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The 𝑁-radial Schrödinger equation is analytically solved at finite temperature. The analytic exact iteration method (AEIM) is
employed to obtain the energy eigenvalues and wave functions for all states 𝑛 and 𝑙. The application of present results to the
calculation of charmonium and bottomoniummasses at finite temperature is also presented.The behavior of the charmonium and
bottomoniummasses is in qualitative agreement with other theoretical methods. We conclude that the solution of the Schrödinger
equation plays an important role at finite temperature that the analysis of the quarkonium states gives a key input to quark-gluon
plasma diagnostics.

1. Introduction

The Schrödinger equation (SE) plays an important role in
describing many phenomena related to the vibrations of
diatomicmolecules and the oscillations of atoms, high energy
physics, and quantum chemistry. Thus, the solutions of the
SE are important for describing the phenomena in the above-
mentioned fields. In [1–9], the authors obtained different
solutions of the SE. It is well known that the exact solutions of
the SE are found in few cases due to the complexity of the cen-
trifugal potential. Therefore, there are different methods sug-
gested such as those in [10–12], in which the authors solved
the SE by using the Nikiforov-Uvarovmethod. Other authors
used asymptotic iteration methods such as in [13–16]. In
addition, it is well known that the potential interaction energy
of the SE is necessary to obtain the explicit solutions of the SE
and the energy eigenvalues, such as the Cornell potential as in
[16, 17], the extended Cornell potential [18], and the Hulthén
plus ringed-shaped potential as in [19].

At finite temperature, in [3], the authors employed the
modified internal potential as a function of temperature to
study the quark-gluon plasma using Mayer’s expansion and a
phenomenological thermodynamic model. In [20], the finite
temperature SE is solved by using the Funke-Hecke theorem
and is applied to electron and proton systems. In [21], the
authors obtained the generalized form of the SE at finite

temperature based on the first law of thermodynamics. In
[22], the authors numerically solved the SE at finite tempera-
ture by employing temperature-dependent effective potential
given by a linear combination of color-singlet and internal
energies. Matsui and Satz [23] have studied the formation of a
hot quark-gluon plasma by studying the effect of the tem-
perature on the 𝐽/Ψ radius calculated in the charmonium
models. Wong [24] has studied the binding energies and
wave functions of heavy quarkonia in quark-gluon plasma by
using the color-singlet free energy and total internal energy
for a static quark and antiquark in quenched QCD.Thus, the
study shows that the model with the new𝑄-𝑄 potential gives
dissociation temperatures that agree with the spectral func-
tion analyses. Additionally, Wong [25] has investigated the𝑄-𝑄 potential by using the thermodynamic quantities to give
spontaneous dissociation temperatures for quarkonium and
has also found the quark drip lines which separate the region
of bound color-singlet 𝑄𝑄 states from the unbound region.
Reik and Rapp [26] have studied the evaluation of quarko-
nium bound-state properties and heavy-quark diffusion.
They have applied the thermodynamic𝑇-matrix approach for
elastic two-body interactions to obtain the spectral functions
of heavy-quark systems in the quark-gluon plasma, in which
the spectral functions are used to calculate Euclidean corre-
lators, which are discussed in light of lattice QCD results.

Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2016, Article ID 4935940, 7 pages
http://dx.doi.org/10.1155/2016/4935940



2 Advances in Mathematical Physics

On the other hand, studies of lattice QCD at finite
temperature with improved actions have provided consistent
estimates of 𝑇𝑐, playing an essential role in investigating the
heavy quark. The lattice QCD with two flavors of nonpertur-
batively improved Wilson fermions at finite temperature is
studied to describe the heavy-quark potential [27].TheDebye
screening between two opposite color charges is shown in
the QCD static potential computed at finite temperature with
latticeQCD [28, 29].Therefore, the heavy-quark bound states
may no longer exist well above the deconfinement critical
temperature 𝑇𝑐 on the order of 200–300MeV [30].

The aim of the present work is to obtain the solutions
of the Schrödinger equation at finite temperature. So far, no
attempt has been made to solve the 𝑁-radial SE using the
AEIMwhen finite temperature is included.The application is
studied on the analysis of the quarkonium states which play
an important role in the quark-gluon plasma diagnostics in
the heavy-ion collision experiments.

The paper is organized as follows: The 𝑁-radial SE is
solved by using the AEIM in Section 2. The results are
discussed in Section 3. The summary and conclusion are
presented in Section 4.

2. The Schrödinger Equation at
Finite Temperature

The SE for two particles interacting via a symmetric potential
in𝑁-dimensional space takes the form as in [31]:

[ 𝑑2𝑑𝑟2 + (𝑁 − 1)𝑟 𝑑𝑑𝑟 − 𝐿 (𝐿 + 𝑁 − 2)𝑟2 + 2𝜇 (𝐸 − 𝑉 (𝑟))]
⋅ Ψ (𝑟) = 0,

(1)

where𝐿,𝑁, and𝜇 are the angularmomentumquantumnum-
ber, the dimensionality number, and the reducedmass for the
quarkonium particle, respectively. Setting the wave functionΨ(𝑟) = 𝑅(𝑟)/𝑟(𝑁−1)/2, the following radial Schrödinger
equation is obtained:

[ 𝑑2𝑑𝑟2
+ 2𝜇(𝐸 − 𝑉 (𝑟, 𝑇) − (𝐿 + (𝑁 − 2) /2)2 − 1/42𝜇𝑟2 )]
⋅ 𝑅 (𝑟) = 0.

(2)

The 𝑉(𝑟, 𝑇) can be taken as the internal energy potential [3]:

𝑉 (𝑟, 𝑇) = 𝐹1 (𝑟, 𝑇) − 𝑇𝜕𝐹1 (𝑟, 𝑇)𝜕𝑇 , (3)

where

𝐹1 (𝑟, 𝑇) = (𝑐𝑟 − 43 𝛼𝑠 (𝑇)𝑟 ) 𝑒−𝑚𝐷(𝑇)𝑟, (4)

where 𝑐 is a free parameter and 𝛼𝑠(𝑇) is the running coupling
constant which is given by

𝛼𝑠 (𝑇) = 2𝜋
(11 − (2/3) 𝑛𝑓) ln (𝑇/𝛽𝑇𝑐) , (5)

where 𝑛𝑓 is the number of quark flavors, 𝑇𝑐 is the critical
temperature, and 𝛽 = 0.104 ± 0.009. The Debye screening
mass𝑚𝐷(𝑇) is given by

𝑚𝐷 (𝑇) = 4𝜋𝜂𝑐𝜎𝛼𝑠 (𝑇) 𝑇, (6)

where 𝜂 and 𝑐𝜎 are parameters of the model. By substituting
(3) into (2), we obtain

[ 𝑑2𝑑𝑟2 + 𝑑1 + 𝑑2𝑒−𝑚𝐷(𝑇)𝑟 + 𝑑3𝑟 𝑒−𝑚𝐷(𝑇)𝑟 + 𝑑4𝑟𝑒−𝑚𝐷(𝑇)𝑟

+ 𝑑5𝑟2𝑒−𝑚𝐷(𝑇)𝑟 − (𝐿 + (𝑁 − 2) /2)2 − 1/4𝑟2 ]𝑅 (𝑟)
= 0,

(7)

where

𝑑1 = 2𝜇𝐸,
𝑑2 = 8𝜇𝑇3 𝛼𝑠 (𝑇) 𝑑𝑑𝑇𝑚𝐷 (𝑇) ,

(8)

𝑑3 = 8𝜇𝛼𝑠 (𝑇)3 + 16𝜇𝜋 (11 − (2/3) 𝑛𝑓)
3 [(11 − (2/3) 𝑛𝑓) ln (𝑇/𝛽𝑇𝑐)]2 , (9)

𝑑4 = −2𝜇𝑐,
𝑑5 = 2𝜇𝑐𝑇 𝑑𝑑𝑇𝑚𝐷 (𝑇) .

(10)

By taking the following form of the wave function as in [1]

𝑅𝑛𝑙 (𝑟) = 𝑓𝑛 (𝑟) 𝑒𝑔𝑙(𝑟), (11)

where

𝑓𝑛 (𝑟) =
{{{{{{{

1 𝑛 = 0
𝑛∏
𝑖=1

(𝑟 − 𝛼𝑖) 𝑛 = 1, 2, 3, . . . , (12)

𝑔𝑙 (𝑟) = −12𝛼𝑟2 − 𝛽𝑟 + 𝛿 ln 𝑟; 𝛼 > 0, 𝛽 > 0, (13)

𝑓𝑛(𝑟) represents the Laguerre polynomials. By taking the
second derivative of (11), we obtain

𝑅󸀠󸀠𝑛𝑙 (𝑟) = (𝑔󸀠󸀠𝑙 (𝑟) + 𝑔󸀠2𝑙 (𝑟) + 𝑓󸀠󸀠𝑛 (𝑟) + 2𝑔󸀠𝑙 (𝑟) 𝑓󸀠𝑛 (𝑟)𝑓𝑛 (𝑟) )
⋅ 𝑅𝑛𝑙 (𝑟) .

(14)

Comparing (14) and (7),

𝑑1 + 𝑑2𝑒−𝑚𝐷(𝑇)𝑟 + 𝑑3𝑟 𝑒−𝑚𝐷(𝑇)𝑟 + 𝑑4𝑟𝑒−𝑚𝐷(𝑇)𝑟

+ 𝑑5𝑟2𝑒−𝑚𝐷(𝑇)𝑟 − (𝐿 + (𝑁 − 2) /2)2 − 1/4𝑟2
= −(𝑔󸀠󸀠𝑙 (𝑟) + 𝑔󸀠2𝑙 (𝑟) + 𝑓󸀠󸀠𝑛 (𝑟) + 2𝑔󸀠𝑙 (𝑟) 𝑓󸀠𝑛 (𝑟)𝑓𝑛 (𝑟) ) .

(15)



Advances in Mathematical Physics 3

2.1. Calculation of Energy 𝐸0𝑙. Calculating the energy 𝐸0𝑙 at𝑛 = 0, where 𝑓0(𝑟) = 1, using (13), and using the expansion𝑒−𝑚𝐷(𝑇)𝑟 = ∑𝑛𝑖=0((−𝑚𝐷(𝑇)𝑟)𝑖/𝑖!), we obtain
(𝑑1 + 𝑑2 − 𝑚𝐷 (𝑇) 𝑑3) + 1𝑟𝑑3

+ (𝑑4 + 𝑑3𝑚2𝐷 − 𝑑2𝑚𝐷) 𝑟
+ (𝑑5 + 𝑑22 𝑚2𝐷 − 𝑑4𝑚𝐷) 𝑟2
+ (12𝑑4𝑚2𝐷 − 𝑑5𝑚𝐷) 𝑟3 + 12𝑑5𝑚2𝐷𝑟4

− (𝐿 + (𝑁 − 2) /2)2 − 1/4𝑟2
= − (𝛼2𝑟2 + 2𝛼𝛽𝑟 − (𝛼 + 2𝛿)) + 𝛽2 − 2𝛽𝛿𝑟
+ 𝛿 (𝛿 − 1)𝑟2 .

(16)

By comparing the coefficients of the powers of 𝑟 on both sides,
we obtain

−𝑑5 − 𝑑22 𝑚2𝐷 + 𝑑4𝑚𝐷 = 𝛼2, (17)

−𝑑4 − 𝑑3𝑚2𝐷 + 𝑑2𝑚𝐷 = 2𝛼𝛽, (18)

𝑑1 + 𝑑2 − 𝑚𝐷𝑑3 = (𝛼 + 2𝛿) − 𝛽2, (19)

𝑑3 = 2𝛽𝛿,
𝑑4 = 0,
𝑑5 = 0,

(20)

(𝐿 + (𝑁 − 2)2 )2 − 14 = 𝛿 (𝛿 − 1) . (21)

From (19) and using the formula 𝑑1 = 2𝜇𝐸 in (8), we obtain

𝐸0𝑙 = 12𝜇 [𝛼 (1 + 2 (𝛿 + 0)) − 𝛽2 − 𝑑2 + 𝑚𝐷 (𝑇) 𝑑3] , (22)

where the parameters𝛼, 𝛽, and 𝛿 are obtained from (17), (18),
and (21) as follows:

𝛼 = √󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑑4𝑚𝐷 − 𝑑5 −
𝑑22 𝑚2𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨, (23)

𝛽 =
󵄨󵄨󵄨󵄨󵄨𝑑2𝑚𝐷 − 𝑑4 − 𝑑3𝑚2𝐷󵄨󵄨󵄨󵄨󵄨

2√󵄨󵄨󵄨󵄨𝑑4𝑚𝐷 − 𝑑5 − (𝑑2/2)𝑚2𝐷󵄨󵄨󵄨󵄨
, (24)

𝛿 = 1 ± √1 + 4 ((𝐿 + (𝑁 − 2) /2)2 − 1/4)
2 . (25)

2.2. Calculation of Wave Function at 𝑛 = 0. We can write (11)
at 𝑛 = 0:

𝑅0𝑙 (𝑟) = 𝑁0𝑙𝑟𝛿𝑒−(1/2)𝛼𝑟2−𝛽𝑟, (26)

where 𝑁0𝑙 is the normalization constant that can be deter-
mined by ∫∞

0
|𝑅0𝑙(𝑟)|2𝑑𝑟 = 1. By using [32], we obtain

𝑁0𝑙 = (2𝛼)(2𝛿+1)/4 𝑒−𝛽2/4𝛼
√Γ (2𝛿 + 1)𝐷−(2𝛿+1) (𝛽√2/𝛼) , (27)

where𝐷](𝑧) are the parabolic cylinder functions (see [32] and
references therein).The parameters 𝛼, 𝛽, and 𝛿 are calculated
in (23), (24), and (25). To satisfy the boundary conditions
at 𝑅0𝑙 (𝑟 = 0) = 0, the parameter 𝛿 should have a positive
value. Hence, we choose the positive sign in (25). In addition,
to satisfy the boundary condition at infinity 𝑅0𝑙 (𝑟 = ∞) =0, the parameters 𝛼 and 𝛽 should have a positive value.
Therefore, the absolute values are taken in (23) and (24).

2.3. Calculation of Energy 𝐸1𝑙. To calculate the energy eigen-
value 𝐸1𝑙, the index 𝑛 is taken as 𝑛 = 1. Thus, (11) is written
as

𝑓1 (𝑟) = (𝑟 − 𝛼1) . (28)

Therefore, we can write (15) as

(𝑑1 + 𝑑2 − 𝑚𝐷 (𝑇) 𝑑3) + 1𝑟𝑑3 + (𝑑4 + 𝑑3𝑚2𝐷 − 𝑑2𝑚𝐷)
⋅ 𝑟 + (𝑑5 + 𝑑22 𝑚2𝐷 − 𝑑4𝑚𝐷) 𝑟2 + (12𝑑4𝑚2𝐷
− 𝑑5𝑚𝐷) 𝑟3 + 12𝑑5𝑚2𝐷𝑟4

− (𝐿 + (𝑁 − 2) /2)2 − 1/4𝑟2 = −(𝛼2𝑟2 + 2𝛼𝛽𝑟
− 𝛼 (1 + 2 (𝛿 + 1)) + 𝛽2 − 2 [𝛽 (𝛿 + 1) + 𝛼𝛼1]𝑟
+ 𝛿 (𝛿 − 1)𝑟2 ) .

(29)

By comparing the coefficients of the powers 𝑟 on both sides,
we obtain

−𝑑5 − 𝑑22 𝑚2𝐷 + 𝑑4𝑚𝐷 = 𝛼2, (30)

−𝑑4 − 𝑑3𝑚2𝐷 + 𝑑2𝑚𝐷 = 2𝛼𝛽, (31)

𝑑1 + 𝑑2 − 𝑚𝐷 (𝑇) 𝑑3 = 𝛼 (1 + 2 (𝛿 + 1)) − 𝛽2, (32)

𝑑3 = 2 [𝛽 (𝛿 + 1) + 𝛼𝛼1] ,
𝑑4 = 0,
𝑑5 = 0,

(33)

(𝐿 + (𝑁 − 2)2 )2 − 14 = 𝛿 (𝛿 − 1) . (34)
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From (31) and using the formula 𝑑1 = 2𝜇𝐸 in (8), we obtain𝐸1𝑙 as the following form:

𝐸1𝑙 = 12𝜇 [𝛼 (1 + 2 (𝛿 + 1)) − 𝛽2 − 𝑑2 + 𝑚𝐷 (𝑇) 𝑑3] . (35)

2.4. Calculation of Wave Function at 𝑛 = 1. We can write the
wave function at 𝑛 = 1:

𝑅1𝑙 (𝑟) = 𝑁1𝑙 (𝑟 − 𝛼1) 𝑟𝛿𝑒−(1/2)𝛼𝑟2−𝛽𝑟, (36)

where the parameter 𝛼1 is obtained from (32):

𝛼1 = 𝑑3 − 2𝛽 (𝛿 + 1)2𝛼 , (37)

where the parameters 𝛼, 𝛽, and 𝛿 are those given in (23),
(24), and (25). 𝑁1𝑙 is the normalization constant, which can
be determined by ∫∞

0
|𝑅1𝑙(𝑟)|2𝑑𝑟 = 1. Thus, we obtain

𝑁1𝑙 = 1
√𝐼1 − 2𝛼1𝐼2 + 𝛼21𝐼3 , (38)

where

𝐼1 = Γ (2𝛿 + 3)𝐷−(2𝛿+3) (𝛽√2/𝛼)
(2𝛼)𝛿+3/2 𝑒−𝛽2/2𝛼

𝐼2 = Γ (2𝛿 + 2)𝐷−(2𝛿+2) (𝛽√2/𝛼)
(2𝛼)𝛿+1 𝑒−𝛽2/2𝛼

𝐼3 = Γ (2𝛿 + 1)𝐷−(2𝛿+1) (𝛽√2/𝛼)
(2𝛼)𝛿+1/2 𝑒−𝛽2/2𝛼 .

(39)

2.5. Calculation of Energy 𝐸2𝑙. Following the analytic itera-
tion method for the second node 𝑛 = 2,

𝑓2 (𝑟) = (𝑟 − 𝛼1) (𝑟 − 𝛼2) , (40)

we can write (15), and using (13), we obtain

(𝑑1 + 𝑑2 − 𝑚𝐷 (𝑇) 𝑑3) + 1𝑟𝑑3 + (𝑑4 + 𝑑3𝑚2𝐷 − 𝑑2𝑚𝐷)
⋅ 𝑟 + (𝑑5 + 𝑑22 𝑚2𝐷 − 𝑑4𝑚𝐷) 𝑟2 + (12𝑑4𝑚2𝐷
− 𝑑5𝑚𝐷) 𝑟3 + 12𝑑5𝑚2𝐷𝑟4 − (𝐿 + (𝑁 − 2) /2)2 − 1/4𝑟2
= −(𝛼2𝑟2 + 2𝛼𝛽𝑟 − 𝛼 (1 + 2 (𝛿 + 2)) − 𝛽2

− 2 [𝛽 (𝛿 + 2) + 𝛼∑2𝑖=1 𝛼𝑖]𝑟 + 𝛿 (𝛿 − 1)𝑟2 ) .

(41)

The relations between the potential parameters and the coef-
ficients 𝛼, 𝛽, 𝛿, 𝛼1, and 𝛼2 are as follows:

−𝑑5 − 𝑑22 𝑚2𝐷 + 𝑑4𝑚𝐷 = 𝛼2, (42)

−𝑑4 − 𝑑3𝑚2𝐷 + 𝑑2𝑚𝐷 = 2𝛼𝛽, (43)

𝑑1 + 𝑑2 − 𝑚𝐷 (𝑇) 𝑑3 = 𝛼 (1 + 2 (𝛿 + 2)) + 𝛽2, (44)

𝑑3 = 2[𝛽 (𝛿 + 2) + 𝛼 2∑
𝑖=1

𝛼𝑖] ,
𝑑4 = 0,
𝑑5 = 0,

(45)

(𝐿 + (𝑁 − 2)2 )2 − 14 = 𝛿 (𝛿 − 1) . (46)

From (44) and using the formula 𝑑1 = 2𝜇𝐸 in (8), we obtain𝐸2𝑙:
𝐸2𝑙 = 12𝜇 [𝛼 (1 + 2 (𝛿 + 2)) + 𝛽2 − 𝑑2 + 𝑚𝐷 (𝑇) 𝑑3] . (47)

2.6. Calculation of Wave Function at 𝑛 = 2
𝑅2𝑙 (𝑟) = 𝑁2𝑙 (𝑟 − 𝛼1) (𝑟 − 𝛼2) 𝑟𝛿𝑒−(1/2)𝛼𝑟2−𝛽𝑟, (48)

where 𝛼1 and 𝛼2 are obtained from (45) and (37). 𝑁2𝑙 is the
normalization constant which can be obtained as in (38).

2.7. Exact Energy and Wave Function. The iteration method
is repeated. Therefore, we obtain the exact energy at finite
temperature as the following form:

𝐸𝑛𝑙 = 12𝜇 [𝛼 (1 + 2 (𝛿 + 𝑛)) − 𝛽2 − 𝑑2 + 𝑚𝐷 (𝑇) 𝑑3] , (49)

and the wave function is

𝑅𝑛𝑙 (𝑟) = 𝑁𝑛𝑙 𝑛∏
𝑖=1

(𝑟 − 𝛼𝑖) 𝑟𝛿𝑒−(1/2)𝛼𝑟2−𝛽𝑟, (50)

where the parameters 𝛼, 𝛽, and 𝛿 are defined in (23), (24),
and (25). 𝑁𝑛𝑙 is the normalization constant that can be
obtained as in (27) and (38).

3. Discussion of Results

In the section above, the 𝑁-Schrödinger equation is solved
at finite temperature by using the AETM as in [1]. The
parameters of the present work are shown in Table 1. In this
section, we apply the energy eigenvalue that is given in (49).
To calculate quarkonium masses at finite temperature, the
formula𝑀 = 2𝑚 + 𝐸𝑛𝑙 is used when𝑁 = 3, where 𝑚 is bare
quark mass.

It is important to apply the present results on quarko-
nium mesons. In [33], the authors have investigated the
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Table 1: The parameters of the internal energy.

Parameter Value [3]
𝛽 0.104𝑐𝜎 0.566𝜂 2.06𝑇𝑐 0.25GeV𝑐 0.135 ± 0.015GeV2
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Reference [33] at
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Figure 1: Mass in vacuum mass units of charmonium ground state
is a function of temperature in critical temperature units for charm
quark mass (𝑚𝑐) equal to 1200, 1400, and 1640MeV.

quarkonium spectrum calculations at finite temperature in
the framework of QCD sum-rules. They found that the 1𝑆
state of quarkonium mass changes little up to 𝑇/𝑇𝑐 = 0.2 (𝑇𝑐
is critical temperature equal to 250MeV); then, the behavior
of charmonium mass increases with increasing temperature
up to 𝑇/𝑇𝑐 = 1. In addition, the curves shift to lower values
by increasing charm mass (𝑚𝑐) as in Figure 1.

Also in Figure 1, we find that the 1𝑆 state of charmonium
mass little changes up to 𝑇/𝑇𝑐 = 0.2 and then the charmo-
niummass increases with increasing temperature.The curves
shift to lower values by increasing 𝑚𝑐 in the present study.
Additionally, we note that the present results of charmonium
mass are shifted to upper values in comparison with [33],
since the parameters of each method are changed. So, we
note that qualitative agreement between the present results
and [33]. The study of Debye mass has much interest in
studying quarkonium properties. Unfortunately, there is still
quite small diversity of results in this quantity. In Figure 2,

Table 2: The screening mass in the lattice QCD with𝑁𝑓 = 3.0 and
the present work.

Ratio temperature (𝑇/𝑇𝑐) 1.5 2
Lattice QCD with𝑁𝑓 = 3.0 1.40 2.34
The present work𝑁𝑓 = 3.0 1.34 1.76
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Figure 2: The Debye screening mass is a function of ratio tempera-
ture at𝑚𝑐 = 1640MeV.

the comparison between the Debye screening mass in the
present work and its value in [34] is presented. We find that
qualitative agreement is noted in comparisonwith [34]. Addi-
tionally, lattice QCD with 𝑁𝑓 = 3 is studied in this quantity
[35]. Table 2 shows the comparison between the present
results of screening mass and the lattice QCD. We note that
the screening mass is in good agreement with lattice QCD at𝑇/𝑇𝑐 = 1.5 and the screening mass is shifted to a higher value
at 𝑇/𝑇𝑐 = 2.0.
4. Summary and Conclusion

In the present work, the solutions of 𝑁-radial Schrödinger
equation are obtained for all states 𝑛 and 𝑙, where the energy
eigenvalue and wave function are obtained at finite temper-
ature. The analytic exact iteration method (AEIM) in [1] is
used as the technique for solving the SE. The novelty in this
work is that we obtain the analytic solution of the 𝑁-radial
SE at finite temperature by using the AEIM. In addition, the
energy eigenvalues and corresponding wave functions are
calculated in the𝑁-dimensional space, in which one obtains
the energy eigenvalue and wave function in the 3-dimen-
sional space which are used in the most of the other works.

We apply the theoretical calculations on the quarkonium
masses at finite temperature. We find that the behavior of
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quarkonium masses is in qualitative agreement in compari-
son with the QCD sum rule and lattice QCD, which are tools
for measuring quarkonium masses at quark-gluon plasma.
Therefore, the present approach successfully describes the
quarkonium states for the given potential, which are a key
input to quark-gluon plasma. We hope to extend this work
to include electromagnetic forces in future work.
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