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The global solutions of the perturbed Riemann problem for the Leroux system are constructed explicitly under the suitable assump-
tions when the initial data are taken to be three piecewise constant states. The wave interaction problems are widely investigated
during the process of constructing global solutions with the help of the geometrical structures of the shock and rarefaction curves
in the phase plane. In addition, it is shown that the Riemann solutions are stable with respect to the specific small perturbations of
the Riemann initial data.

1. Introduction

We are concerned with the Leroux system [1] which is
represented in the form

𝑢𝑡 + (𝑢2 + 𝜌)
𝑥
= 0,

𝜌𝑡 + (𝜌𝑢)
𝑥
= 0, (1)

in which 𝑢 and 𝜌 stand for the velocity and density, respec-
tively. It was shown in [2] that system (1) can be derived
as a hydrodynamic limit under Eulerian scaling for a two-
component lattice gas.The Leroux system (1) has been widely
used in various fields; for example, it may be utilized to
investigate the stochastic dynamics in the stochastic parti-
cle system [3] and a deposition growth in the biological
chemotaxis-mechanism model [4].

It is easy to see that the Leroux system (1) is strictly
hyperbolic in the upper-half plane 𝜌 ≥ 0 provided that(𝑢, 𝜌) ̸= (0, 0) for both the eigenvalues of system (1) are
distinct. In addition, the Leroux system (1) is genuinely
nonlinear for it is so in both of the characteristic fields. The
main feature of system (1) lies in the fact that the 𝑘-shock
curves (𝑘 = 1, 2) coincide with the 𝑘-rarefaction curves in
the (𝑢, 𝜌) phase plane attributed to the special structure of
system (1). Thus, system (1) belongs to the so-called Temple
class [5]. In comparison with general systems of hyperbolic

conservation laws, the well-posed result for the Temple class
can be obtained for a much larger class of initial data [6,
7]. For the related works about the Leroux system (1), the
entropy solutions were obtained in [8] when the initial data
were taken in the form of the sum of Dirac measures and
bounded variation functions. The global existence of weak
solutions to the Cauchy problem for system (1) was obtained
in [9] by constructing four families of Lax-type entropies and
entropy fluxes and in [10] by using a new technique from the
div-curl lemma in the compensated compactness theorem.
In addition, the global bounded entropy solution of system
(1) was also achieved in [11] for the bounded measurable
initial data by combining the kinetic formulation and the
compensated compactness method.

In this paper, we are interested in constructing the global
solutions in a fully explicit form to the particular Cauchy
problem for system (1) when the initial data are taken to be
three piecewise constant states as

(𝑢, 𝜌) (𝑥, 0) = {{{{{{{{{
(𝑢−, 𝜌−) , −∞ < 𝑥 < 0,(𝑢𝑚, 𝜌𝑚) , 0 < 𝑥 < 𝑥0,(𝑢+, 𝜌+) , 𝑥0 < 𝑥 < +∞, (2)

in which 𝑥0 > 0 is arbitrarily small. System (1) is of interest
for the reason that it is one of the simplest, nonstrictly
hyperbolic systems of Temple class. Some useful information
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for Temple class can be achieved by studying the particular
Cauchy problem (1) and (2). This type of initial data (2)
has been widely used such as in [12–14] to study the wave
interaction problem [15–19] for different hyperbolic systems
of conservation laws. It is worthwhile to notice that the initial
data (2) may be regarded as the specific small perturbations
of the corresponding Riemann initial data:

(𝑢, 𝜌) (𝑥, 0) = {{{
(𝑢−, 𝜌−) , −∞ < 𝑥 < 0,(𝑢+, 𝜌+) , 0 < 𝑥 < +∞. (3)

Thus, the particular Cauchy problem (1) and (2) is called
as the perturbed Riemann problem (or the double Riemann
problems) below.

To deal with the perturbed Riemann problem (1) and
(2) it is essential to study various possible interactions of
elementarywaves for the Leroux system (1).Wefind that there
exist 16 different combinations of Riemann solutions at the
initial points (0, 0) and (𝑥0, 0). It is clear that the interaction
between the 2-wave starting from (0, 0) and the 1-wave
starting from (𝑥0, 0) happens at first which will play a critical
role in the construction of solution to the perturbed Riemann
problem (1) and (2). It is well known in [20] that only the
existence result can be obtained by studying the Goursat
problem and the global solution cannot be constructed in a
completely explicit form for the perturbed Riemann problem
(1) and (2) when the 2-rarefaction wave from (0, 0) and the 1-
rarefaction wave from (𝑥0, 0) occur. Thus, some assumptions
should be taken to avoid the above situation. If the interaction
between the 2-wave from (0, 0) and the 1-wave from (𝑥0, 0) is
completed, then the remaining problem is just to study the
interaction between the waves of the same family which is
easy to be dealt with for the Temple class. For simplicity, we
restrict ourselves to considering the above situation; that is,
the solution of the Riemann problem at the origin (0, 0) is two
shock waves 𝑆1+𝑆2. In order to meet the above requirements,
let us make the following assumption.

Assumption 1. Assume that 𝑢𝑚 < 𝑢− together with
max(0, (√𝑢2− + 4𝜌− − 𝑢−) (𝑢𝑚 − 𝑢−)2 + 𝜌−) < 𝜌𝑚

< (−𝑢− − √𝑢2− + 4𝜌−) (𝑢𝑚 − 𝑢−)2 + 𝜌−;
(4)

then the solution of the Riemann problem originating from
the origin (0, 0) is two shock waves for the perturbed
Riemann problem (1) and (2).

In fact, we want to investigate the perturbed Riemann
problem (1) and (2) by fixing the Riemann solutions from(0, 0) and then changing the Riemann solutions from (𝑥0, 0).
That is to say, for the given left state (𝑢−, 𝜌−), we first fix
the intermediate state (𝑢𝑚, 𝜌𝑚) and then change the right
state (𝑢+, 𝜌+). With the method described above, we have the
following theorem to describe the main result of this paper.

Theorem 2. If the initial data (2) satisfy Assumption 1, then
the global solutions of the perturbed Riemann problem (1)
and (2) can be constructed in a completely explicit form.
Furthermore, the limits of the global solutions to the perturbed
Riemann problem (1) and (2) are identical with the correspond-
ing ones of the Riemann problem (1) and (3) when the limit𝑥0 → 0 is taken.

The wave interaction problem for the Temple class has
been widely investigated recently, such as for the pressureless
gas dynamics equations [21], the isentropic Chaplygin gas
dynamics equations [22, 23], theAw-Rascle traffic flowmodel
[14], and various types of chromatography systems [24–
27]. It is worthwhile to notice that all the above systems
are not genuinely nonlinear, in which at least one of the
characteristic fields is linearly degenerate. Thus, the wave
interaction problem for the above systems has relatively
simple structures. Otherwise, both of the characteristic fields
are genuinely nonlinear for the Leroux system (1), which is
obviously different from the above systems, such that the
wave interaction problem ismore difficult to be dealt with. To
our knowledge, the wave interaction problem for the system
of Temple class with two genuinely nonlinear characteristic
fields has not been paid attention to before.

We can investigate the wave interaction problem for
system (1) in the explicit form by combining the method of
characteristics together with the geometrical structures of the
rarefaction and shock curves in the (𝑢, 𝜌) phase plane when
the initial data are taken to be three piecewise constant states
(2). The global solutions of the perturbed Riemann problem
(1) and (2) are constructed completely through obtaining
the exact result of each interaction during the process of
constructing the solutions under our assumption, which is
able to reveal more properties of system (1) than those of the
solutions to the Riemann problem (1) and (3). Furthermore,
we can see that the solutions of the Riemann problem (1) and
(3) are stable with respect to the small perturbations (2) of the
Riemann initial data (3) if the limit 𝑥0 → 0 is taken.

The paper is organized in the following way. In Section 2,
the Riemann solutions of (1) and (3) are restated for conve-
nience. In Section 3, the wave interaction problems are inves-
tigated widely for system (1). Under the suitable assumptions,
the global solutions of the perturbed Riemann problem (1)
and (2) are constructed in explicit forms when the initial data
are taken to be three piecewise constant states. In the end, the
stability of Riemann solutions is analyzed with respect to the
specific small perturbation of the Riemann initial data and
the conclusion is drawn in Section 4.

2. The Riemann Problem for Leroux
System (1) and (3)

In this section, we are dedicated to recalling some main
results about the Riemann problem for the Leroux system (1)
with the Riemann initial data (3), which has been extensively
investigated, for example, in [1, 8]. We can also refer to such
as [15, 28–31] for the general knowledge about the Riemann
problem for hyperbolic systems of conservation laws.
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By a simple calculation, it is shown that system (1) has two
characteristic velocities (eigenvalues):

𝜆1 = 3𝑢 − √𝑢2 + 4𝜌2 ,
𝜆2 = 3𝑢 + √𝑢2 + 4𝜌2 .

(5)

Thus, system (1) is strictly hyperbolic in the upper-half (𝑢, 𝜌)
phase plane (𝜌 ≥ 0) provided that (𝑢, 𝜌) ̸= (0, 0). The corre-
sponding right eigenvectors for system (1) are

󳨀→𝑟1 = (1, −𝑢 − √𝑢2 + 4𝜌2 )
𝑇

,
󳨀→𝑟2 = (1, √𝑢2 + 4𝜌 − 𝑢2 )

𝑇

.
(6)

It is easy to get ∇𝜆𝑖 ⋅ 󳨀→𝑟𝑖 = 2 ̸= 0 (𝑖 = 1, 2), in which∇ = (𝜕/𝜕𝑢, 𝜕/𝜕𝜌). Thus, both of the characteristic fields are
genuinely nonlinear provided that (𝑢, 𝜌) ̸= (0, 0), which
implies that (1) is a genuinely nonlinear system except for
the origin. The waves associated with the two characteristic
fields will be either shock waves or rarefaction waves which
are determined by the choice of initial data. The Riemann
invariants along with the characteristic fields may be selected
as

𝜔1 = −𝑢 − √𝑢2 + 4𝜌2 ,
𝜔2 = −𝑢 + √𝑢2 + 4𝜌2 .

(7)

For smooth solutions, by taking the self-similar transfor-
mation 𝜉 = 𝑥/𝑡, system (1) may be rewritten in the form

(2𝑢 − 𝜉 1𝜌 𝑢 − 𝜉)(𝑢𝜌) = (00) . (8)

For the given left state (𝑢−, 𝜌−), the two rarefaction wave
curves can be expressed, respectively, by

𝑅1 (𝑢−, 𝜌−) :
{{{{{{{{{{{{{{{
𝜉 = 𝜆1 = 3𝑢 − √𝑢2 + 4𝜌2 ,
𝜌 − 𝜌− = (−𝑢− − √𝑢2− + 4𝜌−2 ) (𝑢 − 𝑢−) , (9)

𝑅2 (𝑢−, 𝜌−) :
{{{{{{{{{{{{{{{
𝜉 = 𝜆2 = 3𝑢 + √𝑢2 + 4𝜌2 ,
𝜌 − 𝜌− = (√𝑢2− + 4𝜌− − 𝑢−2 ) (𝑢 − 𝑢−) . (10)

It is clear to see that both of the rarefaction wave curves are
straight lines in the (𝑢, 𝜌) phase plane. By direct calculation,
one finds that 𝑢𝜉 = 1/2 > 0 and 𝜌𝑢 < 0 for the 1-rarefaction
wave and 𝑢𝜉 = 1/2 > 0 and 𝜌𝑢 > 0 for the 2-rarefaction wave.
Thus, the 1-rarefaction wave is made up of the half-branch of𝑅1(𝑢−, 𝜌−) with 𝑢 ≥ 𝑢− and 𝜌 ≤ 𝜌−, while the 2-rarefaction
wave is made up of the half-branch of 𝑅2(𝑢−, 𝜌−) with 𝑢 ≥ 𝑢−
and 𝜌 ≥ 𝜌−.

On the other hand, for discontinuous solutions, the
Rankine-Hugoniot conditions at a discontinuous curve 𝑥 =𝑥(𝑡) can be expressed as

−𝜎 [𝑢] + [𝑢2 + 𝜌] = 0,
−𝜎 [𝜌] + [𝜌𝑢] = 0, (11)

where 𝜎 = 𝑑𝑥/𝑑𝑡 and [𝑢] = 𝑢𝑟 − 𝑢𝑙 with 𝑢𝑙 = 𝑢(𝑥(𝑡) − 0, 𝑡)
and 𝑢𝑟 = 𝑢(𝑥(𝑡) + 0, 𝑡), and so forth, which implies that

𝜌𝑟 − 𝜌𝑙𝑢𝑟 − 𝑢𝑙 = −𝑢𝑙 ± √𝑢2
𝑙
+ 4𝜌𝑙2 . (12)

Then, for the given left state (𝑢−, 𝜌−), the two shock wave
curves can also be expressed, respectively, by

𝑆1 (𝑢−, 𝜌−) :
{{{{{{{{{{{{{{{

𝑥𝑡 = 𝜎1 = 𝑢 + 𝑢− − √𝑢2− + 4𝜌−2 ,
𝜌 − 𝜌− = (−𝑢− − √𝑢2− + 4𝜌−2 ) (𝑢 − 𝑢−) , (13)

𝑆2 (𝑢−, 𝜌−) :
{{{{{{{{{{{{{{{

𝑥𝑡 = 𝜎2 = 𝑢 + 𝑢− + √𝑢2− + 4𝜌−2 ,
𝜌 − 𝜌− = (√𝑢2− + 4𝜌− − 𝑢−2 ) (𝑢 − 𝑢−) . (14)

It is remarkable that both of the shock wave curves are also
straight lines in the (𝑢, 𝜌) phase plane. One can see that the
classical Lax entropy condition implies that 𝜌 > 𝜌− and 𝑢 <𝑢− for the 1-shock wave curve and 𝜌 < 𝜌− and 𝑢 < 𝑢− for the
2-shock wave curve.

It is clear that the shock curves coincide with the rarefac-
tion curves in the phase plane.Thus, system (1) belongs to the
so-calledTemple class [5]. If the first- and second-familywave
curves are denoted by 𝑊1(𝑢−, 𝜌−) = 𝑆1(𝑢−, 𝜌−) ∪ 𝑅1(𝑢−, 𝜌−)
and 𝑊2(𝑢−, 𝜌−) = 𝑆2(𝑢−, 𝜌−) ∪ 𝑅2(𝑢−, 𝜌−), respectively, then
the lines of 𝑊1(𝑢−, 𝜌−) and 𝑊2(𝑢−, 𝜌−) are just tangent to the
parabola {Γ : 𝑢2 + 4𝜌 = 0} in the (𝑢, 𝜌) phase plane. Further-
more, it can be seen that the slopes of the two tangent lines
originating from (𝑢−, 𝜌−) to the parabola {Γ : 𝑢2 +4𝜌 = 0} are
exactly calculated by the corresponding Riemann invariants
in formula (7). Let us draw Figure 1 in the (𝑢, 𝜌) phase plane
to illustrate the situation. For the given left state (𝑢−, 𝜌−),
in view of the right state (𝑢+, 𝜌+) in the different regions,
the solutions of the Riemann problem (1) and (3) can be
summarized as follows: 𝑆1 +𝑆2 when (𝑢+, 𝜌+) ∈ I(𝑢−, 𝜌−), 𝑆1 +𝑅2 when (𝑢+, 𝜌+) ∈ II(𝑢−, 𝜌−), 𝑅1 + 𝑆2 when (𝑢+, 𝜌+) ∈ III(𝑢−,𝜌−), and 𝑅1 + 𝑅2 when (𝑢+, 𝜌+) ∈ IV(𝑢−, 𝜌−).
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Figure 1: For the given left state (𝑢−, 𝜌−), the half-upper (𝑢, 𝜌) phase
plane is shown for the Leroux system (1).

For simplicity, let us introduce the notations,

𝑘−1 = −𝑢− − √𝑢2− + 4𝜌−2 ,
𝑘−2 = −𝑢− + √𝑢2− + 4𝜌−2 ,

(15)

to stand for the slopes of the two tangent lines originating
from (𝑢, 𝜌) to the right-hand and left-hand sides of the
parabola {Γ : 𝑢2 + 4𝜌 = 0} in the (𝑢, 𝜌) phase plane.

For the Riemann problem (1) and (3), the intermediate
state (𝑢∗, 𝜌∗) is the one which can be connected with (𝑢−, 𝜌−)
on the left-hand side by 1-wave and can be connected with(𝑢+, 𝜌+) on the right-hand side by 2-wave. No matter what
the Riemann initial data (3) are taken, we always have the
following relations:

𝑘−1 = −𝑢− − √𝑢2− + 4𝜌−2 = −𝑢∗ − √𝑢2∗ + 4𝜌∗2 = 𝑘∗1 ,
𝑘∗2 = −𝑢∗ + √𝑢2∗ + 4𝜌∗2 = −𝑢+ + √𝑢2+ + 4𝜌+2 = 𝑘+2 .

(16)

The similar notations have also been adopted here and below
andwe do not give the detailed explanation anymore without
confusion. Thus, it can be seen that the intermediate state(𝑢∗, 𝜌∗) can be calculated by

(𝑢∗, 𝜌∗) = (𝑘−1𝑢− − 𝑘+2𝑢+ + 𝜌+ − 𝜌−𝑘−1 − 𝑘+2 , 𝜌−
+ 𝑘−1 (𝑘+2 (𝑢− − 𝑢+) + 𝜌+ − 𝜌−)𝑘−1 − 𝑘+2 ) , (17)

for all kinds of Riemann initial data (3) due to the special form
of system (1).
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Figure 2: If (𝑢𝑚, 𝜌𝑚) ∈ I(𝑢−, 𝜌−), then the nine different regions
in the half-upper (𝑢, 𝜌) phase plane are shown for the perturbed
Riemann problem (1) and (2).

3. Construction of Global Solutions to the
Perturbed Riemann Problem (1) and (2)

In this section, the main purpose is to construct the global
solutions of the perturbed Riemann problem (1) and (2)
under Assumption 1. In other words, we assume that the
Riemann solution starting from the origin (0, 0) is always two
shock waves. In this situation, we will construct the global
solutions of the perturbed Riemann problem (1) and (2)
case by case by investigating the wave interaction problems
in detail. If we put all the elementary wave curves across
the states (𝑢−, 𝜌−) and (𝑢𝑚, 𝜌𝑚) together, then the upper-half(𝑢, 𝜌) phase plane is divided into nine different regions shown
in Figure 2. According to the different Riemann solutions
originating from the other initial point (𝑥0, 0), our discussion
may be divided into the following four cases.

Case 1 (𝑆 + 𝑆 and 𝑆 + 𝑆). We first consider the situation that
there are also two shock waves emitting from the other initial
point (𝑥0, 0). Obviously, the occurrence of this case depends
on the conditions 𝑢+ < 𝑢𝑚 and

max(0, 𝜌𝑚 + (√𝑢2𝑚 + 4𝜌𝑚 − 𝑢𝑚) (𝑢+ − 𝑢𝑚)2 ) < 𝜌+
< 𝜌𝑚 + (−𝑢𝑚 − √𝑢2𝑚 + 4𝜌𝑚) (𝑢+ − 𝑢𝑚)2 .

(18)

For convenience, we use 𝑆3 and 𝑆4 to denote the two shock
waves, respectively. In this case, the state (𝑢+, 𝜌+) should
locate in the region 𝑉1 in Figure 2 only. When the time𝑡 is small enough, the solution of the perturbed Riemann
problem (1) and (2) may be represented succinctly as (see
Figure 3)

(𝑢−, 𝜌−) + 𝑆1 + (𝑢1, 𝜌1) + 𝑆2 + (𝑢𝑚, 𝜌𝑚) + 𝑆3+ (𝑢2, 𝜌2) + 𝑆4 + (𝑢+, 𝜌+) . (19)
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Figure 3: The interaction between 𝑆 + 𝑆 and 𝑆 + 𝑆 is displayed when (𝑢+, 𝜌+) ∈ 𝑉1.

It follows from (17) that the intermediate states (𝑢1, 𝜌1) and(𝑢2, 𝜌2)may be given, respectively, by

(𝑢1, 𝜌1) = (𝑘−1𝑢− − 𝑘𝑚2 𝑢𝑚 + 𝜌𝑚 − 𝜌−𝑘−1 − 𝑘𝑚2 , 𝜌−
+ 𝑘−1 (𝑘𝑚2 (𝑢− − 𝑢𝑚) + 𝜌𝑚 − 𝜌−)𝑘−1 − 𝑘𝑚2 ) , (20)

(𝑢2, 𝜌2) = (𝑘𝑚1 𝑢𝑚 − 𝑘+2𝑢+ + 𝜌+ − 𝜌𝑚𝑘𝑚1 − 𝑘+2 , 𝜌𝑚
+ 𝑘𝑚1 (𝑘+2 (𝑢𝑚 − 𝑢+) + 𝜌+ − 𝜌𝑚)𝑘𝑚1 − 𝑘+2 ) , (21)

in which 𝑘−1 and 𝑘+2 are given by (16) and 𝑘𝑚1 and 𝑘𝑚2 are
calculated, respectively, by

𝑘𝑚1 = −𝑢𝑚 − √𝑢2𝑚 + 4𝜌𝑚2 ,
𝑘𝑚2 = −𝑢𝑚 + √𝑢2𝑚 + 4𝜌𝑚2 .

(22)

It can be seen from Figure 3 that the relations 𝑢+ < 𝑢2 < 𝑢𝑚 <𝑢1 < 𝑢−, 𝜌1 > max(𝜌𝑚, 𝜌−), and 𝜌2 > max(𝜌𝑚, 𝜌+) can be
established directly.

Lemma 3. The shock wave 𝑆2 collides with the shock wave 𝑆3
in finite time.

Proof. The propagation speeds of 𝑆2 and 𝑆3 can be computed,
respectively, by

𝜎2 = 𝑢𝑚 + 𝑢1 + √𝑢21 + 4𝜌12 = 𝑢𝑚 − 𝑘11, (23)

𝜎3 = 𝑢2 + 𝑢𝑚 − √𝑢2𝑚 + 4𝜌𝑚2 = 𝑢2 − 𝑘𝑚2 . (24)

It is obvious to get 𝑢𝑚 > 𝑢2 and 𝑘11 < 0 < 𝑘𝑚2 from
Figure 3. Thus, we have

𝜎2 − 𝜎3 = 𝑢𝑚 − 𝑢2 − 𝑘11 + 𝑘𝑚2 > 0, (25)

which implies that 𝜎2 > 𝜎3. That is to say, the shock wave𝑆2 collides with 𝑆3 in finite time. The intersection (𝑥1, 𝑡1) is
determined by 𝑥1 = 𝜎2𝑡1,𝑥1 − 𝑥0 = 𝜎3𝑡1, (26)

which yields(𝑥1, 𝑡1)
= ( (𝑢𝑚 + 𝑢1 + 𝑘12) 𝑥0𝑢1 − 𝑢2 + 𝑢𝑚 + 2𝑘12 , 𝑥0𝑢1 − 𝑢2 + 𝑢𝑚 + 2𝑘12) . (27)

The collision between the two shock waves 𝑆2 and 𝑆3
occurs at the point (𝑥1, 𝑡1), where we again have a local
Riemann problem with the initial data (𝑢1, 𝜌1) and (𝑢2, 𝜌2).
In order to solve this problem, wemust determine the relative
position of (𝑢2, 𝜌2) based on (𝑢1, 𝜌1) in the (𝑢, 𝜌) phase plane
which can be described below.

Lemma 4. The state (𝑢2, 𝜌2) lies in region I with respect to the
state (𝑢1, 𝜌1). In other words, the solution of the local Riemann
problem at the point (𝑥1, 𝑡1) is also two shock waves.
Proof. With 𝑢2 < 𝑢𝑚 < 𝑢1 and 𝜌𝑚 < min(𝜌1, 𝜌2) in mind, in
order to show that the state (𝑢2, 𝜌2) lies in region Iwith respect
to the state (𝑢1, 𝜌1) in the (𝑢, 𝜌) phase plane, it is sufficient
to show that the line 𝑆1(𝑢𝑚, 𝜌𝑚) always lies below the line𝑆1(𝑢1, 𝜌1). It can be obtained from (13) that

𝑆1 (𝑢1, 𝜌1) : 𝜌 − 𝜌1 = (−𝑢1 − √𝑢21 + 4𝜌12 ) (𝑢 − 𝑢1)
= 𝑘11 (𝑢 − 𝑢1) ,𝑆1 (𝑢𝑚, 𝜌𝑚) : 𝜌 − 𝜌𝑚
= (−𝑢𝑚 − √𝑢2𝑚 + 4𝜌𝑚2 ) (𝑢 − 𝑢𝑚)
= 𝑘𝑚1 (𝑢 − 𝑢𝑚) .

(28)



6 Advances in Mathematical Physics

Noticing that 𝑢1 > 𝑢𝑚, 𝜌1 > 𝜌𝑚 and 𝑘11 < 𝑘𝑚1 < 0, one can
easily obtain that the inequality

𝑘11 (𝑢 − 𝑢1) + 𝜌1 − 𝑘𝑚1 (𝑢 − 𝑢𝑚) − 𝜌𝑚 > 0 (29)

holds for 𝑢 < 𝑢𝑚 < 𝑢1.
Therefore, it can be concluded from Section 2 that the

solution of the Riemann problem with the initial data (𝑢1, 𝜌1)
and (𝑢2, 𝜌2) at the point (𝑥1, 𝑡1) is also two shock waves. Let
us use 𝑆5 and 𝑆6 to denote them, respectively (see Figure 3).
Analogously, the intermediate state (𝑢3, 𝜌3) between 𝑆5 and 𝑆6
can also be obtained by

(𝑢3, 𝜌3) = (𝑘11𝑢1 − 𝑘22𝑢2 + 𝜌2 − 𝜌1𝑘11 − 𝑘22 , 𝜌1
+ 𝑘11 (𝑘22 (𝑢1 − 𝑢2) + 𝜌2 − 𝜌1)𝑘11 − 𝑘22 ) ,

(30)

in which (𝑢1, 𝜌1) and (𝑢2, 𝜌2) are given by (20) and (21),
respectively. In addition, the relations 𝑘11 = 𝑘−1 and 𝑘22 = 𝑘+2
can be established easily. Thus, the conclusion may be
drawn.

More precisely, let us first compare the propagation
speeds of 𝑆3 and 𝑆5 and then compare those of 𝑆2 and 𝑆6,
respectively. In a word, we use the following lemma to state
the results.

Lemma 5. The inequalities 𝜎3 < 𝜎5 and 𝜎2 > 𝜎6 can be
established for the corresponding propagation speeds of shock
waves.

Proof. The propagation speeds of 𝑆3 and 𝑆5 are calculated,
respectively, by (24) and

𝜎5 = 𝑢3 + 𝑢1 − √𝑢21 + 4𝜌12 = 𝑢3 − 𝑘12. (31)

Taking into account 𝑢2 < 𝑢3 and 𝑘𝑚2 = 𝑘12, we have𝜎3 − 𝜎5 = 𝑢2 − 𝑢3 < 0. (32)

Thus, the shock wave 𝑆3 decelerates backward when it passes
through 𝑆2.

On the other hand, the propagation speeds of 𝑆2 and 𝑆6
are calculated, respectively, by (23) and

𝜎6 = 𝑢2 + 𝑢3 + √𝑢23 + 4𝜌32 = 𝑢2 − 𝑘31. (33)

Noticing that 𝑢2 < 𝑢𝑚 and 𝑘11 = 𝑘31, we also have𝜎2 − 𝜎6 = 𝑢𝑚 − 𝑢2 > 0. (34)

Thus, the shock wave 𝑆2 decelerates forward when it passes
through 𝑆3.

Now, we are in the position to consider the coalescence of
two shockwaves belonging to the same familywhich is shown
below.

Lemma 6. The two shock waves 𝑆1 and 𝑆5 belonging to the
first family coalesce into a new shock wave of the first family.
Similarly, the two shockwaves 𝑆6 and 𝑆4 belonging to the second
family coalesce into a new shock wave of the second family.

Proof. We start with the interaction between 𝑆1 and 𝑆5. The
propagation speed of 𝑆1 is

𝜎1 = 𝑢1 + 𝑢− − √𝑢2− + 4𝜌−2 = 𝑢1 − 𝑘−2 , (35)

which, together with (31), yields

𝜎1 − 𝜎5 = 𝑢1 − 𝑢3 + 𝑘12 − 𝑘−2 > 0, (36)

in which 𝑢1 > 𝑢3 and 𝑘12 > 𝑘−2 > 0 have been used. Hence, 𝑆1
catches up with 𝑆5 in finite time and the intersection (𝑥2, 𝑡2)
is determined by 𝑥2 = 𝜎1𝑡2,𝑥2 − 𝑥1 = 𝜎5 (𝑡2 − 𝑡1) , (37)

which yields

(𝑥2, 𝑡2) = ((𝑢1 + 𝑢− + 𝑘−1 ) (𝑢𝑚 − 𝑢3 + 𝑘12 − 𝑘11) 𝑥0(𝑢1 − 𝑢2 + 𝑢𝑚 + 2𝑘12) (𝑢− − 𝑢3) ,
(𝑢𝑚 − 𝑢3 + 𝑘12 − 𝑘11) 𝑥0(𝑢1 − 𝑢2 + 𝑢𝑚 + 2𝑘12) (𝑢− − 𝑢3)) .

(38)

It can be seen from the (𝑢, 𝜌) phase plane in Figure 3 that
the two states (𝑢−, 𝜌−) and (𝑢3, 𝜌3) can be connected by a
shock wave of the first family directly. Thus, after this time𝑡2, the two shock waves 𝑆1 and 𝑆5 coalesce into a new shock
wave which is denoted by 𝑆7, whose propagation speed is

𝜎7 = 𝑢3 + 𝑢− − √𝑢2− + 4𝜌−2 = 𝑢3 − 𝑘−2 . (39)

It is easy to get 𝜎1 > 𝜎7 > 𝜎5 from 𝑢1 > 𝑢3 and 𝑘12 > 𝑘−2 > 0.
Then, we turn our attention to the interaction between 𝑆6

and 𝑆4. The propagation speed of 𝑆4 is
𝜎4 = 𝑢+ + 𝑢2 + √𝑢22 + 4𝜌22 = 𝑢+ − 𝑘21. (40)

Thus, it follows from (33) and (40) that𝜎6 − 𝜎4 = 𝑢2 − 𝑘31 − 𝑢+ + 𝑘21 > 0, (41)

in which 𝑢2 > 𝑢+ and 𝑘31 < 𝑘21 < 0 have been used. As before,𝑆6 catches upwith 𝑆4 in finite time and the intersection (𝑥3, 𝑡3)
can be calculated by

(𝑥3, 𝑡3) = (𝑥0 + (𝑢+ + 𝑢2 + 𝑘22) (𝑢3 + 𝑘32 + 𝑘12) 𝑥0(𝑢1 − 𝑢2 + 𝑢𝑚 + 2𝑘12) (𝑢3 − 𝑢+) ,
(𝑢3 + 𝑘32 + 𝑘12) 𝑥0(𝑢1 − 𝑢2 + 𝑢𝑚 + 2𝑘12) (𝑢3 − 𝑢+)) .

(42)



Advances in Mathematical Physics 7

xu

t

0

S1

S1

S2
S3

S2
S3

S5
S6

S7
S8

S9

⊖

⊕

⊕

①

③

⊖

①

③
R4

R4

𝜌

②

②

x0

m

m

Figure 4: The interaction between 𝑆 + 𝑆 and 𝑆 + 𝑅 is shown when (𝑢+, 𝜌+) ∈ 𝑉2.

It can also be seen from the (𝑢, 𝜌) phase plane in Figure 3
that the two states (𝑢3, 𝜌3) and (𝑢+, 𝜌+) can be connected by a
shock wave of the second family directly.Thus, after this time𝑡3, the two shock waves 𝑆6 and 𝑆4 coalesce into a new shock
wave which is denoted by 𝑆8, whose propagation speed is

𝜎8 = 𝑢+ + 𝑢3 + √𝑢23 + 4𝜌32 = 𝑢+ − 𝑘31. (43)

In addition, it can also turn out that 𝜎6 > 𝜎8 > 𝜎4 holds
from 𝑢2 > 𝑢+ and 𝑘31 < 𝑘21 < 0. In other words, the
propagation speed of 𝑆8 is between those of 𝑆4 and 𝑆6. The
proof is completed.

Case 2 (𝑆 + 𝑆 and 𝑆 + 𝑅). In this case, we turn our attention
to the situation that the Riemann solution is a shock wave
followed by a rarefaction wave starting from the initial point(𝑥0, 0). We use 𝑆3 and 𝑅4 to denote them, respectively (see
Figure 4). On this occasion, the state (𝑢+, 𝜌+) should lie in the
region𝑉2∪𝑉3 in Figure 2, which should satisfy the conditions𝜌+ > 𝜌𝑚 and

𝑢𝑚 − 2 (𝜌+ − 𝜌𝑚)𝑢𝑚 + √𝑢2𝑚 + 4𝜌𝑚 < 𝑢+
< 𝑢𝑚 + 2 (𝜌+ − 𝜌𝑚)√𝑢2𝑚 + 4𝜌𝑚 − 𝑢𝑚 .

(44)

In this situation, the local solution of the perturbed Riemann
problem (1) and (2) for the sufficiently small time 𝑡 may be
indicated by the symbols as

(𝑢−, 𝜌−) + 𝑆1 + (𝑢1, 𝜌1) + 𝑆2 + (𝑢𝑚, 𝜌𝑚) + 𝑆3+ (𝑢2, 𝜌2) + 𝑅4 + (𝑢+, 𝜌+) . (45)

Hereafter the intermediate states (𝑢1, 𝜌1), (𝑢2, 𝜌2), and (𝑢3, 𝜌3)
have the same presentations as those in Case 1.

As before, 𝑆2 collides with 𝑆3 at the point (𝑥1, 𝑡1) which
may be also calculated by the formula (27) in Case 1. After
the time 𝑡1, the new local Riemann problemwith the left state(𝑢1, 𝜌1) and the right state (𝑢2, 𝜌2) can also be solved by two
shock waves which are denoted by 𝑆5 and 𝑆6, respectively.

Similarly, the two shock waves 𝑆1 and 𝑆5 of the first family
coalesce into a new shock wave of the first family which is
denoted by 𝑆7.

On the other hand, we consider the situation that the
shock wave 𝑆6 penetrates the rarefaction wave 𝑅4 which can
be summarized below.

Lemma 7. The shock wave 𝑆6 is able to catch up with the wave
back of the rarefaction wave 𝑅4 in finite time and consequently
begins to penetrate 𝑅4. More precisely, if 𝑢+ < 𝑢3, then 𝑆6
has the ability to cancel the whole 𝑅4 thoroughly. Otherwise,
if 𝑢+ > 𝑢3, then 𝑆6 penetrates 𝑅4 incompletely and finally has
the characteristic line

𝑥 = 𝑥0 +(3𝑢3 + √𝑢23 + 4𝜌32 ) 𝑡 (46)

in 𝑅4 as its asymptotic line.

Proof. It is obvious to see that the propagation speed of 𝑆6 is
given by (33) and that of thewave back in the rarefactionwave𝑅4 is calculated by

𝜉4 (𝑢2, 𝜌2) = 3𝑢2 + √𝑢22 + 4𝜌22 = 𝑢2 − 𝑘21. (47)

In view of 𝑘31 < 𝑘21 < 0, we have
𝜎6 − 𝜉4 (𝑢2, 𝜌2) = 𝑘21 − 𝑘31 > 0, (48)

which implies that 𝑆6 keeps up with the wave back of 𝑅4 in
finite time and the intersection (𝑥3, 𝑡3) is computed by

𝑥3 − 𝑥1 = 𝜎6 (𝑡3 − 𝑡1) = (𝑢2 − 𝑘31) (𝑡3 − 𝑡1) ,
𝑥3 − 𝑥0 = 𝜉4 (𝑢2, 𝜌2) ⋅ 𝑡3 = (𝑢2 − 𝑘21) 𝑡3, (49)

in which 𝑡1 is given by (27). Thus, we have

(𝑥3, 𝑡3) = (𝑥0 + (𝑢2 − 𝑘21) (𝑢3 + 𝑘32 + 𝑘12) 𝑥0(𝑢1 − 𝑢2 + 𝑢𝑚 + 2𝑘12) (𝑢3 − 𝑢2) ,
(𝑢3 + 𝑘32 + 𝑘12) 𝑥0(𝑢1 − 𝑢2 + 𝑢𝑚 + 2𝑘12) (𝑢3 − 𝑢2)) .

(50)
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Consequently, 𝑆6 begins to penetrate 𝑅4 after the time 𝑡3.
It is remarkable that both 𝑆6 and𝑅4 are attributed to thewaves
of the second family. It can also be seen from the (𝑢, 𝜌) phase
plane in Figure 4 that the state (𝑢3, 𝜌3) and the varying state(𝑢, 𝜌) along with the corresponding characteristic line in 𝑅4
can also be connected by a shock wave of the second family
directly. Thus, during the process of penetration, the shock
wave is denoted by 𝑆8 whose propagation speed is given by

𝜎8 = 𝑢 + 𝑢3 + √𝑢23 + 4𝜌32 , (51)

where 𝑢 varies from 𝑢2 to 𝑢+. Thus, the shock curve of 𝑆8 in
the (𝑥, 𝑡) plane is determined by

𝑑𝑥𝑑𝑡 = 𝑢 + 𝑢3 + √𝑢23 + 4𝜌32 ,
𝑥 − 𝑥0 = (3𝑢 + √𝑢2 + 4𝜌2 ) 𝑡,
𝑥 (𝑡3) = 𝑥3.

(52)

From the (𝑢, 𝜌) phase plane in Figure 4 and the notation of 𝑘2
in this paper, we always have 𝑘2 = 𝑘32 when 𝑢 varies from 𝑢2
to 𝑢+. Thus, we can arrive at

𝑥 − 𝑥0 = (2𝑢3 + 𝑘32) 𝑡
− 2√ (𝑢3 − 𝑢2) (𝑢3 + 𝑘12 + 𝑘32) 𝑥0𝑡𝑢1 + 𝑢𝑚 − 𝑢2 + 2𝑘12 . (53)

In addition, by differentiating (53) with respect to 𝑡 twice, we
have

𝑑2𝑥𝑑𝑡2 = 12√ (𝑢3 − 𝑢2) (𝑢3 + 𝑘12 + 𝑘32) 𝑥0(𝑢1 + 𝑢𝑚 − 𝑢2 + 2𝑘12) 𝑡3 > 0, (54)

which means that the shock wave 𝑆8 speeds up during the
process of penetration.

Furthermore, there exist two possible situations accord-
ing to the region in which the state (𝑢+, 𝜌+) lies.

(a) If (𝑢+, 𝜌+) ∈ 𝑉2, thenwe have𝑢+ < 𝑢3. In this situation,𝑆8 is able to cancel 𝑅4 completely and terminates at the point(𝑥4, 𝑡4) which is given by

𝑥4 − 𝑥0 = (3𝑢+ + √𝑢2+ + 4𝜌+2 ) 𝑡4,
𝑥4 − 𝑥0 = (2𝑢3 + 𝑘32) 𝑡4

− 2√ (𝑢3 − 𝑢2) (𝑢3 + 𝑘12 + 𝑘32) 𝑥0𝑡4𝑢1 + 𝑢𝑚 − 𝑢2 + 2𝑘12 ;
(55)

namely, we have

(𝑥4, 𝑡4) = (𝑥0
+ (2𝑢+ + 𝑘+2 ) (𝑢3 − 𝑢2) (𝑢3 + 𝑘12 + 𝑘32) 𝑥0(𝑢1 + 𝑢𝑚 − 𝑢2 + 2𝑘12) (𝑢3 − 𝑢+)2 ,

(𝑢3 − 𝑢2) (𝑢3 + 𝑘12 + 𝑘32) 𝑥0(𝑢1 + 𝑢𝑚 − 𝑢2 + 2𝑘12) (𝑢3 − 𝑢+)2) .
(56)

After the penetration, the shock wave is denoted by 𝑆9 whose
propagation speed is

𝜎9 = 𝑢+ + 𝑢3 + √𝑢23 + 4𝜌32 = 𝑢+ − 𝑘31. (57)

(b) If (𝑢+, 𝜌+) ∈ 𝑉3, then we have 𝑢+ > 𝑢3. Thus 𝑆8
cannot cancel the entire rarefaction wave 𝑅4 thoroughly and
ultimately has the characteristic line in 𝑅4 whose expression
is shown in (46) as the asymptotic line.

Case 3 (𝑆 + 𝑆 and 𝑅 + 𝑆). In this case, we consider that the
Riemann solution emanating from the initial point (𝑥0, 0) is a
rarefaction wave followed by a shock wave.This case happens
if and only if the conditions 0 ≤ 𝜌+ < 𝜌𝑚 and

𝑢𝑚 + 2 (𝜌+ − 𝜌𝑚)√𝑢2𝑚 + 4𝜌𝑚 − 𝑢𝑚 < 𝑢+
< 𝑢𝑚 − 2 (𝜌+ − 𝜌𝑚)𝑢𝑚 + √𝑢2𝑚 + 4𝜌𝑚

(58)

are satisfied. In other words, the state (𝑢+, 𝜌+) should locate
in the region 𝑉4 ∪ 𝑉5 in Figure 2. We use 𝑅3 and 𝑆4 to denote
the rarefaction wave and the shock wave, respectively. When𝑡 is small enough, the solution of the perturbed Riemann
problem (1) and (2) may be displayed in the symbol form(𝑢−, 𝜌−) + 𝑆1 + (𝑢1, 𝜌1) + 𝑆2 + (𝑢𝑚, 𝜌𝑚) + 𝑅3+ (𝑢2, 𝜌2) + 𝑆4 + (𝑢+, 𝜌+) . (59)

Let us first consider the situation that the shock wave 𝑆2
penetrates the rarefaction wave 𝑅3 and use the following
lemma to depict it.

Lemma 8. The shock wave 𝑆2 is able to penetrate the whole
rarefaction wave 𝑅3 thoroughly in finite time and then a
transmitted rarefaction wave is generated during the process of
penetration.

Proof. It can be seen that the propagation speed of 𝑆2 is given
by (23) and that of the wave back in the rarefaction wave 𝑅3
is given by

𝜉3 (𝑢𝑚, 𝜌𝑚) = 3𝑢𝑚 − √𝑢2𝑚 + 4𝜌𝑚2 = 𝑢𝑚 − 𝑘𝑚2 . (60)
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Noticing that 𝑘𝑚2 > 0 > 𝑘11, we can obtain

𝜎2 − 𝜉3 (𝑢𝑚, 𝜌𝑚) = 𝑘𝑚2 − 𝑘11 > 0, (61)

which means that 𝑆2 penetrates the wave back of 𝑅3 at the
point which may be computed by

𝑥1 = 𝜎2𝑡1,𝑥1 − 𝑥0 = 𝜉3 (𝑢𝑚, 𝜌𝑚) ⋅ 𝑡1; (62)

namely,

(𝑥1, 𝑡1) = ((𝑢𝑚 + 𝑢1 + 𝑘12) 𝑥0𝑢1 + 2𝑘12 , 𝑥0𝑢1 + 2𝑘12) . (63)

After the time 𝑡1, the shock wave 𝑆2 begins to penetrate
the rarefaction wave 𝑅3 and is denoted by 𝑆6 during the
process of penetration. This penetration gives rise to a
transmitted rarefaction wave which is denoted by 𝑅5. In
order to compare the propagation speeds of rarefaction
waves before and after penetration when across 𝑆6, we have
the following description. The propagation speeds of the
matched characteristic lines in 𝑅3 and 𝑅5 can be calculated,
respectively, by

𝜉3 (𝑢−, 𝜌−) = 3𝑢− − √(𝑢−)2 + 4𝜌−2 , (64)

𝜉5 (𝑢+, 𝜌+) = 3𝑢+ − √(𝑢+)2 + 4𝜌+2 , (65)

in which the state (𝑢−, 𝜌−) in 𝑅3 becomes the matched one(𝑢+, 𝜌+) in 𝑅5 when across 𝑆2. They should obey the relation

𝜌+ − 𝜌−𝑢+ − 𝑢− = √(𝑢−)2 + 4𝜌− − 𝑢−2
= √(𝑢+)2 + 4𝜌+ − 𝑢+2 ,

(66)

in which 𝑢𝑚 < 𝑢− < 𝑢2 and 𝑢1 < 𝑢+ < 𝑢3. For the
match characteristic lines in 𝑅3 and 𝑅5, taking into account𝑢− < 𝑢+, it follows from (64), (65), and (66) that 𝜉3(𝑢−, 𝜌−) <𝜉5(𝑢+, 𝜌+). That is to say, the rarefaction wave accelerates
when it passes through the shock wave 𝑆2.

On the other hand, during the process of penetration, the
curve of the shock wave 𝑆6 is determined by

𝑑𝑥𝑑𝑡 = 𝑢− + 𝑢+ + √(𝑢+)2 + 4𝜌+2 ,
𝑥 − 𝑥0 = (3𝑢− − √(𝑢−)2 + 4𝜌−2 ) 𝑡,
𝑥 (𝑡1) = 𝑥1.

(67)

An easy computation leads to

𝑥 − 𝑥0 = − (𝑘𝑚1 + 2𝑘11) 𝑡
+ (𝑢𝑚 − 𝑘12 + 𝑘𝑚1 + 2𝑘11)√ 𝑥0𝑡𝑢1 + 2𝑘12 .

(68)

In addition, the following follows from (68):

𝑑2𝑥𝑑𝑡2 = −14 (𝑢𝑚 − 𝑘12 + 𝑘𝑚1 + 2𝑘11)√ 𝑥0(𝑢1 + 2𝑘12) 𝑡3> 0, (69)

which means that the shock wave 𝑆6 also speeds up during
the process of penetration. It is obvious to see that the shock
wave 𝑆2 is able to penetrate the whole rarefaction wave 𝑅3
thoroughly in finite time for the reason that the states (𝑢3, 𝜌3)
and (𝑢2, 𝜌2) can be connected directly by a shock wave of the
second family which is denoted by 𝑆7 after penetration. The
penetration terminates at the point (𝑥2, 𝑡2) which is given by

𝑥2 − 𝑥0 = (3𝑢2 − √𝑢22 + 4𝜌22 ) 𝑡2,
𝑥2 − 𝑥0 = − (𝑘𝑚1 + 2𝑘11) 𝑡2

+ (𝑢𝑚 − 𝑘12 + 𝑘𝑚1 + 2𝑘11)√ 𝑥0𝑡2𝑢1 + 2𝑘12 ;
(70)

namely,

(𝑥2, 𝑡2) = (𝑥0
+ (2𝑢2 + 𝑘21) (𝑢𝑚 − 𝑘12 + 𝑘𝑚1 + 2𝑘11)2 𝑥04 (𝑢1 + 2𝑘12) (𝑢2 + 𝑘𝑚1 + 𝑘11)2 ,
(𝑢𝑚 − 𝑘12 + 𝑘𝑚1 + 2𝑘11)2 𝑥04 (𝑢1 + 2𝑘12) (𝑢2 + 𝑘𝑚1 + 𝑘11)2) .

(71)

Thus, the conclusion can be drawn and the proof is com-
pleted.

The shock wave 𝑆7 continues to move forward and
consequently overtakes the shock wave 𝑆4 at the point which
is given by

(𝑥3, 𝑡3) = (𝑥0
+ (𝑢+ + 𝑢2 + 𝑘22) (𝑥2 − 𝑥0 − (𝑢2 + 𝑢3 + 𝑘32) 𝑡2)𝑢+ − 𝑢3 ,
𝑥2 − 𝑥0 − (𝑢2 + 𝑢3 + 𝑘32) 𝑡2𝑢+ − 𝑢3 ) ,

(72)
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Figure 5: The interaction between 𝑆 + 𝑆 and 𝑅 + 𝑆 is shown when (𝑢+, 𝜌+) ∈ 𝑉4.
in which (𝑥2, 𝑡2) is given by (71). As before, they also coalesce
into a new shock wave denoted by 𝑆8 due to the fact that the
states (𝑢3, 𝜌3) and (𝑢+, 𝜌+) can also be connected directly by
a shock wave of the second family. On the other hand, let
us consider that the shock wave 𝑆1 penetrates the rarefaction
wave 𝑅5 which is described in the following lemma.

Lemma 9. If 𝑢− > 𝑢3, then the shock wave 𝑆1 is able to
penetrate the whole rarefactionwave𝑅5 thoroughly. Otherwise,
if 𝑢− < 𝑢3, then 𝑆1 penetrates 𝑅5 incompletely and finally has
the characteristic line associated with the state (𝑢−, 𝜌−) in 𝑅5 as
its asymptotic line.

Proof. The propagation speed of 𝑆1 and that of the wave back
in 𝑅5 are computed, respectively, by

𝜎1 = 𝑢1 + 𝑢− − √𝑢2− + 4𝜌−2 = 𝑢1 − 𝑘−2 , (73)

𝜉5 (𝑢1, 𝜌1) = 3𝑢1 − √𝑢21 + 4𝜌12 = 𝑢1 − 𝑘12. (74)

Thus, one can arrive at 𝜎1 > 𝜉5(𝑢1, 𝜌1) by taking into account𝑘12 > 𝑘−2 > 0. Equivalently, the shock wave 𝑆1 catches up with
the wave back of 𝑅5 in finite time. In fact, the intersection is
determined by

𝜎1𝑡4 = 𝜉5 (𝑢1, 𝜌1) ⋅ (𝑡4 − 𝑡1) + 𝑥1, (75)

in which (𝑥1, 𝑡1) is given by (63), which enables us to have

(𝑥4, 𝑡4) = ((𝑢1 + 𝑢− + 𝑘−1 ) (𝑢𝑚 − 𝑢1 + 𝑘12 − 𝑘11) 𝑥0(𝑢1 + 2𝑘12) (𝑢− − 𝑢1) ,
(𝑢𝑚 − 𝑢1 + 𝑘12 − 𝑘11) 𝑥0(𝑢1 + 2𝑘12) (𝑢− − 𝑢1) ) .

(76)

After the time 𝑡4, the shock wave begins to penetrate 𝑅5
with a varying propagation speed and is denoted by 𝑆9 during
the process of penetration. The curve of 𝑆9 is determined by

𝑑𝑥𝑑𝑡 = 𝑢+ + 𝑢− − √𝑢2− + 4𝜌−2 ,
𝑥 − 𝑥 = (3𝑢+ − √(𝑢+)2 + 4𝜌+2 ) (𝑡 − 𝑡) ,
𝑥 (𝑡4) = 𝑥4,

(77)

in which the point (𝑥, 𝑡) is located on the curve of 𝑆6 and the
characteristic line with the state (𝑢+, 𝜌+) is departing from it.
For our knowledge, it is impossible to calculate the explicit
form for the curve of 𝑆9 due to the fact that𝑅5 is a noncentered
rarefaction wave. Depending on the region in which the state(𝑢+, 𝜌+) lies, there are two possible situations as follows:

(a) If (𝑢+, 𝜌+) ∈ 𝑉4, then we have 𝑢3 < 𝑢− (see Figure 5).
For this subcase, 𝑆9 is able to cancel the entire 𝑅5
thoroughly. The shock wave is denoted by 𝑆10 after
penetrationwhose propagation speed is given by (39).

(b) If (𝑢+, 𝜌+) ∈ 𝑉5, then we have 𝑢3 > 𝑢− (see
Figure 6). In this situation, 𝑆9 cannot penetrate the
whole 𝑅4 completely and at last has the characteristic
line associated with the state (𝑢−, 𝜌−) in 𝑅5 as its
asymptotic line.

Case 4 (𝑆+𝑆 and 𝑅+𝑅). In the end, we consider the situation
that there are two rarefaction waves originating from the
point (𝑥0, 0). This case arises when the conditions 𝑢+ > 𝑢𝑚
and

max(0, 𝜌𝑚 + (−√𝑢2𝑚 + 4𝜌𝑚 − 𝑢𝑚) (𝑢+ − 𝑢𝑚)2 )
< 𝜌+ < 𝜌𝑚 + (√𝑢2𝑚 + 4𝜌𝑚 − 𝑢𝑚) (𝑢+ − 𝑢𝑚)2

(78)

are satisfied.The two rarefaction waves are denoted by𝑅3 and𝑅4, respectively. In this case, the state (𝑢+, 𝜌+) should locate in
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the region 𝑉6 ∪ 𝑉7 ∪ 𝑉8 ∪ 𝑉9 in Figure 2. The solution of the
perturbed Riemann problem (1) and (2) for sufficiently small𝑡may be symbolized as(𝑢−, 𝜌−) + 𝑆1 + (𝑢1, 𝜌1) + 𝑆2 + (𝑢𝑚, 𝜌𝑚) + 𝑅3+ (𝑢2, 𝜌2) + 𝑅4 + (𝑢+, 𝜌+) . (79)

As in Case 3, the shock wave 𝑆2 is able to penetrate the
entire 𝑅3 thoroughly in finite time and a transmitted rarefac-
tionwave𝑅5 is generated. It can be seen fromLemma 9 that if𝑢− > 𝑢3, then 𝑆1 is able to penetrate the whole 𝑅5 thoroughly.
The condition (𝑢+, 𝜌+) ∈ 𝑉6 ∪ 𝑉7 should be satisfied in this
situation. Otherwise, if 𝑢− < 𝑢3, then 𝑆1 cannot penetrate
the whole 𝑅5 thoroughly. In this situation, (𝑢+, 𝜌+) ∈ 𝑉8 ∪ 𝑉9
should be satisfied. On the other hand, we turn our attention
back to the situation that the shock wave 𝑆7 penetrates the
rarefaction wave 𝑅4. With the similar process as before, we
can see that if 𝑢+ < 𝑢3, then 𝑆7 is able to penetrate the whole𝑅4 thoroughly. In this situation, (𝑢+, 𝜌+) ∈ 𝑉6 ∪ 𝑉9 should
be satisfied. Otherwise, if 𝑢+ > 𝑢3, then 𝑆7 cannot penetrate
the whole 𝑅4 completely. In this situation, we need to require(𝑢+, 𝜌+) ∈ 𝑉7 ∪ 𝑉8.

Thus, this case is just the combination of the results ahead
and we omit the details. In fact, we can summarize the main
results for the case below.

(a) If (𝑢+, 𝜌+) ∈ 𝑉6, then we have 𝑢+ < 𝑢3 < 𝑢− (see
Figure 7). For this subcase, 𝑆1 is able to penetrate the
whole𝑅5 and 𝑆7 is also able to penetrate the whole𝑅4,
such that the large-time behavior of solution is 𝑆 + 𝑆.

(b) If (𝑢+, 𝜌+) ∈ 𝑉7, then we have 𝑢3 < min(𝑢−, 𝑢+).
For this subcase, 𝑆1 is able to penetrate the whole 𝑅5,
but 𝑆7 cannot penetrate the whole𝑅4 completely, such
that the large-time behavior of solution is 𝑆 + 𝑅.

(c) If (𝑢+, 𝜌+) ∈ 𝑉8, then we have 𝑢− < 𝑢3 < 𝑢+ (see
Figure 8). For this subcase, 𝑆1 cannot penetrate the
whole 𝑅5 and 𝑆7 also cannot penetrate the whole 𝑅4,
such that the large-time behavior of solution is 𝑅+𝑅.

(d) If (𝑢+, 𝜌+) ∈ 𝑉9, then we have max(𝑢−, 𝑢+) < 𝑢3.
For this subcase, 𝑆1 cannot penetrate the whole 𝑅5
completely, but 𝑆7 is able to penetrate the whole𝑅4 thoroughly, such that the large-time behavior of
solution is 𝑅 + 𝑆.

4. Conclusion

So far, the discussion for all kinds of interactions has been
accomplished.The global solutions of the perturbedRiemann
problem (1) and (2) are constructed completely in explicit
forms under Assumption 1. It is clear to see that the large-
time asymptotic states of the global solutions to the perturbed
Riemann problem (1) and (2) are identical with the corre-
sponding ones to the Riemann problem (1) and (3). In other
words, the solutions to Riemann problem (1) and (3) can be
obtained if the limits 𝑥0 → 0 of the global solutions to the
perturbed Riemann problem (1) and (2) are taken. Thus, it
turns out that the Riemann solutions are stable with respect
to the specific small perturbation (2) of the Riemann initial
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data (3). Based on the above analysis, the proof ofTheorem 2
has been finished.

In fact, we can give suitable assumptions such that the
Riemann solution originating from the origin (0, 0) is𝑅+𝑆. By
adopting the method developed in this paper, similar results
can also be obtained. On the other hand, the reasonable
assumptions can also bemade such that theRiemann solution
originating from the initial point (𝑥0, 0) is 𝑆 + 𝑆 or 𝑆 + 𝑅. In
this situation, we need to fix the Riemann solution at (𝑥0, 0)
and then change the Riemann solution at (0, 0). This is to say,
for the given right state (𝑢+, 𝜌+), we first fix the intermediate
state (𝑢𝑚, 𝜌𝑚) and then change the left state (𝑢−, 𝜌−). Then,
the global solutions to the perturbed Riemann problem (1)
and (2) can also be constructed as above. In fact, the above
assumptions are made in order to avoid the situation that
the forward rarefaction wave collides with the backward one,
whose solution cannot be constructed in an explicit form.
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