝑋,𝑌 ∈ X(𝑀). Now, by (16), we get that
𝜌𝑔 (𝑋, 𝑌) = 2ℎ̇𝑓2𝑔𝐼 (𝑥𝜕𝑡, 𝑦𝜕𝑡) + 2ℎ𝜎̇

𝜎 𝜎2𝑔 (𝑋, 𝑌) . (34)

Let𝑋 = 𝑌 = 0, and we get that

𝜌𝑔 (𝑥𝜕𝑡, 𝑦𝜕𝑡) = 2ℎ̇𝑓2𝑔𝐼 (𝑥𝜕𝑡, 𝑦𝜕𝑡) ; (35)

that is, 𝜌 = 2ℎ̇. Now, let 𝑥 = 𝑦 = 0, and we get that 𝜌𝜎 = 2ℎ𝜎̇.
These two differential equations imply that ℎ = 𝑎𝜎 for

some positive constant 𝑎.
Theorem 11. A vector field 𝜁 = ℎ𝜕𝑡 + 𝜁 is a Killing vector field
on doubly warped spacetime𝑀=𝑓 𝐼 ×𝜎𝑀 if and only if one of
the following conditions holds:

(1) 𝜁 is time-like and ℎ̇ = 𝜎̇ = 0.
(2) 𝜁 is space-like where 𝜁 is a Killing vector field on𝑀 and𝜁(𝑓) = 0.
(3) ℎ̇ = −𝜁(ln𝑓) and 𝜁 is a conformal vector field on 𝑀

with conformal factor 𝜌2 = −2ℎ𝜎̇/𝜎.
Proof. The first assertion is a special case of the above
theorem. For the second assertion, let ℎ = 0 in (16). Thus,

(L
𝜁
𝑔) (𝑋, 𝑌) = −2𝑥𝑦𝑓𝜁 (𝑓) + 𝜎2 (L𝜁𝑔) (𝑋, 𝑌) . (36)

Suppose that 𝜁 is a Killing vector field on 𝑀 and 𝜁(𝑓) = 0,
and then

(L
𝜁
𝑔) (𝑋, 𝑌) = 0. (37)

The converse is direct. Finally, let 𝜁 be aKilling vector field
on𝑀=𝑓 𝐼 ×𝜎𝑀, and then

0 = (L
𝜁
𝑔) (𝑋, 𝑌)

0 = −2𝑥𝑦𝑓2 [ℎ̇ + 𝜁 (ln𝑓)] + 𝜎2 (L𝜁𝑔) (𝑋, 𝑌)
+ 2ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌) .

(38)

Let𝑋 = 𝑌 = 0, and then

−2𝑥𝑦𝑓2 [ℎ̇ + 𝜁 (ln𝑓)] = 0 (39)

and so ℎ̇ = −𝜁(ln𝑓). Thus,

(L𝐼ℎ𝜕𝑡𝑔𝐼) (𝑥𝜕𝑡, 𝑦𝜕𝑡) = −2𝜁 (ln𝑓) 𝑔𝐼 (𝑥𝜕𝑡, 𝑦𝜕𝑡) ; (40)
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that is, ℎ𝜕𝑡 is a conformal vector field on 𝐼 with conformal
factor −2𝜁(ln𝑓). Now let 𝑥 = 𝑦 = 0, and then

(L𝜁𝑔) (𝑋, 𝑌) = −2ℎ𝜎̇𝜎 𝑔 (𝑋, 𝑌) ; (41)

that is, 𝜁 is a conformal vector field on 𝑀 with conformal
factor 𝜌 = −2ℎ𝜎̇/𝜎.

Conversely, suppose that ℎ̇ = −𝜁(ln𝑓) and 𝜁 is a con-
formal vector field on 𝑀 with conformal factor 𝜌 = −2ℎ𝜎̇/𝜎, and then

(L𝜁𝑔) (𝑋, 𝑌) = −2ℎ𝜎̇𝜎 𝑔 (𝑋, 𝑌) . (42)

Thus,

(L
𝜁
𝑔) (𝑋, 𝑌) = −2𝑥𝑦𝑓2 [ℎ̇ + 𝜁 (ln𝑓)]

+ 𝜎2 (L𝜁𝑔) (𝑋, 𝑌) + 2ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌)
= 0;

(43)

that is, 𝜁 = ℎ𝜕𝑡+𝜁 is a Killing vector field on𝑀=𝑓 𝐼 ×𝜎𝑀.

Corollary 12. Let 𝜁 = ℎ𝜕𝑡 +𝜁 be vector field on doubly warped
spacetime𝑀=𝑓 𝐼 ×𝜎𝑀 obeying Einstein’s field equation.Then,

(1) 𝑀 admits a time-like matter collineation 𝜁 = ℎ𝜕𝑡 if ℎ̇ =𝜎̇ = 0,
(2) 𝑀 admits a space-like matter collineation 𝜁 = 𝜁 if 𝜁 is

a Killing vector field on𝑀 and 𝜁(𝑓) = 0,
(3) 𝑀 admits a matter collineation 𝜁 = ℎ𝜕𝑡 + 𝜁 if ℎ̇ =−𝜁(ln𝑓) and 𝜁 is a conformal vector field on 𝑀 with

conformal factor 𝜌2 = −2ℎ𝜎̇/𝜎.
The following result is a direct consequence ofTheorem9.

Corollary 13. Let 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈ X(𝑀) be a conformal vector
field on doubly warped spacetime 𝑀=𝑓 𝐼 ×𝜎𝑀 along a curve
𝛼 with unit tangent vector 𝑉 = V𝜕𝑡 + 𝑉. Then the conformal
factor 𝜌 of 𝜁 is given by

𝜌 = 2ℎ̇ + 2𝜎2𝑔 ([𝜁, 𝑉] , 𝑉) + 2 (ℎ𝜎𝜎̇ − ℎ̇𝜎2) 𝑔 (𝑉, 𝑉) . (44)

In the sequel, we present doubly warped spacetime
with a 2-dimensional base. In this subcase, 2 + 𝑛 doubly
warped spacetime is considered to be doubly warped product
manifold with a 2-dimensional pseudo-Riemannian base
and 𝑛-dimensional Riemannian fibre; 2 + 𝑛 doubly warped
spacetime is clearly conformal to a product manifold. In
[21, 29] and references therein, the Lie conformal algebra of
conformally related 2 + 2 reducible spacetime is extensively
studied. Many interesting results and examples are given
there. For example, in [29], Carot and Tupper considered
an invariant characterization that imposes conditions on the
conformal factor and on two null vectors. Moreover, Van
den Bergh considered non-conformally flat perfect fluids

spacetimewhich is conformally 2+2decomposable spacetime
with factor spaces of constant curvature [31].

It is well-known that each 2-dimensional manifold is
conformally flat. Thus we may simply take the base manifold
as (R2, 𝑑𝑠2), where 𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2. Let 𝑀=𝑓R2×𝜎𝑀
be (2 + 𝑛)-dimensional doubly warped product spacetime
furnished with the metric 𝑔 = 𝑓2𝑑𝑠2 + 𝜎2𝑔.
Proposition 14. Suppose that ℎ(𝑡)𝜕𝑡 + 𝑢(𝑥)𝜕𝑥, ℎ𝑖(𝑡)𝜕𝑡 +𝑢𝑖(𝑥)𝜕𝑥 ∈ X(R2), 𝑖 = 1, 2, and 𝜁, 𝑋1, 𝑋2 ∈ X(𝑀), and then

(L
𝜁
𝑔) (𝑋, 𝑌) = 2𝑓2 (−ℎ1ℎ2ℎ̇ + 𝑢1𝑢2𝑢󸀠)

+ 𝜎2 (L𝜁𝑔) (𝑋, 𝑌)
+ 2𝜎 (ℎ𝜎𝑡 + 𝑢𝜎𝑥) 𝑔 (𝑋, 𝑌)
+ 2𝑓𝜁 (𝑓) (−ℎ1ℎ2 + 𝑢1𝑢2) ,

(45)

where 𝜁 = ℎ𝜕𝑡 +𝑢𝜕𝑥 +𝜁 and𝑋𝑖 = ℎ𝑖𝜕𝑡 +𝑢𝑖𝜕𝑥 +𝑋𝑖 are elements
in X(𝑀).
Corollary 15. A vector field 𝜁 = ℎ(𝑡)𝜕𝑡 + 𝑢(𝑥)𝜕𝑥 + 𝜁 ∈ X(𝑀)
is a Killing vector field if one of the following conditions holds:

(1) 𝜁 = 0, ℎ = 𝑎, 𝑢 = 𝑏, and 𝑎𝜎𝑡 + 𝑏𝜎𝑥 = 0.
(2) 𝜁 is aKilling vector field on𝑀, ℎ = 𝑢 = 0, and 𝜁(𝑓) = 0.

3.2. Concurrent Vector Fields on Doubly Warped Spacetime.
In this subsection, we study concurrent vector fields on
doubly warped spacetime with a 1-dimensional base. One
can extend most of the results to doubly warped spacetime
with a 2-dimensional base. Throughout this subsection, let
𝑀=𝑓 𝐼 ×𝜎𝑀 be doubly warped spacetime equipped with the
metric tensor 𝑔 = −𝑓2𝑑𝑡2 ⊕ 𝜎2𝑔.
Theorem 16. A vector field 𝜁 = ℎ𝜕𝑡 + 𝜁 on doubly warped
spacetime𝑀=𝑓 𝐼 ×𝜎𝑀 is a concurrent vector field if

(1) 𝜁 and ℎ𝜕𝑡 are concurrent vector fields on 𝑀 and 𝐼,
respectively,

(2) both 𝑓 and 𝜎 are constant.

Proof. Suppose that 𝑋 = 𝑥𝜕𝑡 + 𝑋 ∈ X(𝑀) is any vector field
on𝑀, and then

𝐷𝑋𝜁 = 𝐷𝑥𝜕𝑡ℎ𝜕𝑡 + 𝐷𝑥𝜕𝑡𝜁 + 𝐷𝑋ℎ𝜕𝑡 + 𝐷𝑋𝜁
= 𝑥ℎ̇𝜕𝑡 + 𝑥ℎ𝑓

𝜎2 ∇𝑓 + 𝑥(ln𝜎 ̇)𝜁 + 𝜁 (ln𝑓) 𝑥𝜕𝑡
+ ℎ(ln𝜎 ̇)𝑋 + 𝑋 (ln𝑓) ℎ𝜕𝑡 + 𝐷𝑋𝜁
− 𝜎𝜎̇
𝑓2 𝑔 (𝑋, 𝜁) 𝜕𝑡

= [𝑥ℎ̇ + 𝜁 (ln𝑓) 𝑥 + 𝑋 (ln𝑓) ℎ − 𝜎𝜎̇
𝑓2 𝑔 (𝑋, 𝜁)] 𝜕𝑡

+ 𝑥ℎ𝑓
𝜎2 ∇𝑓 + 𝑥(ln𝜎 ̇)𝜁 + ℎ(ln𝜎 ̇)𝑋 + 𝐷𝑋𝜁.

(46)
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Table 1

Case 𝜁 𝜎 𝑓
ℎ = 0 𝜎̇ = 0 𝜁 = (𝑥 + 𝑎)𝜕𝑥 Constant 𝑟(𝑥 + 𝑎)
𝑘 = 0 𝑓󸀠 = 0 𝜁 = (𝑡 + 𝑎)𝜕𝑡 𝑟(𝑡 + 𝑎) Constant
𝑓󸀠 = 0 𝜎̇ = 0 𝜁 = (𝑡 + 𝑎)𝜕𝑡 + (𝑥 + 𝑎)𝜕𝑥 Constant Constant

Now suppose that ℎ𝜕𝑡 and 𝜁 are concurrent vector fields; thenℎ̇ = 1 and𝐷𝑋𝜁 = 𝑋. If both 𝜎 and 𝑓 are constant, then

𝐷𝑋𝜁 = 𝑥ℎ̇𝜕𝑡 + 𝐷𝑋𝜁 = 𝑋; (47)

that is, 𝜁 is concurrent.
It is well-known that a homothetic vector field is a matter

collineation. Thus the above theorem yields the following
result.

Corollary 17. A vector field 𝜁 = ℎ𝜕𝑡 + 𝜁 on doubly warped
spacetime𝑀=𝑓 𝐼 ×𝜎𝑀 is a matter collineation if

(1) 𝜁 and ℎ𝜕𝑡 are concurrent vector fields on 𝑀 and 𝐼,
respectively,

(2) both 𝑓 and 𝜎 are constant.

Theorem 18. Let 𝜁 = ℎ𝜕𝑡 + 𝜁 be a concurrent vector field
on doubly warped spacetime 𝑀=𝑓 𝐼 ×𝜎𝑀 equipped with the
metric tensor 𝑔 = −𝑓2𝑑𝑡2 ⊕𝜎2𝑔. Then, 𝜁 is a concurrent vector
field on𝑀 if one of the following conditions holds:

(1) ℎ = 0, or
(2) 𝜎 is a constant; that is,𝑀 is standard static spacetime.

Moreover, condition (1) implies condition (2) and the
converse is true if 𝑓 is not constant.

Proof. From the above proof we have

𝑥 = 𝑥ℎ̇ + 𝜁 (ln𝑓) 𝑥 + 𝑋 (ln𝑓) ℎ − 𝜎𝜎̇
𝑓2 𝑔 (𝑋, 𝜁) ,

𝑋 = 𝑥ℎ𝑓
𝜎2 ∇𝑓 + 𝑥(ln𝜎 ̇)𝜁 + ℎ(ln𝜎 ̇)𝑋 + 𝐷𝑋𝜁

(48)

for any 𝑥 and𝑋. Let 𝑥 = 0, and then

0 = 𝑋 (ln𝑓) ℎ − 𝜎𝜎̇
𝑓2 𝑔 (𝑋, 𝜁) ,

𝑋 = ℎ(ln𝜎 ̇)𝑋 + 𝐷𝑋𝜁
𝐷𝑋𝜁 = [1 − ℎ𝜎̇

𝜎 ]𝑋.
(49)

Thus 𝜁 is concurrent if ℎ𝜎̇ = 0.
If ℎ = 0, then

𝜎𝜎̇
𝑓2 𝑔 (𝑋, 𝜁) = 0. (50)

If 𝑔(𝑋, 𝜁) = 0 then 𝜁 = 0 which is a contradiction and so
𝜎̇ = 0; that is,𝑀 is standard static spacetime.

If 𝜎̇ = 0, then
𝑋(𝑓) ℎ = 0 (51)

which implies that ℎ = 0 for a nonconstant function 𝑓.
Theorem 19. Let 𝜁 = ℎ𝜕𝑡 + 𝜁 be a concurrent vector field on
𝑀, where ℎ ̸= 0. Then 𝜁 and ℎ𝜕𝑡 are concurrent vector fields on𝑀 and 𝐼, respectively, if 𝜎̇ = 0. In this case 𝑓 is also constant.

Example 20. Table 1 summarizes all three cases of concurrent
vector fields on the 2-dimensional doubly warped spacetime
of the form 𝑀=𝑓 𝐼 ×𝜎R equipped with the metric 𝑔 =
−𝑓2𝑑𝑡2 ⊕ 𝜎2𝑑𝑥2. For more details see Appendix.

4. Ricci Soliton on Doubly Warped Spacetime

A smooth vector field 𝜁 on a Riemannian manifold (𝑀, 𝑔) is
said to define a Ricci soliton if

1
2 (L𝜁𝑔) (𝑋, 𝑌) + Ric (𝑋, 𝑌) = 𝜆𝑔 (𝑋, 𝑌) , (52)

where L𝜁 denotes the Lie derivative of the metric tensor 𝑔,
Ric is the Ricci curvature, and 𝜆 is a constant [32–36].

Theorem 21. Let (𝑀, 𝑔, 𝜁, 𝜆) be a Ricci soliton where 𝑀=𝑓
𝐼 ×𝜎𝑀 is doubly warped spacetime and 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈ X(𝑀).
Then

ℎ̇ = 1
𝑓2 (𝜆𝑓2 − 𝑓𝜁 (𝑓) + 𝑛

𝜎𝜎̈ +
𝑓⬦
𝜎2 ) ,

1
2𝜎2 (L𝜁𝑔) (𝑋, 𝑌) + Ric (𝑋, 𝑌) − 1

𝑓𝐻𝑓 (𝑋, 𝑌)

= (𝜆𝜎2 − ℎ𝜎𝜎̇ + 𝜎⬦
𝑓2 )𝑔 (𝑋, 𝑌) .

(53)

Proof. Let𝑀=𝑓 𝐼 ×𝜎𝑀 be a Ricci soliton, and then

1
2 (L𝜁𝑔) (𝑋, 𝑌) + Ric (𝑋, 𝑌) = 𝜆𝑔 (𝑋, 𝑌) , (54)

where 𝑋 = 𝑥𝜕𝑡 + 𝑋 and 𝑌 = 𝑦𝜕𝑡 + 𝑌 are vector fields on𝑀.
Then

− 𝜆𝑥𝑦𝑓2 + 𝜆𝜎2𝑔 (𝑋, 𝑌) = 1
2 (L𝜁𝑔) (𝑋, 𝑌)

+ Ric (𝑋, 𝑌) = 1
2 [−2𝑥𝑦𝑓2 [ℎ̇ + 𝜁 (ln𝑓)]

+ 𝜎2 (L𝜁𝑔) (𝑋, 𝑌) + 2ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌)]
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+ Ric (𝑥𝜕𝑡, 𝑦𝜕𝑡) + Ric (𝑥𝜕𝑡, 𝑌) + Ric (𝑋, 𝑦𝜕𝑡)
+ Ric (𝑋, 𝑌)

− 𝜆𝑥𝑦𝑓2 + 𝜆𝜎2𝑔 (𝑋, 𝑌) = 1
2 [−2𝑥𝑦𝑓2 [ℎ̇ + 𝜁 (ln𝑓)]

+ 𝜎2 (L𝜁𝑔) (𝑋, 𝑌) + 2ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌)] + (𝑛 − 1)
⋅ (𝑥𝜎̇𝜎 )𝑌 (ln𝑓) + (𝑛 − 1) (𝑦𝜎̇𝜎 )𝑋 (ln𝑓) + 𝑛

𝜎𝑥𝑦𝜎̈

+ 𝑥𝑦𝑓⬦𝜎2 + Ric (𝑋, 𝑌) − 1
𝑓𝐻𝑓 (𝑋, 𝑌) −

𝜎⬦
𝑓2 𝑔 (𝑋, 𝑌) .

(55)

Let𝑋 = 𝑌 = 0, and we get

𝑥𝑦𝑓2 [ℎ̇ + 𝜁 (ln𝑓)] − 𝑛
𝜎𝑥𝑦𝜎̈ − 𝑥𝑦𝑓⬦𝜎2 − 𝜆𝑓2𝑥𝑦 = 0

𝑥𝑦[ℎ̇𝑓2 + 𝑓𝜁 (𝑓) − 𝑛
𝜎𝜎̈ −

𝑓⬦
𝜎2 − 𝜆𝑓2] = 0

(56)

and so

ℎ̇𝑓2 = 𝜆𝑓2 − 𝑓𝜁 (𝑓) + 𝑛
𝜎𝜎̈ +

𝑓⬦
𝜎2

ℎ̇ = 1
𝑓2 (𝜆𝑓2 − 𝑓𝜁 (𝑓) + 𝑛

𝜎𝜎̈ +
𝑓⬦
𝜎2 ) .

(57)

Now, let us put 𝑥 = 𝑦 = 0, and then

𝜆𝜎2𝑔 (𝑋, 𝑌) = 1
2 [𝜎2 (L𝜁𝑔) (𝑋, 𝑌) + 2ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌)]
+ Ric (𝑋, 𝑌) − 1

𝑓𝐻𝑓 (𝑋, 𝑌)

− 𝜎⬦
𝑓2 𝑔 (𝑋, 𝑌)

(58)

and so

1
2𝜎2 (L𝜁𝑔) (𝑋, 𝑌) + Ric (𝑋, 𝑌) − 1

𝑓𝐻𝑓 (𝑋, 𝑌)

= (𝜆𝜎2 − ℎ𝜎𝜎̇ + 𝜎⬦
𝑓2 )𝑔 (𝑋, 𝑌) .

(59)

The following corollaries are consequences of the above
theorem.

Corollary 22. Let (𝑀, 𝑔, 𝜁, 𝜆) be a Ricci soliton where 𝑀=𝑓
𝐼 ×𝜎𝑀 is doubly warped spacetime and 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈ X(𝑀).
Then

(1) ℎ𝜕𝑡 is a conformal vector field on 𝐼 with factor(2/𝑓2)(𝜆𝑓2 − 𝑓𝜁(𝑓) + (𝑛/𝜎)𝜎̈ + 𝑓⬦/𝜎2),

(2) (𝑀, 𝑔, 𝜁, 𝜆) is a Ricci soliton if 𝑓 = 𝜎 = 1,
(3) (𝑀, 𝑔, 𝜁, 𝜆) is a Ricci soliton if 𝜎 = 1 and𝐻𝑓 = 0.

Theorem 23. Let (𝑀, 𝑔, 𝜁, 𝜆) be a Ricci soliton where
𝑀=𝑓 𝐼 ×𝜎𝑀 is doubly warped spacetime and 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈
X(𝑀) is a conformal vector field on 𝑀 with factor 2𝜌. Then(𝑀, 𝑔) is Einstein manifold with factor 𝜇 = (𝜆 − 𝜌)𝜎2 + 𝜎⬦/𝑓2
if 𝑓 is constant.

Proof. Let (𝑀, 𝑔, 𝜁, 𝜆) be a Ricci soliton where 𝑀=𝑓 𝐼 ×𝜎𝑀
is doubly warped spacetime and 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈ X(𝑀) is a
conformal vector field on𝑀. Then,

Ric (𝑋, 𝑌) = (𝜆 − 𝜌) 𝑔 (𝑋, 𝑌) . (60)

Let 𝑥 = 𝑦 = 0, and then

Ric (𝑋, 𝑌) = (𝜆 − 𝜌) 𝜎2𝑔 (𝑋, 𝑌) . (61)

This equation implies that

Ric (𝑋, 𝑌) − 1
𝑓𝐻𝑓 (𝑋, 𝑌) −

𝜎⬦
𝑓2 𝑔 (𝑋, 𝑌)

= (𝜆 − 𝜌) 𝜎2𝑔 (𝑋, 𝑌)
(62)

and so

Ric (𝑋, 𝑌) − 1
𝑓𝐻𝑓 (𝑋, 𝑌)

= [(𝜆 − 𝜌) 𝜎2 + 𝜎⬦
𝑓2 ]𝑔 (𝑋, 𝑌) .

(63)

Corollary 24. Let (𝑀, 𝑔, 𝜁, 𝜆) be a Ricci soliton where
𝑀=𝑓 𝐼 ×𝜎𝑀 is doubly warped spacetime and 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈
X(𝑀) is a homothetic vector field on𝑀 with factor 2𝑐. Then,

𝜆 = 𝑐 − 1
𝑓2 (

𝑛
𝜎𝜎̈ +

𝑓⬦
𝜎2 ) (64)

Proof. Let (𝑀, 𝑔, 𝜁, 𝜆) be a Ricci soliton and 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈
X(𝑀) be a homothetic vector field on𝑀, and then

(𝜆 − 𝑐) 𝑔 (𝑋, 𝑌) = Ric (𝑋, 𝑌) (65)

for any vector fields𝑋 = 𝑥𝜕𝑡 +𝑋 and 𝑌 = 𝑦𝜕𝑡 +𝑌. Let us take𝑋 = 𝑌 = 0, and then

Ric (𝑥𝜕𝑡, 𝑦𝜕𝑡) = (𝜆 − 𝑐) 𝑔 (𝑥𝜕𝑡, 𝑦𝜕𝑡)
𝑥𝑦𝑓⬦𝜎2 + 𝑥𝑦𝑛𝜎𝜎̈ = −𝑥𝑦 (𝜆 − 𝑐) 𝑓2

𝑥𝑦(𝑓⬦𝜎2 +
𝑛
𝜎𝜎̈ + (𝜆 − 𝑐) 𝑓2) = 0.

(66)
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Then,

𝜆 = 𝑐 − 1
𝑓2 (

𝑛
𝜎𝜎̈ +

𝑓⬦
𝜎2 ) (67)

and the proof is complete.

Theorem 25. Let (𝑀, 𝑔, 𝜁, 𝜆) be a Ricci soliton where
𝑀=𝑓 𝐼 ×𝜎𝑀 is doubly warped spacetime and 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈
X(𝑀) is a concurrent vector field on𝑀. Then,

(1) (𝑀, 𝑔) is Einstein manifold with factor 𝜇 = (𝜆−2)𝜎2 +𝜎⬦/𝑓2 if 𝑓 is constant,
(2) 𝜆 = 2 − (1/𝑓2)((𝑛/𝜎)𝜎̈ + 𝑓⬦/𝜎2).
Let 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈ X(𝑀), and then

(L
𝜁
𝑔) (𝑋, 𝑌)

= −2𝑥𝑦𝑓2 [ℎ̇ + 𝜁 (ln𝑓)] + 𝜎2 (L𝜁𝑔) (𝑋, 𝑌)
+ 2ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌) ,

Ric (𝑋, 𝑌)
= 𝑥𝑦(𝑛𝜎̈𝜎 + 𝑓⬦

𝜎2 )

+ (𝑛 − 1) (𝑥𝜎̇𝜎 𝑌 (ln𝑓) + 𝑦𝜎̇
𝜎 𝑋 (ln𝑓))

+ Ric (𝑋, 𝑌) − 1
𝑓𝐻𝑓 (𝑋, 𝑌) −

𝜎⬦
𝑓2 𝑔 (𝑋, 𝑌) .

(68)

Thus,

1
2 (L𝜁𝑔) (𝑋, 𝑌) + Ric (𝑋, 𝑌)

= −𝑥𝑦𝑓2 [ℎ̇ + 𝜁 (ln𝑓)] + 1
2𝜎2 (L𝜁𝑔) (𝑋, 𝑌)

+ ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌) + 𝑥𝑦(𝑛𝜎̈𝜎 + 𝑓⬦
𝜎2 )

+ (𝑛 − 1) (𝑥𝜎̇𝜎 𝑌 (ln𝑓) + 𝑦𝜎̇
𝜎 𝑋 (ln𝑓))

+ Ric (𝑋, 𝑌) − 1
𝑓𝐻𝑓 (𝑋, 𝑌) −

𝜎⬦
𝑓2 𝑔 (𝑋, 𝑌) .

(69)

Suppose that 𝑓 = 𝜎 = 1 and (𝑀, 𝑔, 𝜁, ℎ̇) is a Ricci soliton on𝑀, and then

1
2 (L𝜁𝑔) (𝑋, 𝑌) + Ric (𝑋, 𝑌)

= −𝑥𝑦ℎ̇ + 1
2 (L𝜁𝑔) (𝑋, 𝑌) + Ric (𝑋, 𝑌)

= −𝑥𝑦ℎ̇ + ℎ̇𝑔 (𝑋, 𝑌) = ℎ̇𝑔 (𝑋, 𝑌) .
(70)

Therefore, (𝑀, 𝑔, 𝜁, 𝜆) is a Ricci soliton where 𝜆 = ℎ̇. This
discussion leads us to the following result.

Theorem 26. Let 𝑀=𝑓 𝐼 ×𝜎𝑀 be doubly warped spacetime
and 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈ X(𝑀) be a vector field on 𝑀. Then
(𝑀, 𝑔, 𝜁, 𝜆) is a Ricci soliton if

(1) (𝑀, 𝑔, 𝜁, ℎ̇) is a Ricci soliton on𝑀,
(2) 𝑓 = 𝜎 = 1,
(3) 𝜆 = ℎ̇.
Let 𝑓 = 1, 𝜁 be a conformal vector field with factor 2𝜌,

and𝑀 be Einstein with factor 𝜇, and then

1
2 (L𝜁𝑔) (𝑋, 𝑌) + Ric (𝑋, 𝑌)

= −𝑥𝑦ℎ̇ + 𝜌𝜎2𝑔 (𝑋, 𝑌) + ℎ𝜎𝜎̇𝑔 (𝑋, 𝑌) + 𝑥𝑦(𝑛𝜎̈𝜎 )
+ (𝜇 − 𝜎⬦) 𝑔 (𝑋, 𝑌)

= −𝑥𝑦(ℎ̇ − 𝑛𝜎̈
𝜎 )

+ (𝜇 − 𝜎⬦
𝜎2 + 𝜌 + ℎ

𝜎𝜎̇) 𝜎2𝑔 (𝑋, 𝑌) ;

(71)

that is, (𝑀, 𝑔, 𝜁, 𝜆) is a Ricci soliton if

ℎ̇ − 𝑛𝜎̈
𝜎 = 𝜇 − 𝜎⬦

𝜎2 + 𝜌 + ℎ
𝜎𝜎̇

(ℎ̇ − 𝜌) 𝜎2 = 𝜇 + (𝑛 − 1) (𝜎𝜎̈ − 𝜎̇2) + ℎ𝜎𝜎̇.
(72)

Theorem 27. Let 𝑀 = 𝐼𝑓 ×𝜎𝑀 be doubly warped spacetime
and 𝜁 = ℎ𝜕𝑡 + 𝜁 ∈ X(𝑀) be a vector field on 𝑀. Then,
(𝑀, 𝑔, 𝜁, 𝜆) is a Ricci soliton if

(1) (𝑀, 𝑔) is Einstein with factor 𝜇,
(2) 𝑓 = 1, and 𝜁 is conformal with factor 2𝜌,
(3) (ℎ̇ − 𝜌)𝜎2 = 𝜇 + (𝑛 − 1)(𝜎𝜎̈ − 𝜎̇2) + ℎ𝜎𝜎̇.

In this case, 𝜆 = ℎ̇ − 𝑛𝜎̈/𝜎.

Appendix

Concurrent Vector Fields on
Doubly Spacetime

Let us now consider an example. Let 𝑀=𝑓 𝐼 ×𝜎R be 2-
dimension doubly warped spacetime equipped with the
metric 𝑔 = −𝑓2𝑑𝑡2 ⊕ 𝜎2𝑑𝑥2. Then,

𝐷𝜕𝑡𝜕𝑡 = 𝑓𝑓󸀠
𝜎2 𝜕𝑥

𝐷𝜕𝑥𝜕𝑡 = 𝑓󸀠
𝑓 𝜕𝑡 + 𝜎̇

𝜎𝜕𝑥
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𝐷𝜕𝑡𝜕𝑥 = 𝐷𝜕𝑥𝜕𝑡
𝐷𝜕𝑥𝜕𝑥 = −𝜎𝜎̇𝑓2 𝜕𝑡.

(A.1)

A vector field 𝜁 = ℎ𝜕𝑡 + 𝑘𝜕𝑥 ∈ X(𝑀) is a concurrent vector
field if

𝐷𝜕𝑡𝜁 = 𝜕𝑡 (A.2)

𝐷𝜕𝑥𝜁 = 𝜕𝑥. (A.3)

The first equation implies that

𝐷𝜕𝑡 (ℎ𝜕𝑡 + 𝑘𝜕𝑥) = 𝜕𝑡
ℎ̇𝜕𝑡 + ℎ𝑓𝑓󸀠

𝜎2 𝜕𝑥 + 𝑘(𝑓󸀠𝑓 𝜕𝑡 + 𝜎̇
𝜎𝜕𝑥) = 𝜕𝑡

(A.4)

and so

ℎ̇𝑓 + 𝑘𝑓󸀠 = 𝑓 (A.5)

ℎ𝑓𝑓󸀠 + 𝑘𝜎𝜎̇ = 0. (A.6)

Also, (A.3) implies that

𝐷𝜕𝑥 (ℎ𝜕𝑡 + 𝑘𝜕𝑥) = 𝜕𝑥
ℎ(𝑓󸀠𝑓 𝜕𝑡 + 𝜎̇

𝜎𝜕𝑥) + 𝑘󸀠𝜕𝑥 + 𝑘(−𝜎𝜎̇𝑓2 𝜕𝑡) = 𝜕𝑥
(A.7)

and so

ℎ𝑓𝑓󸀠 − 𝑘𝜎𝜎̇ = 0 (A.8)

ℎ𝜎̇ + 𝑘󸀠𝜎 = 𝜎. (A.9)

By solving (A.6) and (A.8), we get ℎ𝑓𝑓󸀠 = 0. Thus, ℎ = 0 or𝑓󸀠 = 0. In both cases, 𝑘𝜎𝜎̇ = 0; that is, 𝑘 = 0 or 𝜎̇ = 0. This
discussion shows that we have the following cases using (A.5)
and (A.9).

Case 1. ℎ = 0 and 𝜎̇ = 0: then 𝑘𝑓󸀠 = 𝑓 and 𝑘󸀠𝜎 = 𝜎 and so𝑘 = 𝑥 + 𝑎 ̸= 0 and
𝑓󸀠
𝑓 = 1

𝑥 + 𝑎 . (A.10)

Therefore, 𝑓 = 𝑟(𝑥+𝑎), where both 𝑟 and (𝑥+𝑎) are positive.
Case 2. 𝑓󸀠 = 0 and 𝑘 = 0: then ℎ̇𝑓 = 𝑓 and ℎ𝜎̇ = 𝜎 and soℎ = 𝑡 + 𝑎 ̸= 0 and similarly 𝜎 = 𝑟(𝑡 + 𝑎) where both 𝑟 and(𝑡 + 𝑎) are positive.
Case 3. 𝑓󸀠 = 0 and 𝜎̇ = 0: then ℎ̇𝑓 = 𝑓 and 𝑘󸀠𝜎 = 𝜎 and soℎ = 𝑡 + 𝑎 and 𝑘 = 𝑥 + 𝑏.
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