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Based on general (1+3) threading of the spacetime (𝑀, 𝑔), we obtain a new and simple splitting of both the Einstein field equations
(EFE) and the conservation laws in (𝑀, 𝑔). As an application, we obtain the splitting of EFE in an almost FLRW universe with
energy-momentum tensor of a perfect fluid. In particular, we state the perturbation Friedmann equations in an almost FLRW
universe.

1. Introduction

The present paper is a continuation of [1], wherein an new
approach on the (1 + 3) threading of spacetime with respect
to an arbitrary timelike vector field has been developed. The
study in [1] refers to Lorentz metrics given by (2a), (2b), and
(2c) and subject to the condition that Φ is independent of
the time coordinate.We remove this condition, and therefore
the results are valid for any Lorentz metric of a spacetime.
Another important issue of the present paper is that thewhole
study is developed in the general setting of a spacetime with
a spatial distribution that is not necessarily integrable. The
threading frames and coframes, the spatial tensor fields, and
the Riemannian spatial connection are the main tools used
throughout the paper. These geometric objects enable us to
obtain new and simple splitting of EFE and to apply it to the
structure of an almost FLRW universe. The new approach
developed in this paper can be extended to threading of
higher-dimensional universes. In this respect, we mention
[2], wherein (1 + 1 + 3) threading of a 5𝐷 universe has been
developed.

Now, we outline the content of the paper. In Section 2
we present the main geometric objects which constitute the
foundation of a general (1 + 3) threading formalism of a
spacetime (𝑀, 𝑔) with respect to an arbitrary timelike vector
field. We close this section with local expressions of the Levi-
Civita connection ∇ in terms of spatial tensor field and of the

local coefficients of the Riemannian connection ∇ (cf. (23a),
(23b), (23c), and (23d)). In Section 3we state, for the first time
in the literature, the spatial Bianchi identities in the general
case when the spatial distribution is not necessarily integrable
(cf. (37), (38), and (39)). The structure equations on (𝑀, 𝑔)
induced by the (1 + 3) threading formalism are presented in
Section 4 (cf. (47a), (47b), (47c), (47d), (48a), (48b), (48c),
and (48d)). They play an important role in the next sections,
wherein we relate tensor fields on 𝑀 with spatial tensor
fields. In Section 5 we obtain simple expressions for the local
components of the Ricci tensor of (𝑀, 𝑔) with respect to
the threading frame field and for the scalar curvature (cf.
(63a), (63b), (63c), (64a), (64b), (64c), (66a), and (69)). The
splittings of both the Einstein gravitational tensor field and
the energy-momentum tensor field are stated in Section 6 (cf.
(73a), (73b), (73c), (81), (84), and (86)). In Section 7 we obtain
the spatial, mixed, and temporal EFE (cf. (89), (90a), (90b),
and (91)). Also, we state (93) which, in the particular case
when the threading is taken with respect to a unit vector field,
becomes the well-known Raychaudhuri-Ehlers equation. A
new splitting of conservation laws with respect to general(1 + 3) threading of spacetime is given in Section 8 (cf. (98),
and (99)). Also, we compare our results with what is known
in the literature on this matter. Finally, in Section 9 we apply
the general theory developed in the paper to the (1 + 3)
threading of an almost FLRW universe. We close the paper
with Conclusions and Appendices A, B, and C.
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2. The (1+3) Threading Formalism
with respect to a Nonnormalized
Timelike Vector Field

Recently, a new approach on the (1+3) threading of spacetime
with respect to a nonnormalized timelike vector field has
been developed (cf. [1]). In the most general setting that we
explain in this section, we recall the main geometric objects
introduced in [1]. Also, we introduce the extrinsic curvature
tensor field for the spatial distribution and use it in the
expressions of the Levi-Civita connection on a 4𝐷 spacetime.

Let (𝑀, 𝑔) be a 4𝐷 spacetime and 𝜉 be a timelike vector
field on 𝑀 that is not necessarily normalized. Then, the
tangent bundle TM of𝑀 admits the decomposition

TM = VM ⊕ SM, (1)

where VM is the temporal distribution spanned by 𝜉 and SM
is the spatial distribution that is complementarily orthogonal
to VM in TM.

Throughout the paper we use the ranges of indices:𝑖, 𝑗, 𝑘, . . . ∈ {1, 2, 3} and 𝑎, 𝑏, 𝑐, . . . ∈ {0, 1, 2, 3}. Also, for any
vector bundle𝐸 over𝑀, denote by Γ(𝐸) theF(𝑀)-module of
smooth sections of 𝐸, where F(𝑀) is the algebra of smooth
functions on𝑀.

The congruence of curves that is tangent to VM deter-
mines a coordinate system (𝑥𝑎) on 𝑀 such that 𝜉 = 𝜕/𝜕𝑥0.
Next, we put

𝜉0 = 𝑔( 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0) = −Φ2, (2a)

𝜉𝑖 = 𝑔( 𝜕𝜕𝑥𝑖 , 𝜕𝜕𝑥0) , (2b)

𝑔𝑖𝑗 = 𝑔( 𝜕𝜕𝑥𝑖 , 𝜕𝜕𝑥𝑗) , (2c)

wherein Φ is a nonzero function on𝑀.

Remark 1. Note that, in [1], Φ was supposed to be indepen-
dent of 𝑥0. Here, we remove this condition onΦ, and thus the
results stated in the present paper are valid for any Lorentz
metric 𝑔 on𝑀.

In this approach we use the threading frame field{𝜕/𝜕𝑥0, 𝛿/𝛿𝑥𝑖} and the threading coframe field {𝛿𝑥0, 𝑑𝑥𝑖}
defined as follows: 𝛿𝛿𝑥𝑖 = 𝜕𝜕𝑥𝑖 − 𝐴 𝑖 𝜕𝜕𝑥0 , (3a)

𝛿𝑥0 = 𝑑𝑥0 + 𝐴 𝑖𝑑𝑥𝑖, (3b)

where we put

𝐴 𝑖 = −Φ−2𝜉𝑖. (4)

The Lie brackets of the vector fields from the threading frame
are given by

[ 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖 ] = 2𝜔𝑖𝑗 𝜕𝜕𝑥0 , (5a)

[ 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖 ] = 𝑎𝑖 𝜕𝜕𝑥0 , (5b)

where we set

𝜔𝑖𝑗 = 12 {𝛿𝐴𝑗𝛿𝑥𝑖 − 𝛿𝐴 𝑖𝛿𝑥𝑗 }
= Φ−2 {𝑐𝑖𝜉𝑗 − 𝑐𝑗𝜉𝑖 + 12 ( 𝛿𝜉𝑖𝛿𝑥𝑗 − 𝛿𝜉𝑗𝛿𝑥𝑖)} ,

(6a)

𝑐𝑖 = Φ−1 𝛿Φ𝛿𝑥𝑖 , (6b)

𝑎𝑖 = −𝜕𝐴 𝑖𝜕𝑥0 = Φ−2 { 𝜕𝜉𝑖𝜕𝑥0 − 2Ψ𝜉𝑖} , (6c)

Ψ = Φ−1 𝜕Φ𝜕𝑥0 . (6d)

Taking into account that the Levi-Civita connection ∇ on(𝑀, 𝑔) is torsion-free, from (5a) we deduce that

𝜔𝑖𝑗 = 12Φ−2𝑔(∇𝛿/𝛿𝑥𝑖 𝛿𝛿𝑥𝑖 − ∇𝛿/𝛿𝑥𝑗 𝛿𝛿𝑥𝑖 , 𝜕𝜕𝑥0) . (7)

Thus, 𝜔𝑖𝑗, 𝑖, 𝑗 ∈ {1, 2, 3}, define the vorticity tensor field on(𝑀, 𝑔). By using the Jacobi identity
[[𝑋, 𝑌] , 𝑍] + [[𝑌, 𝑍] , 𝑋] + [[𝑍,𝑋] , 𝑌] = 0,

∀𝑋, 𝑌, 𝑍 ∈ Γ (TM) , (8)

we deduce that the vorticity tensor field satisfies the identities

𝜕𝜔𝑖𝑗𝜕𝑥0 = 12 { 𝛿𝑎𝑖𝛿𝑥𝑗 − 𝛿𝑎𝑗𝛿𝑥𝑖} , (9a)

∑
(𝑖,𝑗,𝑘)

{𝛿𝜔𝑖𝑗𝛿𝑥𝑘 − 𝜔𝑖𝑗𝑎𝑘} = 0, (9b)

where ∑(𝑖,𝑗,𝑘) is the cyclic sum with respect to (𝑖, 𝑗, 𝑘).
Now, we denote by 𝑔𝑖𝑗 the local components of the

Riemannian metric 𝑔 induced by 𝑔 on SM, with respect to
the basis {𝛿/𝛿𝑥𝑖} in Γ(SM), and obtain

𝑔𝑖𝑗 = 𝑔( 𝛿𝛿𝑥𝑖 , 𝛿𝛿𝑥𝑗) = 𝑔𝑖𝑗 + Φ2𝐴 𝑖𝐴𝑗 = 𝑔𝑖𝑗 + Φ−2𝜉𝑖𝜉𝑗. (10)

Then the lone element of 𝑔 is expressed in terms of threading
coframe {𝛿𝑥0, 𝑑𝑥𝑖} as follows:

𝑑𝑠2 = −Φ2 (𝛿𝑥0)2 + 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗. (11)

Also, we define the expansion tensor field Θ𝑖𝑗, the expansion
function Θ, and the shear tensor field 𝜎𝑖𝑗 as follows:

Θ𝑖𝑗 = 12 𝜕𝑔𝑖𝑗𝜕𝑥0 , (12a)

Θ = Θ𝑖𝑗𝑔𝑖𝑗, (12b)

𝜎𝑖𝑗 = Θ𝑖𝑗 − 13Θ𝑔𝑖𝑗. (12c)
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Raising and lowering indices 𝑖, 𝑗, 𝑘, . . ., are performed by
using 𝑔𝑖𝑗 and 𝑔𝑖𝑗, as in the following examples:

𝜔𝑘𝑗 = 𝑔𝑘𝑖𝜔𝑖𝑗,
𝜔𝑘ℎ = 𝑔𝑘𝑖𝑔ℎ𝑗𝜔𝑖𝑗,
𝜔𝑖𝑗 = 𝑔𝑖𝑘𝜔𝑘𝑗 ,
𝜔𝑖𝑗 = 𝑔𝑖𝑘𝑔𝑗ℎ𝜔𝑘ℎ.

(13)

The expansion and vorticity tensor fields enable us to define
the extrinsic curvature tensor field𝐾 of the spatial distribution
by its local components

𝐾ℎ𝑗 = Θℎ𝑗 + Φ2𝜔ℎ𝑗 , (14)

or equivalently by

𝐾𝑖𝑗 = Θ𝑖𝑗 + Φ2𝜔𝑖𝑗. (15)

By using (5a) and (15), we see that 𝐾 is a symmetric tensor
field if and only if SM is integrable.

Remark 2. Theextrinsic curvature tensor fieldwas intensively
used in the (3 + 1) decomposition of the spacetime (cf. [3, pp
509–516]). As far as we know, the tensor field𝐾 given by (14)
or (15) is considered here for the first time in a study of the(1 + 3) threading of spacetime.

Next, in order to justify the tensorialmeaning of the above
quantities, we define a spatial tensor field 𝑇 of type (𝑝, 𝑞) on𝑀, as anF(𝑀)-multilinear mapping:

𝑇 : Γ (SM⋆)𝑝 × Γ (SM)𝑞 󳨀→ F (𝑀) , (16)

where SM⋆ is the dual vector bundle to SM. The local
components of 𝑇, with respect to a threading frame and
coframe, are given by

𝑇𝑘⋅⋅⋅𝑖⋅⋅⋅ = 𝑇(𝑑𝑥𝑘, . . . , 𝛿𝛿𝑥𝑖 , . . .) (17)

and satisfy

𝑇𝑘⋅⋅⋅𝑖⋅⋅⋅ 𝜕𝑥̃ℎ𝜕𝑥𝑘 = 𝑇̃ℎ⋅⋅⋅𝑗⋅⋅⋅ 𝜕𝑥̃
𝑗

𝜕𝑥𝑖 , (18)

with respect to the coordinate transformations 𝑥̃𝑎 =𝑥̃𝑎(𝑥0, 𝑥𝑖) on𝑀. For example, {𝜔𝑖𝑗, 𝑔𝑖𝑗, 𝜃𝑖𝑗, 𝜎𝑖𝑗, 𝐾𝑖𝑗} and {𝑎𝑖, 𝑐𝑖}
define spatial tensor fields of types (0, 2) and (0, 1), respec-
tively.

An important geometric object is the Riemannian spatial
connection, which is a metric linear connection ∇ on the
spatial distribution, given by

∇𝑋S𝑌 = S∇𝑋S𝑌, ∀𝑋, 𝑌 ∈ Γ (TM) , (19a)

where S is the projection morphism of TM on SM with
respect to decomposition (1). Locally, ∇ is given by

∇𝛿/𝛿𝑥𝑗 𝛿𝛿𝑥𝑖 = Γ𝑖𝑘𝑗 𝛿𝛿𝑥𝑘 , (20a)

∇𝜕/𝜕𝑥0 𝛿𝛿𝑥𝑖 = 𝐾𝑘𝑖 𝛿𝛿𝑥𝑘 , (20b)

where we put

Γ𝑖𝑘𝑗 = 12𝑔𝑘ℎ {𝛿𝑔ℎ𝑗𝛿𝑥𝑖 + 𝛿𝑔ℎ𝑖𝛿𝑥𝑗 − 𝛿𝑔𝑖𝑗𝛿𝑥ℎ } . (21)

Throughout the paper, the covariant derivatives defined by∇ will be denoted by a vertical bar “|.” As an example, for a
spatial tensor field 𝑇 = (𝑇𝑖𝑗), we have

𝑇𝑗
𝑖|𝑘
= 𝛿𝑇𝑗𝑖𝛿𝑥𝑘 + 𝑇ℎ𝑖 Γℎ𝑗𝑘 − 𝑇𝑗ℎΓ𝑖ℎ𝑘, (22a)

𝑇𝑗
𝑖|0
= 𝜕𝑇𝑗𝑖𝜕𝑥0 + 𝑇ℎ𝑖 𝐾𝑗ℎ − 𝑇𝑗ℎ𝐾ℎ𝑖 . (22b)

A covariant derivative as in (22a) (resp., (22b)) is called a spa-
tial covariant derivative (resp., temporal covariant derivative)
of the spatial tensor field 𝑇.

Finally, by direct calculations, using the Riemannian
spatial connection and the above spatial tensor fields, we
express the Levi-Civita connection ∇ on (𝑀, 𝑔) as follows:

∇𝛿/𝛿𝑥𝑗 𝛿𝛿𝑥𝑖 = Γ𝑖𝑘𝑗 𝛿𝛿𝑥𝑘 + (𝜔𝑖𝑗 + Φ−2Θ𝑖𝑗) 𝜕𝜕𝑥0
= Γ𝑖𝑘𝑗 𝛿𝛿𝑥𝑘 + Φ−2𝐾𝑖𝑗 𝜕𝜕𝑥0 ,

(23a)

∇𝜕/𝜕𝑥0 𝛿𝛿𝑥𝑖 = (Θ𝑘𝑖 + Φ2𝜔𝑘𝑖 ) 𝛿𝛿𝑥𝑘 + 𝑏𝑖 𝜕𝜕𝑥0
= 𝐾𝑘𝑖 𝛿𝛿𝑥𝑘 + 𝑏𝑖 𝜕𝜕𝑥0 ,

(23b)

∇𝛿/𝛿𝑥𝑖 𝜕𝜕𝑥0 = (Θ𝑘𝑖 + Φ2𝜔𝑘𝑖 ) 𝛿𝛿𝑥𝑘 + 𝑐𝑖 𝜕𝜕𝑥0
= 𝐾𝑘𝑖 𝛿𝛿𝑥𝑘 + 𝑐𝑖 𝜕𝜕𝑥0 ,

(23c)

∇𝜕/𝜕𝑥0 𝜕𝜕𝑥0 = Φ2𝑏𝑘 𝛿𝛿𝑥𝑘 + Ψ 𝜕𝜕𝑥0 , (23d)

where we put

𝑏𝑖 = 𝑎𝑖 + 𝑐𝑖, 𝑖 ∈ {1, 2, 3} . (24)

Remark 3. It is worth mentioning that all the equations we
state in the paper are expressed in terms of spatial tensor fields
and their covariant derivatives defined by the Riemannian
connection.

Remark 4. As the (1 + 3) threading of spacetime considered
in this paper contains as a particular case the (1+3) threading
with respect to a unit timelike vector field, we call it the
general (1 + 3) threading of spacetime. The advantage of this
general setting on the splitting of spacetime is that it can be
applied to any Lorentz metric of a spacetime.
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3. Bianchi Identities for the Riemannian
Spatial Connection

In earlier literature on the (1 + 3) threading of spacetime,
we find the so-called three-dimensional derivative operator
(cf. (4.19) of [4]). With respect to this operator, we have the
following remarks:

(i) It is neither a linear connection on 𝑀 nor a linear
connection on SM.

(ii) As a consequence of (i), for the general case when SM
is not integrable, then a curvature tensor field for this
operator could be not defined.

Contrary to this situation, ∇ given by (19a) is a metric
linear connection on the vector bundle SM, and therefore it
has a curvature tensor field 𝑅 given by

𝑅 (𝑋, 𝑌, 𝑍) = ∇𝑋∇𝑌S𝑍 − ∇𝑌∇𝑋S𝑍 − ∇[𝑋,𝑌]S𝑍,
∀𝑋, 𝑌, 𝑍 ∈ Γ (TM) . (25)

Locally, we put

𝑅( 𝛿𝛿𝑥𝑘 , 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖) = 𝑅𝑖ℎ𝑗𝑘 𝛿𝛿𝑥ℎ , (26a)

𝑅( 𝛿𝛿𝑥𝑘 , 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) = 𝑅𝑖ℎ0𝑘 𝛿𝛿𝑥ℎ , (26b)

and by using (25), (26a), (26b), (20a), (20b), (5a), and (5b),
we obtain

𝑅𝑖ℎ𝑗𝑘 = 𝛿Γ𝑖ℎ𝑗𝛿𝑥𝑘 − 𝛿Γ𝑖ℎ𝑘𝛿𝑥𝑗 + Γ𝑖𝑙𝑗Γ𝑙ℎ𝑘 − Γ𝑖𝑙𝑘Γ𝑙ℎ𝑗
− 2𝐾ℎ𝑖 𝜔𝑗𝑘,

(27a)

𝑅𝑖ℎ0𝑘 = 𝐾𝑖ℎ|𝑘 − 𝜕Γ𝑖ℎ𝑘𝜕𝑥0 + 𝐾ℎ𝑖 𝑎𝑘. (27b)

Since ∇ is a metric linear connection, we have

𝑅𝑖𝑙0𝑘 + 𝑅𝑙𝑖0𝑘 = 0, (28)

where we put

𝑅𝑖𝑙0𝑘 = 𝑔𝑙ℎ𝑅𝑖ℎ0𝑘. (29)

As a consequence of (28) we deduce that 𝑅𝑖𝑖0𝑘 = 0, which
implies

Θ|𝑘 = 𝜕Θ𝜕𝑥𝑘 − 𝐴𝑘 𝜕Θ𝜕𝑥0 = Γ𝑖𝑖𝑘𝜕𝑥0 − Θ𝑎𝑘, (30)

via (27b) and (14). Thus, in any cosmological model of a 4𝐷
universe, the expansion function must satisfy the system of𝑃𝐷𝐸 given by (30).

Remark 5. Note that 𝑅𝑖ℎ𝑗𝑘 and 𝑅𝑖ℎ0𝑘 define spatial tensor
fields of types (1, 3) and (1, 2), respectively. Also, from (27b)
we see that 𝜕Γ𝑖ℎ𝑘/𝜕𝑥0 define a spatial tensor field of type (1, 2).
However, Γ𝑖ℎ𝑘 do not define a spatial tensor field.
Remark 6. Comparing (27a) with (15.4) from [5], we see that
the so-called Zelmanov curvature tensor field is given by the
first four terms from (27a). Moreover, from (15.5) of [5] we
see that such a tensor field becomes a curvature tensor field,
if and only if SM is an integrable distribution.

Next, we extend the Riemannian spatial connection ∇ on
SM to a linear connection ∇̃ on𝑀 given by

∇̃𝑋𝑌 = ∇𝑋S𝑌 +T∇𝑋T𝑌, ∀𝑋, 𝑌 ∈ Γ (TM) , (31)

where T is the projection morphism of TM on VM with
respect to (1). Clearly, ∇̃ coincides with∇ on SMand therefore
locally is given by (20a), (20b), and

∇̃𝛿/𝛿𝑥𝑖 𝜕𝜕𝑥0 = 𝑐𝑖 𝜕𝜕𝑥0 , (32a)

∇̃𝛿/𝛿𝑥0 𝜕𝜕𝑥0 = Ψ 𝜕𝜕𝑥0 . (32b)

We recall that the torsion and curvature tensor fields of ∇̃ are
given by

𝑇̃ (𝑋, 𝑌) = ∇̃𝑋𝑌 − ∇̃𝑌𝑋 − [𝑋, 𝑌] , (33a)

𝑅̃ (𝑋, 𝑌, 𝑍) = ∇̃𝑋∇̃𝑌𝑍 − ∇̃𝑌∇̃𝑋𝑍 − ∇̃[𝑋,𝑌]𝑍. (33b)

Then, by direct calculations, using (33a), (33b), (20a), (20b),
(32a), (32b), (5a), (5b), (23c), (26a), and (26b), we deduce that

𝑇̃ ( 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖) = −2𝜔𝑖𝑗 𝜕𝜕𝑥0 , (34a)

𝑇̃ ( 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) = 𝐾𝑗𝑖 𝛿𝛿𝑥𝑗 − 𝑏𝑖 𝜕𝜕𝑥0 , (34b)

𝑅̃ ( 𝛿𝛿𝑥ℎ , 𝛿𝛿𝑥𝑘 , 𝛿𝛿𝑥𝑖) = 𝑅𝑖𝑗𝑘ℎ 𝛿𝛿𝑥𝑗 , (34c)

𝑅̃ ( 𝛿𝛿𝑥𝑘 , 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) = 𝑅𝑖𝑗0𝑘 𝛿𝛿𝑥𝑗 . (34d)

Now, in order to find some Bianchi identities for the Rieman-
nian spatial connection, we recall that the Bianchi identities
for the linear connection ∇̃ are given by (cf. [6, p. 135])

∑
(𝑋,𝑌,𝑍)

{(∇̃𝑋𝑇̃) (𝑌, 𝑍) + 𝑇̃ (𝑇̃ (𝑋, 𝑌) , 𝑍)
− 𝑅̃ (𝑋, 𝑌, 𝑍)} = 0, (35a)

∑
(𝑋,𝑌,𝑍)

{(∇̃𝑋𝑅̃) (𝑌, 𝑍, 𝑈) + 𝑅̃ (𝑇̃ (𝑋, 𝑌) , 𝑍, 𝑈)} = 0, (35b)



Advances in Mathematical Physics 5

where ∑(𝑋,𝑌,𝑍) is the cyclic sum with respect to (𝑋, 𝑌, 𝑍). In
order to use (35a), we note that

𝑇̃ (𝑇̃ ( 𝛿𝛿𝑥𝑘 , 𝛿𝛿𝑥𝑗) , 𝛿𝛿𝑥𝑖)
= −2𝐾ℎ𝑖 𝜔𝑗𝑘 𝛿𝛿𝑥ℎ + 2𝑏𝑖𝜔𝑗𝑘 𝜕𝜕𝑥0 ,

(36a)

(∇̃𝛿/𝛿𝑥𝑘 𝑇̃) ( 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖) = −2 (𝜔𝑖𝑗|𝑘 + 𝜔𝑖𝑗𝑐𝑘) 𝜕𝜕𝑥0 . (36b)

Then, take 𝑋 = 𝛿/𝛿𝑥𝑘, 𝑌 = 𝛿/𝛿𝑥𝑗, and 𝑍 = 𝛿/𝛿𝑥𝑖 in (35a)
and, by using (36a), (36b), and (34a), we infer that the spatial
component in (35a) is expressed as follows:

∑
(𝑖,𝑗,𝑘)

{𝑅𝑖ℎ𝑗𝑘 + 2𝐾ℎ𝑖 𝜔𝑗𝑘} = 0. (37)

Taking temporal part in (35a) and any other triplet (𝑋, 𝑌, 𝑍)
from the threading frame we obtain the identities from (9a)
and (9b).

Next, take 𝑋 = 𝛿/𝛿𝑥𝑘, 𝑌 = 𝛿/𝛿𝑥𝑗, 𝑍 = 𝛿/𝛿𝑥𝑖, and 𝑈 =𝛿/𝛿𝑥ℎ in (35b), and, by using (31), (34a), (34c) and (34d), we
obtain

∑
(𝑖,𝑗,𝑘)

{𝑅ℎ𝑙𝑖𝑗|𝑘 + 𝑅ℎ𝑙0𝑖|𝑘𝜔𝑗𝑘} = 0. (38)

Finally, take 𝑋 = 𝜕/𝜕𝑥0, 𝑌 = 𝛿/𝛿𝑥𝑗, 𝑍 = 𝛿/𝛿𝑥𝑖, and 𝑈 =𝛿/𝛿𝑥ℎ in (35b), and, by using (31), (34a), (34b), (34c), (34d),
and (23c), we deduce the identity

𝑅ℎ𝑙𝑖𝑗|0 + 𝑅ℎ𝑙0𝑖|𝑗 − 𝑅ℎ𝑙0𝑗|𝑖 + 𝑅ℎ𝑙𝑖𝑘𝐾𝑘𝑗 − 𝑅ℎ𝑙𝑗𝑘𝐾𝑘𝑖
+ 𝑎𝑗𝑅ℎ𝑙0𝑖 − 𝑎𝑖𝑅ℎ𝑙0𝑗 = 0.

(39)

The other identities obtained from (35b) either are trivial or
do not involve the curvature tensor 𝑅 of ∇. Thus, we are
entitled to call (37), (38), and (39) the Bianchi identities for
the Riemannian spatial connection.

We close the section with some comments on these
identities. As far as we know, the above Bianchi identities
are stated here for the first time in the literature. They
represent a generalization of usual Bianchi identities on a
3-dimensional Riemannian manifold. Indeed, if the spatial
distribution is integrable, that is, the vorticity tensor field
vanishes identically on𝑀, then (37) and (38) become

∑
(𝑖,𝑗,𝑘)

{𝑅𝑖𝑙𝑗𝑘} = 0,
∑
(𝑖,𝑗,𝑘)

{𝑅ℎ𝑙𝑖𝑗|𝑘} = 0,
(40)

which are the well-known Bianchi identities on the 3-dimen-
sional leaves of SM. Moreover, in this case, by using (14) and
(27a) and (27b), we deduce that

𝐾𝑗𝑖 = Θ𝑗𝑖 , (41a)

𝑅𝑖𝑗0ℎ = Θ𝑗𝑖|ℎ − 𝜕Γ𝑖𝑗ℎ𝜕𝑥0 + Θ𝑗𝑖 𝑎ℎ, (41b)

𝑅𝑖𝑗𝑘ℎ = 𝛿Γ𝑖𝑗𝑘𝛿𝑥ℎ − 𝛿Γ𝑖𝑗ℎ𝛿𝑥𝑘 + Γ𝑖𝑙𝑘Γ𝑙𝑗ℎ − Γ𝑖𝑙ℎΓ𝑙𝑗𝑘. (41c)

Finally, identity (39) becomes

𝑅ℎ𝑙𝑖𝑗|0 + 𝑅ℎ𝑙0𝑖|𝑗 − 𝑅ℎ𝑙0𝑗|𝑖 + 𝑅ℎ𝑙𝑖𝑘Θ𝑘𝑗 − 𝑅ℎ𝑙𝑗𝑘Θ𝑘𝑖
+ 𝑎𝑗𝑅ℎ𝑙0𝑖 − 𝑎𝑖𝑅ℎ𝑙0𝑗 = 0.

(42)

4. Structure Equations Induced by the (1+3)
Threading of Spacetime

Let (𝑀, 𝑔) be a 4𝐷 spacetime and ∇ be the Levi-Civita
connection defined by the Lorentz metric 𝑔. Denote by 𝑅 the
curvature tensor field of ∇ given by (33b) wherein we remove
the tilde.Then, consider the following local components of 𝑅
with respect to the threading frame {𝜕/𝜕𝑥0, 𝛿/𝛿𝑥𝑖}:

𝑅( 𝛿𝛿𝑥𝑘 , 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖) = 𝑅𝑖ℎ𝑗𝑘 𝛿𝛿𝑥ℎ + 𝑅𝑖0𝑗𝑘 𝜕𝜕𝑥0 , (43a)

𝑅( 𝛿𝛿𝑥𝑘 , 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) = 𝑅𝑖ℎ0𝑘 𝛿𝛿𝑥ℎ + 𝑅𝑖00𝑘 𝜕𝜕𝑥0 . (43b)

Now, comparing (A.4) and (A.8) fromAppendix Awith (43a)
and (43b), respectively, we obtain

𝑅𝑖ℎ𝑗𝑘 = 𝑅𝑖ℎ𝑗𝑘 + Φ−2 (𝐾𝑖𝑗𝐾ℎ𝑘 − 𝐾𝑖𝑘𝐾ℎ𝑗 ) , (44a)

𝑅𝑖0𝑗𝑘 = Φ−2 (𝐾𝑖𝑗|𝑘 − 𝐾𝑖𝑘|𝑗 + 𝐾𝑖𝑘𝑐𝑗 − 𝐾𝑖𝑗𝑐𝑘) − 2𝑏𝑖𝜔𝑗𝑘, (44b)

𝑅𝑖ℎ0𝑘 = 𝑅𝑖ℎ0𝑘 + 𝑏𝑖𝐾ℎ𝑘 − 𝑏ℎ𝐾𝑖𝑘, (44c)

𝑅𝑖00𝑘 = 𝑏𝑖|𝑘 + 𝑏𝑖𝑏𝑘 − Φ−2 (𝐾𝑖𝑘|0 + 𝐾𝑖𝑗𝐾𝑗𝑘 − Ψ𝐾𝑖𝑘) . (44d)

By using (15), (6a), (6b), (6c), and (6d), we deduce that

𝐾𝑖𝑗|𝑘 = Θ𝑖𝑗|𝑘 + Φ2 (𝜔𝑖𝑗|𝑘 + 2𝜔𝑖𝑗𝑐𝑘) , (45a)

𝐾𝑖𝑗|0 = Θ𝑖𝑗|0 + Φ2 (𝜔𝑖𝑗|0 + 2Ψ𝜔𝑖𝑗) . (45b)



6 Advances in Mathematical Physics

Taking account of (45a), (45b), (14), and (15) into (44a), (44b),
(44c), and (44d), we infer that

𝑅𝑖ℎ𝑗𝑘 = 𝑅𝑖ℎ𝑗𝑘 + (𝜔𝑖𝑗 + Φ−2Θ𝑖𝑗) (Θℎ𝑘 + Φ2𝜔ℎ𝑘)
− (𝜔𝑖𝑘 + Φ−2Θ𝑖𝑘) (Θℎ𝑗 + Φ2𝜔ℎ𝑗 ) ,

(46a)

𝑅𝑖0𝑗𝑘 = Φ−2 (Θ𝑖𝑗|𝑘 − Θ𝑖𝑘|𝑗 + Θ𝑖𝑘𝑐𝑗 − Θ𝑖𝑗𝑐𝑘) + 𝜔𝑖𝑗|𝑘
− 𝜔𝑖𝑘|𝑗 + 𝜔𝑖𝑗𝑐𝑘 − 𝜔𝑖𝑘𝑐𝑗 − 2𝑏𝑖𝜔𝑗𝑘, (46b)

𝑅𝑖ℎ0𝑘 = 𝑅𝑖ℎ0𝑘 + 𝑏𝑖Θℎ𝑘 − 𝑏ℎΘ𝑖𝑘 + Φ2 (𝑏𝑖𝜔ℎ𝑘 − 𝑏ℎ𝜔𝑖𝑘) , (46c)

𝑅𝑖00𝑘 = 𝑏𝑖|𝑘 + 𝑏𝑖𝑏𝑘 − Φ−2 (Θ𝑖𝑘|0 − ΨΘ𝑖𝑘) − 𝜔𝑖𝑘|0
− Ψ𝜔𝑖𝑘 − (𝜔𝑖𝑗 + Φ−2Θ𝑖𝑗) (Θ𝑗𝑘 + Φ2𝜔𝑗𝑘) . (46d)

Next, by using the local components of the curvature tensor
fields𝑅 and𝑅 of type (0, 4) (see (A.9) and (A.10)), from (44a),
(44b), (44c), (44d), (46a), (46b), (46c), and (46d) we obtain

𝑅𝑖𝑙𝑗𝑘 = 𝑅𝑖𝑙𝑗𝑘 + Φ−2 (𝐾𝑖𝑗𝐾𝑙𝑘 − 𝐾𝑖𝑘𝐾𝑙𝑗) , (47a)

𝑅𝑖0𝑗𝑘 = 𝐾𝑖𝑘|𝑗 − 𝐾𝑖𝑗|𝑘 + 𝐾𝑖𝑗𝑐𝑘 − 𝐾𝑖𝑘𝑐𝑗 + 2Φ2𝑏𝑖𝜔𝑗𝑘, (47b)

𝑅𝑖𝑙0𝑘 = 𝑅𝑖𝑙0𝑘 + 𝑏𝑖𝐾𝑙𝑘 − 𝑏𝑙𝐾𝑖𝑘, (47c)

𝑅𝑖00𝑘 = 𝐾𝑖𝑘|0 + 𝐾𝑖𝑗𝐾𝑗𝑘 − Ψ𝐾𝑖𝑘 − Φ−2 (𝑏𝑖|𝑘 + 𝑏𝑖𝑏𝑘) , (47d)

𝑅𝑖𝑙𝑗𝑘 = 𝑅𝑖𝑗𝑘 + Φ2 {(𝜔𝑖𝑗 + Φ−2Θ𝑖𝑗) (𝜔𝑙𝑘 + Φ−2Θ𝑙𝑘)
− (𝜔𝑖𝑘 + Φ−2Θ𝑖𝑘) (𝜔𝑙𝑗 + Φ−2Θ𝑙𝑗)} , (48a)

𝑅𝑖0𝑗𝑘 = Θ𝑖𝑘|𝑗 − Θ𝑖𝑗|𝑘 + Θ𝑖𝑗𝑐𝑘 − Θ𝑖𝑘𝑐𝑗 + Φ2 {𝜔𝑖𝑘|𝑗
− 𝜔𝑖𝑗|𝑘 + 𝜔𝑖𝑘𝑐𝑗 − 𝜔𝑖𝑗𝑐𝑘 + 2𝑏𝑖𝜔𝑗𝑘} , (48b)

𝑅𝑖𝑙0𝑘 = 𝑅𝑖𝑙0𝑘 + 𝑏𝑖Θ𝑙𝑘 − 𝑏𝑙Θ𝑖𝑘 + Φ2 (𝑏𝑖𝜔𝑙𝑘 − 𝑏𝑙𝜔𝑖𝑘) , (48c)

𝑅𝑖00𝑘 = Θ𝑖𝑘|0 − ΨΘ𝑖𝑘 + Φ2 {𝜔𝑖𝑘|0 + Ψ𝜔𝑖𝑘
+ (𝜔𝑖𝑗 + Φ−2Θ𝑖𝑗) (Θ𝑗𝑘 + Φ2𝜔𝑗𝑘) − 𝑏𝑖|𝑘 − 𝑏𝑖𝑏𝑘} . (48d)

With the theory of hypersurfaces of the spacetime in mind,
we call (47a) and (48a) {resp., (47b), (48b), and (48c)} the
Gauss equations (resp., Codazzi equations) for the spatial
distribution SM in the ambient space (𝑀, 𝑔). Also, all the
equations from (47a), (47b), (47c), (47d), (48a), (48b), (48c),
and (48d) will be called structure equations induced by the(1 + 3) threading formalism. They have an important role in
the next sections.

Now, taking into account the symmetries of 𝑅, we deduce
some identities for𝑅 and for kinematic quantities. First, using

well-known identities for𝑅 and taking into account (47a) and
(48a), we obtain the following identities for 𝑅:

𝑅𝑖𝑙𝑗𝑘 + 𝑅𝑖𝑙𝑘𝑗 = 0, (49a)

𝑅𝑖𝑙𝑗𝑘 + 𝑅𝑙𝑖𝑗𝑘 = 0, (49b)

𝑅𝑖𝑙𝑗𝑘 − 𝑅𝑗𝑘𝑖𝑙
= Φ−2 {𝐾𝑖𝑘𝐾𝑙𝑗 + 𝐾𝑗𝑖𝐾𝑘𝑙 − 𝐾𝑖𝑗𝐾𝑙𝑘 − 𝐾𝑗𝑙𝐾𝑘𝑖}
= 2 {Θ𝑖𝑘𝜔𝑙𝑗 + Θ𝑙𝑗𝜔𝑖𝑘 + Θ𝑖𝑗𝜔𝑘𝑙 + Θ𝑘𝑙𝜔𝑗𝑖} .

(49c)

Also, taking into account that

𝑅𝑖0𝑗𝑘 = −𝑅𝑗𝑘0𝑖 (50)

and by using (47b), (47c), (48b), and (48c), we deduce that

𝑅𝑗𝑘0𝑖 = 𝐾𝑖𝑗|𝑘 − 𝐾𝑖𝑘|𝑗 + 𝐾𝑖𝑘𝑐𝑗 − 𝐾𝑖𝑗𝑐𝑘 − 2Φ2𝑏𝑖𝜔𝑗𝑘
− 𝑏𝑗𝐾𝑘𝑖 + 𝑏𝑘𝐾𝑗𝑖

= Θ𝑖𝑗|𝑘 − Θ𝑖𝑘|𝑗 + Θ𝑖𝑗𝑎𝑘 − Θ𝑖𝑘𝑎𝑗
+ Φ2 {𝜔𝑖𝑗|𝑘 − 𝜔𝑖𝑘|𝑗 + 𝜔𝑖𝑘𝑎𝑗 − 𝜔𝑖𝑗𝑎𝑘 − 2𝑏𝑖𝜔𝑗𝑘} .

(51)

Finally, using the identity

𝑅𝑖00𝑘 = 𝑅𝑘00𝑖 (52)

and taking the symmetric and skew-symmetric parts in (47d)
and (48d), we infer that

𝑅𝑖00𝑘 = 12 {𝐾𝑖𝑘|0 + 𝐾𝑘𝑖|0 + 𝐾𝑖𝑗𝐾𝑗𝑘 + 𝐾𝑘𝑗𝐾𝑗𝑖
− Ψ (𝐾𝑖𝑘 + 𝐾𝑖𝑘) − Φ−2 (𝑏𝑖|𝑘 + 𝑏𝑘|𝑖)} − Φ2𝑏𝑖𝑏𝑘,

(53a)

𝑅𝑖00𝑘 = Θ𝑖𝑘|0 − ΨΘ𝑖𝑘 + Θ𝑖𝑗𝜃𝑗𝑘 + Φ4𝜔𝑖𝑗𝜔𝑗𝑘 − Φ2𝑏𝑖𝑏𝑘
− 12Φ2 (𝑏𝑖|𝑘 + 𝑏𝑘|𝑖) ,

(53b)

𝐾𝑖𝑘|0 − 𝐾𝑘𝑖|0 + 𝐾𝑖𝑗𝐾𝑗𝑘 − 𝐾𝑘𝑗𝐾𝑗𝑖 − Ψ (𝐾𝑖𝑘 − 𝐾𝑘𝑖)
− Φ2 (𝑏𝑖|𝑘 − 𝑏𝑘|𝑖) = 0, (54a)

𝜔𝑖𝑘|0 = −Ψ𝜔𝑖𝑘 + Φ2 {𝜔𝑘𝑗Θ𝑗𝑖 − 𝜔𝑖𝑗Θ𝑗𝑘
+ 12 (𝑏𝑖|𝑘 − 𝑏𝑘|𝑖)} .

(54b)

In particular, suppose that (𝑀, 𝑔) is a vorticity-free spacetime;
that is, the vorticity tensor field vanishes identically on 𝑀.
Then, from (49c) and (51) we deduce that the curvature tensor
field of the Riemannian spatial connection satisfies identities
(49a) and (49b) and the following:

𝑅𝑖𝑙𝑗𝑘 = 𝑅𝑗𝑘𝑖𝑙, (55a)

𝑅𝑗𝑘𝑜𝑖 = Θ𝑖𝑗|𝑘 − Θ𝑖𝑘|𝑗 + Θ𝑖𝑗𝑎𝑘 − Θ𝑖𝑘𝑎𝑗. (55b)
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Also, from (54b) we see that

𝑏𝑖|𝑘 = 𝑏𝑘|𝑖, (56)

and (48a), (48b), (48c), and (48d) become

𝑅𝑖𝑙𝑗𝑘 = 𝑅𝑖𝑙𝑗𝑘 + Φ−2 (Θ𝑖𝑗Θ𝑙𝑘 − Θ𝑖𝑘Θ𝑙𝑗) , (57a)

𝑅𝑖0𝑗𝑘 = Θ𝑖𝑘|𝑗 − Θ𝑖𝑗|𝑘 + Θ𝑖𝑗𝑐𝑘 − Θ𝑖𝑘𝑐𝑗, (57b)

𝑅𝑖𝑙0𝑘 = 𝑅𝑖𝑙0𝑘 + Θ𝑙𝑘𝑏𝑖 − Θ𝑖𝑘𝑏𝑙, (57c)

𝑅𝑖00𝑘 = Θ𝑖𝑘|0 − ΨΘ𝑖𝑘 + Θ𝑖𝑗Θ𝑗𝑘 − Φ2 (𝑏𝑖|𝑘 + 𝑏𝑖𝑏𝑘) . (57d)

5. Ricci Tensor Field and Scalar
Curvature of a Spacetime Expressed in
terms of Spatial Tensor Fields

Let (𝑀, 𝑔) be a 4𝐷 spacetime and {𝐸𝑘} be an orthonormal
basis in Γ(SM). Then, {Φ−1(𝜕/𝜕𝑥0), 𝐸𝑘} is an orthonormal
frame field on𝑀. According to [7, p. 87], the Ricci tensor of(𝑀, 𝑔) is given by

Ric (𝑋, 𝑌) = 3∑
𝑘=1

𝑅 (𝐸𝑘, 𝑋, 𝐸𝑘, 𝑌)
− Φ−2𝑅( 𝜕𝜕𝑥0 , 𝑋, 𝜕𝜕𝑥0 , 𝑌) ,

(58)

for all𝑋,𝑌 ∈ Γ(TM). Now, we express 𝐸𝑘 as follows:
𝐸𝑘 = 𝐸𝑖𝑘 𝛿𝛿𝑥𝑖 , (59)

and we obtain

𝑔𝑖𝑗 = 3∑
𝑘=1

𝐸𝑖𝑘𝐸𝑗𝑘. (60)

Then we consider the following local components of Ric with
respect to the threading frame {𝜕/𝜕𝑥0, 𝛿/𝛿𝑥𝑖}:

𝑅𝑖𝑗 = Ric( 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖) , (61a)

𝑅𝑖0 = Ric( 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) , (61b)

𝑅00 = Ric( 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0) , (61c)

and, by using (59), (60), (61a), (61b), (61c), and (A.9) into (58),
we obtain

𝑅𝑖𝑗 = 𝑔𝑙𝑘𝑅𝑖𝑙𝑗𝑘 + Φ−2𝑅𝑖00𝑗, (62a)

𝑅𝑖0 = 𝑔𝑙𝑘𝑅𝑖𝑙0𝑘 = −𝑔𝑙𝑘𝑅𝑘0𝑖𝑙, (62b)

𝑅00 = −𝑔𝑖𝑘𝑅𝑖00𝑘. (62c)

Now, by using (47a), (47b), (47c), (47d), (48a), (48b), (48c),
(48d), (53a), and (53b) in (62a), (62b), and (62c), we deduce
that

𝑅𝑖𝑗 = 𝑅𝑖𝑘𝑗𝑘 + Φ−2 {(Θ − Ψ)𝐾𝑖𝑗 + 𝐾𝑖𝑗|0} − 𝑏𝑖|𝑗 − 𝑏𝑖𝑏𝑗, (63a)

𝑅𝑖0 = 𝑅𝑖𝑘0𝑘 + Θ𝑏𝑖 − 𝐾𝑖𝑘𝑏𝑘
= 𝐾𝑘𝑖|𝑘 − Θ|𝑖 + Θ𝑐𝑖 − 𝑐𝑘𝐾𝑘𝐼 + 2Φ2𝜔𝑖𝑘𝑏𝑘, (63b)

𝑅00 = ΨΘ − Θ|0 − 𝐾𝑘ℎ𝐾ℎ𝑘 + Φ2 {𝑏2 + 𝑏𝑘|𝑘} , (63c)

𝑅𝑖𝑗 = 𝑅𝑖𝑘𝑗𝑘 + Φ−2 {(Θ − Ψ)Θ𝑖𝑗 + Θ𝑖𝑗|0} + 𝜔𝑖𝑗|0
+ (Θ + Ψ)𝜔𝑖𝑗 − 𝑏𝑖|𝑗 − 𝑏𝑖𝑏𝑗, (64a)

𝑅𝑖0 = 𝑅𝑖𝑘0𝑘 + Θ𝑏𝑖 − Θ𝑖𝑘𝑏𝑘 − Φ2𝜔𝑖𝑘𝑏𝑘,
= Θ𝑘𝑖|𝑘 − Θ|𝑖 + Θ𝑐𝑖 − Θ𝑖𝑘𝑐𝑘
− Φ2 (𝜔𝑘𝑖|𝑘 + 𝑐𝑘𝜔𝑘𝑖 − 𝜔𝑖𝑘𝑏𝑘) ,

(64b)

𝑅00 = ΨΘ − Θ|0 − 𝜎2 − 13Θ2 + Φ4𝜔2
+ Φ2 (𝑏2 + 𝑏𝑘|𝑘) ,

(64c)

where we put

𝜎2 = 𝜎ℎ𝑘𝜎ℎ𝑘,
𝜔2 = 𝜔ℎ𝑘𝜔ℎ𝑘,
𝑏2 = 𝑏𝑘𝑏𝑘.

(65)

Next, we take the symmetric and skew-symmetric parts in
(63a) and (64a) and obtain

𝑅𝑖𝑗 = 𝑅𝑖𝑗 + Φ−2 {(Θ − Ψ)Θ𝑖𝑗 + Θ𝑖𝑗|0}
− 12 (𝑏𝑖|𝑗 + 𝑏𝑗|𝑖) − 𝑏𝑖𝑏𝑗,

(66a)

12 (𝑅𝑖𝑘𝑗𝑘 − 𝑅𝑗𝑘𝑖𝑘) = 12 (𝑏𝑖|𝑗 − 𝑏𝑗|𝑖) − 𝜔𝑖𝑗|0
− (Θ + Ψ)𝜔𝑖𝑗, (66b)

where we put

𝑅𝑖𝑗 = 12 (𝑅𝑖𝑘𝑗𝑘 + 𝑅𝑗𝑘𝑖𝑘) . (67)

The spatial with local components 𝑅𝑖𝑗 are called the spatial
Ricci tensor of the spacetime (𝑀, 𝑔).

The above formulas for Ricci tensor enable us to obtain a
new formula for the scalar curvature R of (𝑀, 𝑔) in terms of
spatial tensor fields. We start with R given by

R = 3∑
𝑘=1

Ric (𝐸𝑘, 𝐸𝑘) − Φ−2Ric( 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0)
= 𝑔𝑖𝑗𝑅𝑖𝑗 − Φ−2𝑅00.

(68)
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Then by direct calculations, using (66a) and (64c) into (68),
we obtain

R = R + Φ−2 {43Θ2 − 2ΨΘ + 2Θ|0} − Φ2𝜔2 − 2𝑏2
− 2𝑏𝑘|𝑘,

(69)

where we put

R = 𝑔𝑖𝑗𝑅𝑖𝑗. (70)

We callR the spatial scalar curvature of the spacetime (𝑀, 𝑔).
Note that both 𝑅𝑖𝑗 and R are related to the geometry of the
spatial distribution SM which is not necessarily supposed to
be integrable.

6. The Splitting of Both the Einstein
Gravitational Tensor Field and the Energy-
Momentum Tensor Field

We start with the Einstein gravitational tensor field 𝐺 of(𝑀, 𝑔) given by

𝐺 (𝑋, 𝑌) = Ric (𝑋, 𝑌) − R2 𝑔 (𝑋, 𝑌) ,
∀𝑋, 𝑌 ∈ Γ (TM) . (71)

Then,with respect to the threading frame field {𝜕/𝜕𝑥0, 𝛿/𝛿𝑥𝑖},
we have

𝐺𝑖𝑗 = 𝐺( 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖) = 𝑅𝑖𝑗 − R2 𝑔𝑖𝑗, (72a)

𝐺𝑖0 = 𝐺( 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) = 𝑅𝑖0, (72b)

𝐺00 = 𝐺( 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0) = 𝑅00 + Φ2R2 . (72c)

By using (66a), (64b), (64c), and (69) into (72a), (72b), and
(72c), we obtain

𝐺𝑖𝑗 = 𝐺𝑖𝑗 + (𝑏2 + 𝑏𝑘|𝑘 + 12Φ2𝜔2)𝑔𝑖𝑗 − 12 (𝑏𝑖|𝑗 + 𝑏𝑗|𝑖)
− 𝑏𝑖𝑏𝑗 + Φ−2 {(Θ − Ψ)Θ𝑖𝑗 + Θ𝑖𝑗|0
− (Θ|0 − ΨΘ + 23Θ2 + 12𝜎2)𝑔𝑖𝑗} ,

(73a)

𝐺𝑖0 = 𝑅𝑖𝑘0𝑘 − 𝑅𝑗𝑘𝑖𝑘 + Θ𝑏𝑖 − Θ𝑖𝑘𝑏𝑘 − Φ2𝜔𝑖𝑘 = Θ𝑘𝑖|𝑘
− Θ|𝑖 + Θ𝑐𝑖 − Θ𝑖𝑘𝑐𝑘 − Φ2 (𝜔𝑘𝑖|𝑘 + 𝑐𝑘𝜔𝑘𝑖 − 2𝜔𝑖𝑘𝑏𝑘) , (73b)

𝐺00 = 12 (Φ2R + 23Θ2 − 𝜎2 + Φ4𝜔2) , (73c)

where we put

𝐺𝑖𝑗 = 𝑅𝑖𝑗 − R2 𝑔𝑖𝑗. (74)

The spatial tensor field 𝐺 with local components 𝐺𝑖𝑗 is called
the 3𝐷 Einstein gravitational tensor field of the spacetime(𝑀, 𝑔).

Now, in order to give a coordinate-free formula for the
energy-momentum tensor field, we consider a spatial 1-form𝜔 and a spatial tensor field 𝑆 of type (0, 2). Then, we define a
1-form and a tensor field of type (0, 2) on𝑀, denoted by the
same symbols and given by

𝜔 (𝑋) = 𝜔 (S𝑋) , (75a)

𝑆 (𝑋, 𝑌) = 𝑆 (S𝑋,S𝑌) , (75b)

for all𝑋,𝑌 ∈ Γ(TM). As an example, the Riemannian metric𝑔 on SM defines a symmetric tensor field 𝑔 on𝑀 given by

𝑔 (𝑋, 𝑌) = 𝑔 (S𝑋,S𝑌) , ∀𝑋, 𝑌 ∈ Γ (TM) . (76)

Note that 𝑔 from (76) coincides with the tensor field ℎ given
by its local components in formula (4.10) of [4]. Also, we need
the 1-form 𝑢 induced by the unit vector field 𝑈 = Φ−1𝜕/𝜕𝑥0
by the formula

𝑢 (𝑋) = Φ−1𝑔(𝑋, 𝜕𝜕𝑥0) , ∀𝑋 ∈ Γ (TM) . (77)

Based on these geometric objects, we claim that the energy-
momentum tensor field 𝑇 measured by an observer moving
with the unit 4-velocity 𝑈 has the following coordinate-free
expression:

𝑇 (𝑋, 𝑌) = 𝜌𝑢 (𝑋) 𝑢 (𝑌) + 𝑞 (𝑋) 𝑢 (𝑌) + 𝑞 (𝑌) 𝑢 (𝑋)
+ 𝑝𝑔 (𝑋, 𝑌) + 𝜋 (𝑋, 𝑌) ,

∀𝑋, 𝑌 ∈ Γ (TM) .
(78)

Here, 𝜌 and 𝑝 are the relativistic energy density and the
relativistic pressure, respectively, while 𝑞 is a 1-form on 𝑀
defined by a spatial 1-form as in (75a) and 𝜋 is a symmetric
and trace-free tensor field on 𝑀 defined by a spatial tensor
field as in (75b). Now, take𝑋 = 𝑌 = 𝑈 in (78) and obtain

𝜌 = 𝑇 (𝑈,𝑈) . (79)

Then we put

𝑇00 = 𝑇( 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0) , (80)

and (79) becomes

𝑇00 = Φ2𝜌. (81)

Similarly, take𝑋 = 𝑈 and 𝑌 = S𝑌 in (78) and deduce that

𝑞 (S𝑌) = −𝑇 (𝑈,S𝑌) . (82)

Now, we put

𝑇𝑖0 = 𝑇( 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) , (83a)

𝑞𝑖 = 𝑞( 𝛿𝛿𝑥𝑖) , (83b)
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and, taking 𝑌 = 𝛿/𝛿𝑥𝑖 in (82), we infer that

𝑇𝑖0 = −Φ𝑞𝑖. (84)

Finally, denote

𝑇𝑖𝑗 = 𝑇( 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖) , (85a)

𝜋𝑖𝑗 = 𝜋( 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖) , (85b)

and, taking𝑋 = 𝛿/𝛿𝑥𝑗 and 𝑌 = 𝛿/𝛿𝑥𝑖 in (78), we obtain

𝑇𝑖𝑗 = 𝑝𝑔𝑖𝑗 + 𝜋𝑖𝑗. (86)

Contracting (86) by 𝑔𝑖𝑗 and taking into account that 𝜋 is
defined by a trace-free spatial tensor field, we infer that

𝑝 = 13𝑔𝑖𝑗𝑇𝑖𝑗, (87a)

𝜋𝑖𝑗 = 𝑇𝑖𝑗 − 13 (𝑇ℎ𝑘𝑔ℎ𝑘) 𝑔𝑖𝑗. (87b)

Now, taking into account (79)–(87b), it is clear that (78)
represents the coordinate-free version of (5.9) from [4, p. 91].
Thus 𝑞 and 𝜋 from (78) are the relativistic momentum density
and the relativistic anisotropic (trace-free) stress tensor field,
respectively.

7. A New Splitting of Einstein Field
Equations with respect to General (1+3)
Threading of Spacetime

Westart this sectionwith the coordinate-free formof Einstein
field equations (EFE) expressed as follows:

𝐺 (𝑋, 𝑌) + Λ𝑔 (𝑋, 𝑌) = 8𝜋G𝑇 (𝑋, 𝑌) ,
∀𝑋, 𝑌 ∈ Γ (TM) , (88)

where Λ is the cosmological constant and G is the Newton
constant. Now, take𝑋 = 𝛿/𝛿𝑥𝑗 and 𝑌 = 𝛿/𝛿𝑥𝑖 in (88) and, by
using (73a), (10), and (86), we obtain

𝐺𝑖𝑗 + (𝑏2 + 𝑏𝑘|𝑘 + 12Φ2𝜔2 + Λ)𝑔𝑖𝑗 − 12 (𝑏𝑖|𝑗 + 𝑏𝑗|𝑖)
− 𝑏𝑖𝑏𝑗 + Φ−2 {(Θ − Ψ)Θ𝑖𝑗 + Θ𝑖𝑗|0
− (Θ|0 − ΨΘ + 23Θ2 + 12𝜎2)𝑔𝑖𝑗} = 8𝜋G (𝑝𝑔𝑖𝑗
+ 𝜋𝑖𝑗) .

(89)

The equations from (89) will be called the spatial Einstein field
equations (SEFE). Next, we take𝑋 = 𝜕/𝜕𝑥0 and 𝑌 = 𝛿/𝛿𝑥𝑖 in
(88) and, by using (73a) and (84), we deduce that

𝑅𝑖𝑘0𝑘 + Θ𝑏𝑖 − Θ𝑖𝑘𝑏𝑘 − Φ2𝜔𝑖𝑘 = −8𝜋GΦ𝑞𝑖, (90a)

Θ𝑘𝑖|𝑘 − Θ|𝑖 + Θ𝑐𝑖 − Θ𝑖𝑘𝑐𝑘 − Φ2 (𝜔𝑘𝑖|𝑘 + 𝑐𝑘𝜔𝑘𝑖 − 2𝜔𝑖𝑘𝑏𝑘)
= −8𝜋GΦ𝑞𝑖. (90b)

The equations from either (90a) or (90b) are called mixed
Einstein field equations (MEFE). Finally, take 𝑋 = 𝑌 = 𝜕/𝜕𝑥0
in (88), and, by using (73c), (2a), and (81), we infer that

Φ2R + 23Θ2 − 𝜎2 + Φ4𝜔2 = 2Φ2 (Λ + 8𝜋G𝜌) . (91)

We call (91) the temporal Einstein field equation (TEFE). Thus
Einstein field equations (88) are splitting into three groups
of equations given by (89), (90a), (90b), and (91). It is worth
mentioning that these equations are expressed in terms of
spatial tensor fields and their covariant derivatives induced by
the Riemannian spatial connection.

Next, by contracting (89) by 𝑔𝑖𝑗 and using (74) we deduce
that the spatial scalar curvature is given by

12R = 2 (𝑏2 + 𝑏𝑘|𝑘) + 32Φ2𝜔2 + 3Λ
− Φ−2 {Θ2 + Θ|0 + 32𝜎2 − 2ΨΘ} − 24𝜋G𝑝.

(92)

Comparing (92)with (91), we obtain theRaychaudhuri-Ehlers
equation induced by the general (1 + 3) threading of the
spacetime:

Θ|0 + 13Θ2 + 𝜎2 − ΨΘ
− Φ2 {𝑏2 + 𝑏𝑘|𝑘 + Φ2𝜔2 + Λ − 4𝜋𝐺 (𝜌 + 3𝑝)}

= 0.
(93)

Note that (93) is the generalization of (6.4) from [4], which
was obtained for the particular case Φ = 1.
8. A New Splitting of Conservation

Laws with respect to a General (1+3)
Threading of Spacetime

As is well known, the energy-momentum conservation
equations are given by the vanishing of the divergence of𝑇. In order to obtain their explicit form, we consider an
orthonormal frame field {𝐸𝑘, 𝑈 = Φ−1𝜕/𝜕𝑥0}, and according
to [7, p. 86] we have

(div𝑇) (𝑋) = 3∑
𝑘=1

(∇𝐸𝑘𝑇) (𝐸𝑘, 𝑋) − (∇𝑈𝑇) (𝑈,𝑋) = 0, (94)

for all 𝑋 ∈ Γ(TM). Then, take 𝑋 = 𝜕/𝜕𝑥0, in (94), and by
using (B.1) and (B.2) obtain

Φ2 {𝑇𝑗
0|𝑗
+ (2𝑏𝑗 − 𝑐𝑗) 𝑇𝑗0 − Θ𝑗𝑘𝑇𝑗𝑘} − 𝜕𝑇00𝜕𝑥0

+ (2Ψ − Θ)𝑇00 = 0.
(95)

Similarly, take𝑋 = 𝛿/𝛿𝑥𝑖 in (94) and by using (B.3) and (B.4)
we deduce that

Φ2 {𝑇𝑗
𝑖|𝑗
− 𝜔𝑖𝑗𝑇𝑗0 + 𝑇𝑖𝑗𝑏𝑗} + (Ψ − Θ)𝑇𝑖0 − 𝑇𝑖0|0 + 𝑇00𝑏𝑖

− Θ𝑖𝑗𝑇𝑗0 = 0. (96)
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Now, from (84) and (86), we infer that

𝑇𝑗0 = −Φ𝑞𝑗, (97a)

𝑇𝑗𝑖 = 𝑝𝛿𝑗𝑖 + 𝜋𝑗𝑖 . (97b)

Then, by using (24), (81), (84), (86), (97a), and (97b) in
(95) and (96) and taking into account that both 𝜎𝑖𝑗 and𝜋𝑖𝑗 are trace-free spatial tensor fields, we obtain the energy
conservation equation:

𝜕𝜌𝜕𝑥0 + (𝜌 + 𝑝)Θ + 𝜎𝑗𝑘𝜋𝑗𝑘 + Φ(𝑞𝑗
|𝑗
+ 2𝑏𝑗𝑞𝑗) = 0 (98)

and themomentum conservation equation:

𝑞𝑖|0 + 43Θ𝑞𝑖 + (𝜎𝑖𝑗 + Φ2𝜔𝑖𝑗) 𝑞𝑗
+ Φ{ 𝛿𝑝𝛿𝑥𝑖 + 𝜋𝑗𝑖|𝑗 + (𝑝 + 𝜌) 𝑏𝑖 + 𝜋𝑖𝑗𝑏𝑗} = 0.

(99)

In order to compare with what is known in the literature with
respect to the (1 + 3) threading of spacetime, we note that

∇𝑈𝑈 = 𝑏𝑘 𝛿𝛿𝑥𝑘 . (100)

This is obtained by direct calculations using (23d). Also, we
should remark that (100) states that though the velocity𝑈 is a
timelike vector field, the acceleration ∇𝑈𝑈 is a spatial vector
field.

Remark 7. The above conservation laws are obtained in the
most general setting. Indeed, if in particular Φ = 1, (98) and
(99) become (5.11) and (5.12) from [4, p. 92], respectively.
If, moreover, we have a perfect fluid on 𝑀, that is, 𝑞𝑖 = 0
and 𝜋𝑖𝑗 = 0, then (98) and (99) become (1) and (2) from
Proposition 5 in [7, p. 339].

9. Splitting of Einstein Field Equations in an
Almost FLRW Universe

Let𝑀 be an FLRW universe, whose line element is given by

𝑑𝑠̃2 = 𝑔̃𝑎𝑏𝑑𝑥𝑎𝑑𝑥𝑏 = 𝑎2 (𝜏) {−𝑑𝜏2 + 𝛿𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗} , (101)

where 𝜏 is the conformal time on 𝑀 and the three-
dimensional space given by 𝜏 = const. is an Euclidean space.
The Lorentz metric given by (101) is called the background
metric. For a more realistic model of the universe, there has
been studied perturbation of thismetric (cf. [4, 8, 9]).The line
element of the full metric 𝑔 on𝑀 is expressed as follows:

𝑑𝑠2 = 𝑔𝑎𝑏𝑑𝑥𝑎𝑑𝑥𝑏 = 𝑔̃𝑎𝑏𝑑𝑥𝑎𝑑𝑥𝑏 + 𝛿𝑔𝑎𝑏𝑑𝑥𝑎𝑑𝑥𝑏, (102)

where 𝛿𝑔𝑎𝑏 determine the perturbation. In the present paper
we consider the conformal-Newtonian gauge case, for which
the full metric is given by

𝑑𝑠2 = 𝑎2 (𝜏) {− (1 + 2𝐴) 𝑑𝜏2 + (1 − 2𝐵) 𝛿𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗} , (103)

where 𝐴 and 𝐵 are the well-known Bardeen invariants. The
spacetime (𝑀, 𝑔) with 𝑔 given by (103) is called an almost𝐹𝐿𝑅𝑊 universe.

Now, by using (2b) for (103), we deduce that 𝜉𝑖 = 0, 𝑖 ∈{1, 2, 3}, which imply

𝛿𝛿𝑥𝑖 = 𝜕𝜕𝑥𝑖 , (104a)

𝜔𝑖𝑗 = 0, (104b)

𝑎𝑖 = 0, (104c)

𝑔𝑖𝑗 = 𝑎2 (1 − 2𝐵) 𝛿𝑖𝑗, (104d)

𝑔𝑖𝑗 = 1𝑎2 (1 − 2𝐵)𝛿𝑖𝑗. (104e)

Also, according to the notation in (2a), we have

Φ2 = 𝑎2 (1 + 2𝐴) . (105)

From (104b) we see that the spatial distribution SM of(𝑀, 𝑔) is integrable, but its leaves are not anymore Euclidean
spaces. Moreover, by using (12a), (12b), (6d), (104d), and
(105), we obtain

Θ𝑖𝑗 = 𝑎2 {(1 − 2𝐵)H − 𝐵󸀠} 𝛿𝑖𝑗, (106a)

Θ = 3{H − 𝐵󸀠1 − 2𝐵} , (106b)

Ψ = H + 𝐴󸀠1 + 2𝐴, (106c)

where “|” denotes derivative with respect to 𝜏 and H =𝑎󸀠/𝑎 is the Hubble parameter of the background metric. By
calculations, using (106a), (106b), and (104d) into (12c), we
infer that

𝜎𝑖𝑗 = 0, ∀𝑖, 𝑗 ∈ {1, 2, 3} . (107a)

Θ𝑖𝑗 = 13Θ𝑔𝑖𝑗, ∀𝑖, 𝑗 ∈ {1, 2, 3} . (107b)

Taking into account that Φ−2Θ𝑖𝑗 are the local components of
the second fundamental form of the leaves of SM (see (23a))
and using (107a) and (107b), we can state the following result
on the kinematic quantities and geometry of (𝑀, 𝑔).
Theorem 8. Let (𝑀, 𝑔) be an almost 𝐹𝐿𝑅𝑊 universe. Then
one has the following assertions:

(i) (𝑀, 𝑔) is both vorticity-free and shear-free spacetime.

(ii) The leaves of the spatial distribution are totally umbili-
cal hypersurfaces of (𝑀, 𝑔)with mean curvature vector

𝐻 = 13Φ−2Θ 𝜕𝜕𝜏 . (108)
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Next, we assume that the energy-momentum tensor for
the almost FLRW universe (𝑀, 𝑔) takes the perfect fluid
form, that is,

𝑞𝑖 = 0,
𝜋𝑖𝑗 = 0,

∀𝑖, 𝑗 ∈ {1, 2, 3} .
(109)

Then, the Bardeen invariants coincide (cf. [4, p. 259]); that is,
from now on in our calculations we put 𝐴 instead of 𝐵. First,
by using (24), (104c), (6b), (105), and (104e), we deduce that

𝑏𝑖 = 𝑐𝑖 = 𝐴 𝑖1 + 2𝐴, (110a)

𝑏2 = 1𝑎2 (1 − 4𝐴2) (1 + 2𝐴)
3∑
𝑘=1

(𝐴𝑘)2 , (110b)

where we put 𝐴 𝑖 = 𝜕𝐴/𝜕𝑥𝑖. The local coefficients of the
spatial Riemannian connection ∇ are given by (see (20a),
(20b), (C.1), (14), (107a), and (107b))

Γ𝑖𝑘𝑗 = 11 − 2𝐴 {𝛿𝑖𝑗𝐴𝑘 − 𝛿𝑘𝑖 𝐴𝑗 − 𝛿𝑘𝑗𝐴 𝑖} , (111a)

𝐾𝑗𝑖 = Θ𝑗𝑖 = 13Θ𝛿𝑗𝑖 , (111b)

where we have 𝐴𝑘 = 𝐴𝑘. Then, by using (110a) and (111a), we
obtain the spatial covariant derivative and the divergence of
the acceleration, given by

𝑏𝑖|𝑗 = 11 + 2𝐴 {𝐴 𝑖𝑗 + 8𝐴1 − 4𝐴2𝐴 𝑖𝐴𝑗
− 11 − 2𝐴𝛿𝑖𝑗

3∑
𝑘=1

(𝐴𝑘)2} ,
(112a)

𝑏𝑘|𝑘 = 1𝑎2 (1 − 4𝐴2)
3∑
𝑘=1

{𝐴𝑘𝑘 + 2𝐴 − 31 − 4𝐴2 (𝐴𝑘)2} , (112b)

where we put

𝐴 𝑖𝑗 = 𝜕2𝐴𝜕𝑥𝑖𝜕𝑥𝑗 . (113)

Now, by direct calculation using (106b), we infer that

Θ|0 = 𝜕Θ𝜕𝜏 = 3(H
󸀠 − 2 (𝐴󸀠)2 + (1 − 2𝐴)𝐴󸀠󸀠(1 − 2𝐴)2 ) , (114a)

Θ|𝑖 = 𝜕Θ𝜕𝑥𝑖 = − 3(1 − 2𝐴)2 {2𝐴󸀠𝐴 𝑖 + (1 − 2𝐴)𝐴󸀠𝑖} . (114b)

Also, by using (107b), (111b), (114a), and (114b) and taking into
account that ∇ is a metric connection, we obtain

Θ𝑖𝑗|0 = 13Θ|0𝑔𝑖𝑗 = 𝑎21 − 2𝐴 {(1 − 2A)2H󸀠
− (1 − 2𝐴)𝐴󸀠󸀠 − 2 (𝐴󸀠)2} 𝛿𝑖𝑗,

(115a)

Θ𝑘𝑖|𝑘 = 13Θ|𝑖 = − 1(1 − 2𝐴)2 {2𝐴󸀠𝐴 𝑖 + (1 − 2𝐴)𝐴󸀠𝑖} . (115b)

Finally, by using (C.7) and (C.8) in (74), we deduce that the3𝐷 Einstein gravitational tensor field is given by

𝐺𝑖𝑗 = 1(1 − 2𝐴)2 {3𝐴 𝑖𝐴𝑗 + (1 − 2𝐴)𝐴 𝑖𝑗
− 𝛿𝑖𝑗 3∑
𝑘=1

(2 (𝐴𝑘)2 + (1 − 2𝐴)𝐴𝑘𝑘)} .
(116)

Now, we are in a position to present the splitting of EFE
for the almost universe (𝑀, 𝑔). First, we consider that the
background energy-momentum tensor 𝑇̃ takes the perfect
fluid form; that is, we have

𝑇̃𝑖𝑗 = 𝑝̃𝑔̃𝑖𝑗 = 𝑝̃𝑎2𝛿𝑖𝑗, (117a)

𝑇̃𝑖𝑜 = 0, (117b)

𝑇̃00 = 𝑎2𝜌̃, (117c)

where 𝜌̃ and 𝑝̃ are the relativistic density and pressure,
respectively. Then, the energy-momentum tensor 𝑇 of the
perturbed universe (𝑀, 𝑔) should have the perfect fluid form
too. Hence, by (86), (84), and (81), we have

𝑇𝑖𝑗 = 𝑝𝑔𝑖𝑗 = 𝑝𝑎2 (1 − 2𝐴) 𝛿𝑖𝑗, (118a)

𝑇𝑖𝑜 = 0, (118b)

𝑇00 = Φ2𝜌 = 𝑎2 (1 + 2𝐴) 𝜌, (118c)

where we put

𝑝 = 𝑝̃ + 𝛿𝑝,
𝜌 = 𝜌̃ + 𝛿𝜌. (119)

After some long calculations using (116), (110a), (110b), (112a),
(112b), (114a), (106a), (106b), (106c), (107a), (107b), (104d),
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(105), and (118a) into (89), we deduce that the SEFE for the
almost FLRW universe (𝑀, 𝑔) are given by

21 − 4𝐴2 {2𝐴𝐴 𝑖𝑗 + 1 + 4𝐴 + 12𝐴21 − 4𝐴2 𝐴 𝑖𝐴𝑗}
+ 𝛿𝑖𝑗 { 11 + 2𝐴 (2𝐴󸀠󸀠 + 6 + 4𝐴1 + 2𝐴H𝐴󸀠
+ 6𝐴 − 11 − 4𝐴2 (𝐴󸀠)2 − (1 − 2𝐴) (H2 + 2H󸀠))
− 11 − 4𝐴2 (4𝐴

3∑
𝑘=1

𝐴𝑘𝑘
+ 3 + 4𝐴 + 12𝐴21 − 4𝐴2

3∑
𝑘=1

(𝐴𝑘)2)} = (8𝜋G𝑝 − Λ)
⋅ 𝑎2 (1 − 2𝐴) 𝛿𝑖𝑗.

(120)

Next, since (𝑀, 𝑔) is vorticity-free and 𝑞𝑖 = 0, (90b) becomes

Θ|𝑖 − Θ𝑐𝑖 = 0, (121)

via (107b) and (115b).Then, by using (106b), (110a), and (114b)
into (121), we obtain the following MEFE for (𝑀, 𝑔):

(1 + 6𝐴)𝐴󸀠𝐴 𝑖 + (1 − 4𝐴2)𝐴󸀠𝑖 + (1 − 2𝐴)2H𝐴 𝑖
= 0. (122)

Also, by using (C.8), (106b), and (105) into (91) and taking
into account that 𝜎2 = 𝜔2 = 0, we deduce that the TEFE for(𝑀, 𝑔) is given by

1 + 2𝐴(1 − 2𝐴)3
3∑
𝑘=1

{3 (𝐴𝑘)2 + 2 (1 − 2𝐴)𝐴𝑘𝑘}
+ 3(H − 𝐴󸀠1 − 2𝐴)

2

= 𝑎2 (1 + 2𝐴) (Λ + 8𝜋G𝜌) .
(123)

Finally, Raychaudhuri-Ehlers equation (93) becomes

3{H󸀠 − 11 − 2𝐴𝐴󸀠󸀠 − 11 − 4𝐴2H𝐴󸀠
− 4𝐴(1 − 2𝐴) (1 − 4𝐴2) (𝐴󸀠)2} − 11 − 2𝐴 { 3∑

𝑘=1

𝐴𝑘𝑘
− 21 − 4𝐴2

3∑
𝑘=1

(𝐴𝑘)2} = 𝑎2 (1 + 2𝐴) (Λ
− 4𝜋G (𝜌 + 3𝑝)) .

(124)

Summing up the above results, we state the following theo-
rem.

Theorem 9. Let (𝑀, 𝑔) be an almost 𝐹𝐿𝑅𝑊 universe with the
energy-momentum tensor of a perfect fluid. Then one has the
following assertions:

(i) The 𝑆𝐸𝐹𝐸, 𝑀𝐸𝐹𝐸, and 𝑇𝐸𝐹𝐸 of (𝑀, 𝑔) are given by
(120), (122), and (123), respectively.

(ii) The Raychaudhuri-Ehlers equation in (𝑀, 𝑔) is given
by (124).

In particular, suppose that 𝐴 = 0 and Λ = 0. Then, (123)
and (124) become

H
2 = 8𝜋G3 𝑎2𝜌,

H
󸀠 = −4𝜋G3 𝑎2 (𝜌 + 3𝑝) , (125)

respectively. Note that, in this case, (122) is trivial, and (120)
is a consequence of (125) and (9.24). As (125) and (9.24) are
the well-known Friedmann equations for an FLRW universe
(cf. (8.4) and (8.5) in [8]), we are entitled to call (123) and
(124) the perturbed Friedmann equations in an almost FLRW
universe.

10. Conclusions

The idea to develop (1 + 3) threading of a spacetime with
respect to a nonnormalized vector field came up as a need for
the study of the spacetimes whose metrics have the general
form of (2a), (2b), and (2c) with Φ2 ̸= 1. We only mention
here all the metrics from both the theory of cosmological
perturbations and the theory of black holes.

The main difference between our approach and the
methods developed in earlier papers consists in the fact that
we deal with the spatial tensor fields as intrinsic objects from
the geometry of the spatial distribution. In earlier literature,
the spatial tensor fields have been considered as projections
on the spatial distribution of tensor fields defined on 𝑀.
This was the main obstacle in defining a correct spatial
covariant differentiation for the general case when the spatial
distribution is not integrable (cf. (4.19) of [4]). In particular, if
the spatial distribution is integrable, the ADM formalism (cf.
[3]) can be applied. However, even in this case, the threading
formalism is totally different from the ADM formalism. This
is because in the ADM formalism the frame field is used,

{ 𝜕𝜕𝑥𝑖 , 𝛿𝛿𝑥0 = 𝜕𝜕𝑥0 − 𝑁𝑖 𝜕𝜕𝑥𝑖} , (126)

which is adapted to the 3𝐷 spatial foliation. Thus, all the
formulas like (89), (90a), (90b), (91), (98), and (99) from
our paper are expressed with respect to the frame field (126).
The advantages of the threading formalism of spacetime with
respect to an arbitrary timelike vector field are the following:

(i) It can be applied to any Lorentz metric given by
(2a), (2b), and (2c) with Φ2 ̸= 1. In particular, the
perturbation theory and the black holes theory are
suitable for this formalism.
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(ii) The spatial distribution is not supposed to be neces-
sarily integrable, and therefore this formalism can be
used in a study of any cosmological model.

(iii) It provides, for the first time in literature, a spatial
covariant differentiation for spacetimes with nonzero
vorticity.

The approach we develop in the paper is based on spatial
tensor fields and on the Riemannian spatial connection
which behave as 3𝐷 geometric objects with local components
defined on a 4𝐷 spacetime. It is noteworthy that the three
groups of EFEpresented in the paper are expressed in terms of
spatial tensor fields and their covariant derivatives induced by
the Riemannian spatial connection. This enables us to write
down a splitting of EFE for an almost FLRW universe, which
might have an important role in the difficult task of finding
models for such a universe. Moreover, the approach can be
extended to the study of threading of higher-dimensional
universes. This can be seen in a paper of the first author on
the threading of a 5𝐷 universe (cf. [2]).

Appendix

A. Details of Formulas of Section 4

We shall present here details about the formulas stated in
Section 4. For the curvature tensor 𝑅 of the Levi-Civita
connection ∇ on (𝑀, 𝑔), we use the formula

𝑅 (𝑋, 𝑌)𝑍 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇[𝑋,𝑌]𝑍, (A.1)

for all𝑋,𝑌, 𝑍 ∈ Γ(TM). First, by using (23a), (6b), and (23c),
we deduce that

∇𝛿/𝛿𝑥𝑘∇𝛿/𝛿𝑥𝑗 𝛿𝛿𝑥𝑖 = ∇𝛿/𝛿𝑥𝑘 (Γ𝑖ℎ𝑘 𝛿𝛿𝑥ℎ + Φ−2𝐾𝑙𝑘 𝜕𝜕𝑥0)
= 𝛿Γ𝑖ℎ𝑗𝛿𝑥𝑘 𝛿𝛿𝑥ℎ + Γ𝑖𝑙𝑗 (Γ𝑙ℎ𝑘 𝛿𝛿𝑥ℎ + Φ−2𝐾𝑙𝑘 𝜕𝜕𝑥0)
− 2Φ−2𝐾𝑖𝑗𝑐𝑘 𝜕𝜕𝑥0 + Φ−2 𝛿𝐾𝑖𝑗𝛿𝑥𝑘 𝜕𝜕𝑥0
+ Φ−2𝐾𝑖𝑗 (𝐾ℎ𝑘 𝛿𝛿𝑥ℎ + 𝑐𝑘 𝜕𝜕𝑥0)

= {{{
𝛿Γ𝑖ℎ𝑗𝛿𝑥𝑘 𝛿𝛿𝑥ℎ + Γ𝑖𝑙𝑗Γ𝑙ℎ𝑘 + Φ−2𝐾𝑖𝑗𝐾ℎ𝑘}}}

𝛿𝛿𝑥ℎ
+ Φ−2 {𝛿𝐾𝑖𝑗𝛿𝑥𝑘 + 𝐾𝑙𝑘Γ𝑖𝑙𝑗 − 𝐾𝑖𝑗𝑐𝑘} 𝜕𝜕𝑥0 .

(A.2)

Then, by using (5a) and (23b), we obtain

∇[𝛿/𝛿𝑥𝑘,𝛿/𝛿𝑥𝑗] 𝛿𝛿𝑥𝑖 = 2𝜔𝑗𝑘𝐾ℎ𝑖 𝛿𝛿𝑥ℎ + 2𝑏𝑖𝜔𝑗𝑘 𝜕𝜕𝑥0 . (A.3)

Now, taking account of (A.2) and (A.3) in (A.1) and using
(27a) and the spatial covariant derivative of the extrinsic
tensor field, we infer that

𝑅( 𝛿𝛿𝑥𝑘 , 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑖) = {𝑅𝑖ℎ𝑗𝑘
+ Φ−2 (𝐾𝑖𝑗𝐾ℎ𝑘 − 𝐾𝑖𝑘𝐾ℎ𝑗 )} 𝛿𝛿𝑥ℎ
+ {Φ−2 (𝐾𝑖𝑗|𝑘 − 𝐾𝑖𝑘|𝑗 + 𝐾𝑖𝑘𝑐𝑗 − 𝐾𝑖𝑗𝑐𝑘)
− 2𝑏𝑖𝜔𝑗𝑘} 𝜕𝜕𝑥0 .

(A.4)

Similar calculations by using (23a), (23b), (23c), (23d), (6d),
and (5b) lead us to the following:

∇𝛿/𝛿𝑥𝑘∇𝜕/𝜕𝑥0 𝛿𝛿𝑥𝑖
= {𝛿𝐾ℎ𝑖𝛿𝑥𝑘 + 𝐾𝑗𝑖 Γ𝑗ℎ𝑘 + 𝑏𝑖𝐾ℎ𝑘} 𝛿𝛿𝑥ℎ
+ {Φ−2𝐾𝑗𝑖𝐾𝑗𝑘 + 𝛿𝑏𝑖𝛿𝑥𝑘 + 𝑏𝑖𝑐𝑘} 𝜕𝜕𝑥0 ,

(A.5)

∇𝜕/𝜕𝑥0∇𝛿/𝛿𝑥𝑘 𝛿𝛿𝑥𝑖
= {{{

𝜕Γ𝑖ℎ𝑘𝜕𝑥0 + 𝐾ℎ𝑗 Γ𝑖𝑗𝑘 + 𝐾𝑖𝑘𝑏ℎ}}}
𝛿𝛿𝑥ℎ

+ {Φ−2 𝜕𝐾𝑖𝑘𝜕𝑥0 + 𝑏𝑗Γ𝑖𝑗𝑘 − ΨΦ−2𝐾𝑖𝑘} 𝜕𝜕𝑥0 ,
(A.6)

∇[𝛿/𝛿𝑥𝑘,𝜕/𝜕𝑥0] 𝛿𝛿𝑥𝑖 = −𝑎𝑘𝐾ℎ𝑖 𝛿𝛿𝑥ℎ − 𝑏𝑖𝑎𝑘 𝜕𝜕𝑥0 . (A.7)

Then, by using (A.5), (A.6), and (A.1) and taking into account
(27b) and both covariant derivatives of the extrinsic curvature
tensor field, we deduce that

𝑅( 𝛿𝛿𝑥𝑘 , 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) = {𝑅𝑖ℎ0𝑘 + 𝑏𝑖𝐾ℎ𝑘 − 𝑏ℎ𝐾𝑖𝑘} 𝛿𝛿𝑥𝑘
+ {𝑏𝑖|𝑘 + 𝑏𝑖𝑏𝑘
− Φ−2 (𝐾𝑖𝑘|0 + 𝐾𝑖𝑗𝐾𝑗𝑘 − Ψ𝐾𝑖𝑘)} 𝜕𝜕𝑥0 .

(A.8)

Next, we consider the curvature tensor fields of type (0, 4) of
the connections ∇ and ∇, denoted by 𝑅 and 𝑅 and given by

𝑅 (𝑋, 𝑌, 𝑍, 𝑈) = 𝑔 (𝑅 (𝑋, 𝑌, 𝑈) , 𝑍) ,
𝑅 (𝑋, 𝑌,S𝑍,S𝑈) = 𝑔 (𝑅 (𝑋, 𝑌,S𝑈) ,S𝑍) , (A.9)
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for all 𝑋,𝑌, 𝑍, 𝑈 ∈ Γ(TM). Then we have the following
components with respect to the threading frame:

𝑅𝑖𝑙𝑗𝑘 = 𝑅( 𝛿𝛿𝑥𝑘 , 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑙 , 𝛿𝛿𝑥𝑖) = 𝑔𝑙ℎ𝑅𝑖ℎ𝑗𝑘,
𝑅𝑖0𝑗𝑘 = 𝑅( 𝛿𝛿𝑥𝑘 , 𝛿𝛿𝑥𝑗 , 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) = −Φ2𝑅𝑖0𝑗𝑘,
𝑅𝑖𝑙0𝑘 = 𝑅( 𝛿𝛿𝑥𝑘 , 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑙 , 𝛿𝛿𝑥𝑖) = 𝑔𝑙ℎ𝑅𝑖ℎ0𝑘,
𝑅𝑖00𝑘 = 𝑅( 𝛿𝛿𝑥𝑘 , 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑖) = −Φ2𝑅𝑖00𝑘,
𝑅𝑖𝑙𝑗𝑘 = 𝑅( 𝛿𝛿𝑥𝑘 , 𝛿𝛿𝑥𝑗 , 𝛿𝛿𝑥𝑙 , 𝛿𝛿𝑥𝑖) = 𝑔𝑙ℎ𝑅𝑖ℎ𝑗𝑘,
𝑅𝑖𝑙0𝑘 = 𝑅( 𝛿𝛿𝑥𝑘 , 𝜕𝜕𝑥0 , 𝛿𝛿𝑥𝑙 , 𝛿𝛿𝑥𝑖) = 𝑔𝑙ℎ𝑅𝑖ℎ0𝑘.

(A.10)

These local components are used in both Sections 4 and 5 in
order to deduce the final form for the structure equations and
the local components of the Ricci tensor, respectively.

B. Details of Formulas of Section 8

We derive some useful formulas for the conservation equa-
tions stated in Section 8. First, by using (80), (23d), and (83a),
we obtain

(∇𝑈𝑇)(𝑈, 𝜕𝜕𝑥0) = (∇Φ−1(𝜕/𝜕𝑥0)𝑇)(Φ−1 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0)
= Φ−2 {𝜕𝑇00𝜕𝑥0 − 2𝑇(∇𝜕/𝜕𝑥0 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0)}
= Φ−2 {𝜕𝑇00𝜕𝑥0 − 2𝑇(Φ2𝑏𝑘 𝛿𝛿𝑥𝑘 + Ψ 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0)}
= Φ−2 {𝜕𝑇00𝜕𝑥0 − 2Ψ𝑇00} − 2𝑏𝑗𝑇𝑗0.

(B.1)

Then, by using (59), (83a), (60), (23a), (80), and (85a), we
deduce that

3∑
𝑘=1

{(∇𝐸𝑘𝑇)(𝐸𝑘, 𝜕𝜕𝑥0)}
= 3∑
𝑘=1

{(∇𝐸ℎ
𝑘
(𝛿/𝛿𝑥ℎ)𝑇)(𝐸𝑗𝑘 𝛿𝛿𝑥𝑗 , 𝜕𝜕𝑥0)}

= 3∑
𝑘=1

{𝐸ℎ𝑘 𝛿𝛿𝑥ℎ (𝐸𝑗𝑘𝑇𝑗0)
− 𝐸ℎ𝑘𝑇(∇𝛿/𝛿𝑥ℎ (𝐸𝑗𝑘 𝛿𝛿𝑥𝑗) , 𝜕𝜕𝑥0)

− 𝐸ℎ𝑘𝐸𝑗𝑘𝑇( 𝛿𝛿𝑥𝑗 , ∇𝛿/𝛿𝑥ℎ 𝜕𝜕𝑥0)} = 𝑔𝑗ℎ {𝛿𝑇𝑗0𝛿𝑥ℎ
− 𝑇(Γ𝑗𝑘ℎ 𝛿𝛿𝑥𝑘 + (𝜔𝑗ℎ + Φ−2Θ𝑗ℎ) 𝜕𝜕𝑥0 , 𝜕𝜕𝑥0)
− 𝑇( 𝛿𝛿𝑥𝑗 , (Θ𝑘ℎ + Φ2𝜔𝑘ℎ) 𝛿𝛿𝑥𝑘 + 𝑐𝑘 𝜕𝜕𝑥0)} = 𝑇𝑗

0|𝑗

− Φ−2Θ𝑇00 − Θ𝑗𝑘𝑇𝑗𝑘 − 𝑐𝑗𝑇𝑗0.
(B.2)

Next, by similar calculations, we infer that

(∇𝑈𝑇)(𝑈, 𝛿𝛿𝑥𝑖)
= Φ−2 {𝑇𝑖0|0 − Ψ𝑇𝑖0 − 𝑏𝑖𝑇00} − 𝑇𝑖𝑗𝑏𝑗,
3∑
𝑘=1

{(∇𝐸𝑘𝑇)(𝐸𝑘, 𝛿𝛿𝑥𝑖)}
= 𝑇𝑗
𝑖|𝑗
− Φ−2Θ𝑇𝑖0 − (𝜔𝑖𝑗 + Φ−2Θ𝑖𝑗) 𝑇𝑗0 .

(B.3)

C. Ricci Tensor Calculations

In this appendix we present the calculations for both the
spatial Ricci tensor and the spatial scalar curvature of an
almost FLRW universe. First, by using (21), (104a), (104d),
and (104e), we obtain

Γ𝑖𝑘𝑗 = 11 − 2𝐵 {𝛿𝑖𝑗𝐵𝑘 − 𝛿𝑘𝑖 𝐵𝑗 − 𝛿𝑘𝑗𝐵𝑖} , (C.1)

where we put 𝐵𝑘 = 𝐵𝑘 = 𝜕𝐵/𝜕𝑥𝑘. Then (20a) and (C.1) imply

𝑔(∇𝜕/𝜕𝑥𝑗 𝜕𝜕𝑥𝑖 , 𝜕𝜕𝑥ℎ) = 𝑎2 {𝛿𝑖𝑗𝐵ℎ − 𝛿𝑖ℎ𝐵𝑗 − 𝛿𝑗ℎ𝐵𝑖} . (C.2)

Then, apply 𝜕/𝜕𝑥𝑘 to both sides in (C.2) and, taking into
account that ∇ is a metric connection, we deduce that

𝑔(∇𝜕/𝜕𝑥𝑘∇𝜕/𝜕𝑥𝑗 𝜕𝜕𝑥𝑖 , 𝜕𝜕𝑥ℎ)
+ 𝑔(∇𝜕/𝜕𝑥𝑗 𝜕𝜕𝑥𝑖 , ∇𝜕/𝜕𝑥𝑘 𝜕𝜕𝑥ℎ)

= 𝑎2 {𝛿𝑖𝑗𝐵ℎ𝑘 − 𝛿𝑖ℎ𝐵𝑗𝑘 − 𝛿𝑗ℎ𝐵𝑖𝑘} ,
(C.3)

where we put

𝐵𝑗𝑘 = 𝜕2𝐵𝜕𝑥𝑗𝜕𝑥𝑘 . (C.4)

Denote the left hand side of (C.3) by 𝐿 𝑖ℎ𝑗𝑘 and by using (25),
(26a), (20a), and (C.1) we infer that

𝐿 𝑖ℎ𝑗𝑘 − 𝐿 𝑖ℎ𝑘𝑗 = 𝑅𝑖𝑙𝑗𝑘𝑔𝑙ℎ + (Γ𝑖𝑙𝑗Γℎ𝑚𝑘 − Γ𝑖𝑙𝑘Γ𝑘𝑚𝑗) 𝑔𝑙𝑚
= 𝑅𝑖ℎ𝑗𝑘 + 𝑎21 − 2𝐵 {(𝛿𝑖𝑗𝐵𝑙 − 𝛿𝑙𝑖𝐵𝑗 − 𝛿𝑙𝑗𝐵𝑖)
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⋅ (𝛿ℎ𝑘𝐵𝑙 − 𝛿ℎ𝑙𝐵𝑘 − 𝛿𝑘𝑙𝐵ℎ) − (𝛿𝑖𝑘𝐵𝑙 − 𝛿𝑙𝑖𝐵𝑘 − 𝛿𝑙𝑘𝐵𝑖)
⋅ (𝛿ℎ𝑗𝐵𝑙 − 𝛿ℎ𝑙𝐵𝑗 − 𝛿𝑗𝑙𝐵ℎ)} .

(C.5)

Thus, (C.3) and (C.5) imply

𝑅𝑖ℎ𝑗𝑘 = 𝑎2 {𝛿𝑖𝑗𝐵ℎ𝑘 + 𝛿ℎ𝑘𝐵𝑖𝑗 − 𝛿𝑖𝑘𝐵ℎ𝑗 − 𝛿𝑗ℎ𝐵𝑖𝑘}
+ 𝑎21 − 2𝐵 {(𝛿𝑖𝑘𝑏𝑙 − 𝛿𝑙𝑖𝐵𝑘 − 𝛿𝑙𝑘𝐵𝑖)
⋅ (𝛿ℎ𝑗𝐵𝑙 − 𝛿ℎ𝑙𝐵𝑗 − 𝛿𝑗𝑙𝐵ℎ) − (𝛿𝑖𝑗𝑏𝑙 − 𝛿𝑙𝑖𝐵𝑗 − 𝛿𝑙𝑗𝐵𝑖)
⋅ (𝛿ℎ𝑘𝐵𝑙 − 𝛿ℎ𝑙𝐵𝑘 − 𝛿𝑘𝑙𝐵ℎ)} .

(C.6)

Now, contracting (C.6) by 𝑔ℎ𝑘 and using (67), (70), and
(104e), we obtain

𝑅𝑖𝑗 = 1(1 − 2𝐵)2 {𝛿𝑖𝑗
3∑
𝑘=1

(𝐵𝑘)2 + 3𝐵𝑖𝐵𝑗
+ (1 − 2𝐵)(𝐵𝑖𝑗 + 𝛿𝑖𝑗 3∑

𝑘=1

𝐵𝑘𝑘)} ,
(C.7)

R = 2𝑎2 (1 − 2𝐵)3 {3
3∑
𝑘=1

(𝐵𝑘)2 + 2 (1 − 2𝐵) 3∑
𝑘=1

𝐵𝑘𝑘} . (C.8)
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