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We consider N point vortices whose positions satisfy a stochastic ordinary differential equation
on R

2N perturbed by spatially correlated Brownian noise. The associated signed point measure-
valued empirical process turns out to be a weak solution to a stochastic Navier-Stokes equation
(SNSE) with a state-dependent stochastic term. As the number of vortices tends to infinity, we
obtain a smooth solution to the SNSE, and we prove the conservation of total vorticity in this
continuum limit.

1. Introduction

Our aim is to show that for a two-dimensional incompressible fluid, the total vorticity of the
fluid is a conserved quantity (where the vorticity for a rigid body is twice the angular velo-
city). Following Kotelenez [1] and Marchioro and Pulvirenti [2] (cf. also Amirdjanova, [3, 4],
Amirdjanova and Xiong [5]), the distribution of the vorticity satisfies the following:

∂

∂t
X(r, t) = νΔX(r, t) − ∇ • (U(r, t)X(r, t)),

X(r, t) = curlU(r, t) =
∂U2

∂r1
− ∂U1

∂r2
, ∇ ·U ≡ 0,

(1.1)

whereU(r, t) is the velocity field, r ∈ R
2, ν ≥ 0 is the kinematic viscosity,Δ is the Laplacian,∇

is the gradient, and • denotes the scalar product on R
2. If ν > 0, we obtain the Navier-Stokes
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equation for the vorticity. If the fluid is inviscid (or ideal), that is, ν = 0, we obtain the Euler
equation. Note that by the incompressibility condition ∇ •U ≡ 0, we obtain

U(r, t) =
∫(

∇⊥g
)(
r − q)X(q, t)dq, (1.2)

where g(r) := (1/2π) ln(|r|)with |r|2 = r21 + r22 and∇⊥ = (−(∂/∂r2), (∂/∂r1))T with T denoting
the transpose;

∫
()dq denotes integration over R

2 with respect to the Lebesgue measure. Con-
sequently, we can obtain the velocity field,U, from the vorticity distribution.

Let 0 < δ ≤ 1. Let gδ(s) be at least twice continuously differentiable with bounded deri-
vatives up to order 2 with |g ′

δ
(s)| ≤ |g ′(s)| and |g ′′

δ
(s)| ≤ |g ′′(s)|, for s > 0 such that gδ(r) ≡ g(r),

for δ ≤ |r| ≤ 1/δ. Set

Kδ(r) := ∇⊥gδ(|r|). (1.3)

We may assume without loss of generality that g ′
δ
(0) = 0, which implies Kδ(0) = 0.

Thus, we have the smoothed Navier-Stokes equation (NSE)

∂

∂t
X(r, t) = νΔX(r, t) − ∇ • (Uδ(r, t)X(r, t)),

Uδ(r, t) :=
∫
Kδ

(
r − q)X(q, t)dq.

(1.4)

Consider N point vortices with intensities ai ∈ R, and let ri be the position of the ith
vortex in R

2. Abbreviate rN := (r1, . . . , rN) ∈ R
2N . Assume that the positions satisfy the stoch-

astic ordinary differential equation (SODE)

dri(t) =
N∑
j=1

ajKδ

(
ri − rj

)
dt +

√
2νdmi(rN, t), i = 1, . . . ,N. (1.5)

The mi(rN, t) are R
2-valued square-integrable continuous martingales (i = 1, . . . ,N),

which may depend on the positions of the vortices. Let us for the moment assume that for
suitably adapted square-integrable initial conditions, (1.5) has a unique (Itô) solution rN(t) =
(r1(t), . . . , rN(t)). Set

XN(t) :=
N∑
i=1

aiδri(t), (1.6)

where ri(t) are the solutions of (1.5) and δr is the point measure concentrated in r. We will
call XN(t) the empirical process associated with the SODE (1.5). Let Lp(R2, dr) be the stand-
ard Lp-spaces of real-valued functions on R

2 with p ∈ [1,∞], where dr is the Lebesgue
measure. Set H0 := L2(R2, dr) and denote by 〈·, ·〉0 and ‖ · ‖0 the standard scalar product and
its associated norm onH0. Further, let 〈·, ·〉 be the extension of 〈·, ·〉0 to a duality between dis-
tributions and smooth functions. Form ∈ N, we define Cm

0 (R
2,R) to be the functions from R

2
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into R which arem times continuously differentiable in all variables such that all derivatives
vanish at infinity.

(i) If ν = 0, X(t) is a solution to the Euler equation (1.1) and the initial condition satis-
fies X(0) ∈ L1(R2, dr) ∩ L∞(R2, dr), then there is a sequence Kδ(N)(r) → K(r) :=
∇⊥g(r) asN → ∞ such that for φ ∈ C2

0(R
2,R) (cf. Marchioro and Pulvirenti [2]),

〈XN(t), φ
〉 −→ 〈

X(t), φ
〉

as N −→ ∞. (1.7)

(ii) Suppose ν > 0 and X(t) is a solution to the Navier-Stokes equation (1.1). Choose
mi(rN, t) := βi(t), where βi(t) are i.i.d. R

2-valued standard Wiener processes and
half of the intensities ai equal to (a+)(2/N) for a+ > 0 and the other half to
(−a−)(2/N) with a− > 0. Let ϕ ∈ C2

0(R
2,R). Apply Itô’s formula and compute the

quadratic variation

d
[〈
ϕ,XN(t)

〉]
= 2ν

∑
±

⎡
⎣N/2∑

j=1

2a±

N

{(∇ϕ)(rj(t)) • βj(dt)
}⎤⎦

= 2ν
∑
±

N/2∑
j=1

(2a±)2

N2

{
2∑
k=1

(
∂kϕ

)2(
rj(t)

)}
dt,

(1.8)

where we used the independence of βi(·). Hence, for t ≤ T ,

[〈
ϕ,XN(t)

〉]
= O

(
1
N
,ϕ, T

)
. (1.9)

In other words, the empirical vorticity distribution XN(t) becomes macroscopic, as
N → ∞. Choosing a sequenceKδ(N)(r) → K(r) and assuming a suitable convergence of the
initial conditions XN,0 towards the initial condition in (1.1), we may expect that

〈
ϕ,XN(t)

〉 −→ 〈
ϕ,X(t)

〉
, (1.10)

where X(t) is the solution to (1.1). As N → ∞ describes a continuum limit (in this limit, the
discrete point particle distribution may become a smooth particle distribution with densities,
etc.), (1.10) implies that the macroscopic limit and the continuum limit coincide. Marchioro and
Pulvirenti [2] (cf. also Chorin [6] and the references therein) prove a somewhat weaker re-
sult: for the case mi(rN, t) := βi(t), assuming in addition to the previous conditions,
〈EXN(0), ϕ〉 → 〈X(0), ϕ〉 asN → ∞, they prove that for all t > 0,

〈
EXN(t), ϕ

〉 −→ 〈
X(t), ϕ

〉
as N −→ ∞, (1.11)

where E denotes the mathematical expectation with respect to the underlying probability
space (Ω,F,Ft, P). (All our stochastic processes are assumed to live onΩ and to be Ft-adapt-
ed (including all initial conditions in SODE’s and SPDE’s), where the filtration Ft is assumed
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to be right continuous. Moreover, the processes are assumed to be (dP ⊗ dt)-measurable,
where dt is the Lebesgue measure on [0,∞).)

In order to separate the macroscopic and continuum limits and to derive a mesoscopic
vorticity distribution, Kotelenez [1] introduces spatial correlations of the Brownian noise as
follows through correlation functionals convolved with space-time Gaussian white noise as
follows: for i = 1, 2, wi(dp, ds) are i.i.d. space-time Gaussian white noise fields, (this is the
multiparameter generalization of the increments of a real valued Brownian motion β(ds). cf.
Walsh [7] and Kotelenez [8]) ε > 0 is the spatial correlation length and define a 2 × 2-matrix-
valued correlation kernel by

Γ̂ε =

⎛
⎝Γ̃ε,11 Γ̃ε,12

Γ̃ε,12 Γ̃ε,22

⎞
⎠. (1.12)

Γ̃ε,ij : R
2 → R+ are symmetric, bounded, Borel-measurable functions such that the fol-

lowing integrability conditions are satisfied, where i ∈ {1, 2} (the integration domain for
∫
in

what follows is always R
2, unless it is specified to be different).

∫
Γ̃2ε,ii

(
r − p)dp = 1, (1.13)

and there is a finite positive constant c such that for any r, q ∈ R
2 and i, j ∈ {1, 2}

∫ (
Γ̃ε,ij

(
r − p) − Γ̃ε,ij

(
q − p))2

dp ≤ c�(r − q), (1.14)

where �(r − q) := |r − q| ∧ 1 and ∧ denotes the minimum of two numbers. In this case, the fol-
lowing choice for the square-integrable martingales is made:

mi(rN, t) :=
∫ t
0

∫
Γ̂ε
(
ri(s) − p

)
w
(
dp, ds

)
. (1.15)

The two-particle and one-particle diffusion matrices are given by (cf. Kotelenez and
Kurtz [9])

D̃ε,k�

(
ri − rj

)
:=
∫ 2∑
m=1

Γ̃ε,km
(
ri − q

)
Γ̃ε,m�

(
rj − q

)
dq ∀i, j = 1, . . . ,N,

Dε,k� := D̃ε,k�(0),

(1.16)

where the spatial shift invariance of the two-particle diffusion matrix and the state indepen-
dence of the one-particle diffusion matrix follows from the shift invariance of the kernels. Let
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r1(t), r2(t) be continuous R
2-valued processes, which describe the positions of point particles

or point vortices. Levy’s theorem then implies that the marginal processes

∫ t
0

∫
Γ̂ε
(
r1(s) − p

)
w
(
dp, ds

)
,

∫ t
0

∫
Γ̂ε
(
r2(s) − p

)
w
(
dp, ds

)
, (1.17)

are R
2-valued Brownianmotions, whereas by (1.16), the joint R

4-valuedmotion is not Brown-
ian. If we now assume in addition that for all δ > 0

lim
ε↓0

sup
|ri−rj |>δ

∣∣∣D̃ε,k�

(
ri − rj)∣∣∣ = 0 k, � ∈ {1, 2}, (1.18)

then the joint R
4-valued motion is approximately Brownian, if the separation between the

point vortices is sufficiently large (cf. Kotelenez and Kurtz [9, (2.6)]. Further, in colloids it is
an empirical fact that at close range Brownian particles are attracted to one another as a result
of the depletion phenomenon. cf. Asakura and Oosawa [10] as well as Kotelenez et al. [11],
and the references therein).

Example 1.1. Choose Γ̃ε,kk(r) := −cε(∂/∂rk)(1/2πε)e−|r|2/4ε, where cε > 0, k = 1, 2, and for the
off-diagonal elements (k /= �) set Γ̃ε,kl(r) := 0.

Another class of examples can be obtained by taking, for example, the square root of
a standard normal distribution with variance ε as Γε,ii, i = 1, 2, and 0 for the off-diagonal
elements of Γ̃ε. The Chapman-Kolmogorov equation yields

∣∣∣D̃ε,kl

(
ri − rj

)∣∣∣ ≈ O(√ε). (1.19)

The method of perturbing the motion of the point vortices has the benefit that the em-
pirical process XN(t) associated with (1.5) satisfies a smoothed stochastic Navier-Stokes
equation (SNSE) by Ito’s formula (cf. (3.8) in Section 3). From this, Kotelenez [1] derives a
priori estimates used to generalize the solution to arbitrary adapted initial conditions. How-
ever, the metric used in Kotelenez [1] does not define a metric on the signed measures and,
therefore, cannot be used to prove the conservation of total vorticity in the continuum limit.
Consequently, we proceed as follows.

(i) (Section 2) We introduce metrics on the space of signed measures. In view of the
method of correlation functions, we desire a metric that is complete. Instead, we
derive a metric that satisfies a useful “partial-completeness” result which aides in
the conservation of vorticity argument.

(ii) (Section 3) We analyze the SNSE equation and derive the existence of solutions.
Furthermore, using the results of Section 2, we show that the total vorticity is con-
served.

(iii) (Section 4) Based on the recent work of Kotelenez and Kurtz [9], we conjecture the
macroscopic limit for the stochastic Navier-Stokes equation.
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2. Metrics on the Space of Signed Measures

Let R
2 be equipped with the complete, separable metric �(r − q) = |r − q| ∧ 1. We defineMf to

be the set of finite, Borel measures on R
2 and Mf,s the set of finite, Borel signed measures on

R
2. For a finite, signed Borel measure, μ, we let μ+, μ− denote the Hahn-Jordan decomposition

of μ. We also let CL,∞(R2,R) be the set of Lipschitz functions from R
2 to R which are also

bounded. We endow CL,∞(R2,R) with the norm ‖ · ‖L,∞, where ‖f‖L,∞ := ‖f‖∞ ∨ ‖f‖L for

∥∥f∥∥∞ := sup
q

∣∣f(q)∣∣, ∥∥f∥∥L := sup
r,q∈R2,r /= q

{∣∣f(r) − f(q)∣∣
�
(
r − q)

}
, (2.1)

and ∨ denotes maximum.
Further, we define for μ, μ̃ ∈ Mf,s

γf
(
μ, μ̃

)
:= sup

‖f‖L,∞≤1

∣∣〈μ − μ̃, f〉∣∣.
(2.2)

By Kotelenez [8] and Dudley [12], it follows that (Mf,s, γf) is a metric space on which
γf is actually a norm. Furthermore, restricting γf toMf implies that (Mf , γf) is a complete and
separable metric space (where the linear combination of point measures forms a dense set)
(cf., e.g., de Acosta [13]). However, by Kotelenez and Seadler [14], (Mf,s, γf) is not a complete
space. Hence, we introduce the product metric γ̂f on M̂f,s := Mf,s × Mf,s. For μ̂ = (μ1, μ2),
ν̂ = (ν1, ν2) ∈ M̂f,s, we define

γ̂f
(
μ̂, ν̂

)
:= γf

(
μ1, ν1

)
+ γf

(
μ2, ν2

)
. (2.3)

It follows that (M̂f,s, γ̂f) is a metric space, restricted to M̂f := Mf × Mf , the metric is
complete and separable. We can identify a signedmeasure μwith the measure pair formed by
the Hahn-Jordan decomposition, μ̂± = (μ+, μ−). However, under this identification, (Mf,s, γ̂f)
is still not a complete space. We finally introduce the following quotient-type metric on Mf,s

(cf. Kotelenez and Seadler [14]):

γf,s
(
μ, ν

)
:= inf

η̂∈D̂+

(
γ̂f
(
μ̂± − ν̂± + η̂) ∨ γ̂f(μ̂± − ν̂± − η̂)), (2.4)

where μ, ν ∈ Mf,s and

D̂+ :=
{
ν̂ = (ν1, ν2) ∈ M̂f : ν1 = ν2

}
. (2.5)

(Mf,s, γf,s) is not a complete space, but it satisfies the following useful partial complete-
ness result (cf. Kotelenez and Seadler [14]).

Theorem 2.1. (i) γf,s is a metric on Mf,s.
(ii) A Cauchy sequence {μn}n≥1 for γf,s converges if and only if there exists a subsequence

{μnk}k≥1 such that μ̂±
nk → μ̂± in γ̂f (i.e., the limit is in Hahn-Jordan form).
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Proof. (Sketch) For the forward implication, if given a Cauchy sequence for {μn}n≥1 for γf,s, it
is routine to show that we can extract a subsequence {μ̂±

nk}k≥1 in M̂f that is Cauchy for γ̂f . Con-

sequently, as (M̂f , γ̂f) is complete, there is a limit μ̂ ∈ M̂f . One can show by standard estimates
that

μ̂±
nk −→ μ̂ = μ̂± + φ̂ where φ̂ ∈ D̂+. (2.6)

Thus, to prove the forward implication, it suffices to establish the following lemma.

Lemma 2.2. Let ψ : M̂f → Mf,s by ψ((ν1, ν2)) := ν1 − ν2, then

γf,s
(
ψ
(
μ̂±
nk

)
, ψ
(
μ̂± + φ̂

))
−→ 0 iff φ̂ = 0̂. (2.7)

Proof. (i) “⇐” follows from γf,s(ψ(μ̂±
nk), ψ(μ̂

±)) ≤ γ̂f(μ̂±
nk − μ̂±).

(ii) Suppose γ̂f(φ̂) > 0. Then,

γf,s
(
ψ
(
μ̂±
nk

)
, ψ
(
μ̂± + φ̂

))
≥ inf

η̂∈D̂+

γ̂f
(
μ̂±
nk − μ̂± − η̂) ∨ inf

η̂∈D̂+

γ̂f
(
μ̂± − μ̂±

nk − η̂
)
. (2.8)

Let ε > 0. We compute the second term

inf
η̂∈D̂+

γ̂f
(
μ̂± − μ̂±

nk − η̂
)
= inf

η̂∈D̂+

γ̂f
(
μ̂± + φ̂ − μ̂±

nk − φ̂ − η̂
)

≥ inf
η̂∈D̂+

γ̂f
(
−φ̂ − η̂

)
− γ̂f

(
μ̂± + φ̂ − μ̂±

nk

)
≥ inf

η̂∈D̂+

γ̂f
(
φ̂ + η̂

)
− ε,

(2.9)

for sufficiently large n, since, by assumption, γ̂f(μ̂± + φ̂ − μ̂±
nk) → 0. Hence,

inf
η̂∈D̂+

γ̂f
(
μ̂± − μ̂±

nk − η̂
) ≥ inf

η̂∈D̂+

γ̂f
(
φ̂ + η̂

)
= γ̂f

(
φ̂
)
> 0. (2.10)

Therefore, we also have

γf,s
(
ψ
(
μ̂nk

)
, ψ
(
μ̂ + φ̂

))
≥ γ̂f

(
φ̂
)
> 0. (2.11)

Part (i) of the proof of Lemma 2.2 also implies the reverse implication for Theorem 2.1.

Although the above metrics provide an understanding of the difficulty of complete-
ness for the signed measures, we will also need the Wasserstein metrics on the set of signed
measures. Further, for nonnegative numbers b+, b−,A, an arbitrary Borel set in R

2, and μ+, μ−,
we write

μ±(A) = b± iff μ+(A) = b+, μ−(A) = b−. (2.12)
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If μ, μ̃ ∈ Mf,s, we will call positive Borel measures Q± on R
4 joint representations

of (μ+, μ̃+) [(μ−, μ̃−), resp.] if Q±(A × R
2) = μ±(A)μ̃±(R2) and Q±(R2 × B) = μ̃±(B)±μ±(R2)

for arbitrary Borel A,B ⊂ R
2. In this paper, we will assume unless stated otherwise that

μ, μ̃ ∈ Mf,s with μ±(R2) = μ̃±(R2) = a±, where a+, a− > 0. The set of all joint representations
of (μ+, μ̃+) [(μ−, μ̃−), resp.]will be denoted by C(μ+, μ̃+) [C(μ−, μ̃−), resp.]. For μ, μ̃ ∈ Mf,s and
p = 1, 2, set

γW,p

(
μ, μ̃

)
:=

[
inf

Q+∈C(μ+,μ̃+)

∫∫
Q+(dr, dq)�p(r, q) + inf

Q−∈C(μ−,μ̃−)

∫ ∫
Q−(dr, dq)�p(r, q)

]1/p
.

(2.13)

γW,p is a metric on M̂f , and its restriction toMf is a metric, but it is not a metric onMf,s.
As we will work with the various types of metrics, we note some basic inequalities relating
γW,1 and γW,2. It follows from the Cauchy-Schwarz inequality and the assumption that � is
bounded by one that

γW,1
(
μ, μ̃

) ≥ γ2W,2

(
μ, μ̃

) ≥ 1
2(a+ ∨ a−)γ

2
W,1

(
μ, μ̃

)
. (2.14)

Furthermore, when restricted to probability measures, γW,1 and γf define the same
metric by the Kantorovich-Rubinstein theorem and Kotelenez [8].

3. Existence and Uniqueness of the SNSE and Conservation of Vorticity

Let us return to the SODE (1.5) and note that if we define mi(rN, t) by (1.15), then (1.5)
becomes

dri(t) :=
N∑
j=1

ajKδ

(
ri − rj

)
dt +

√
2ν

∫
Γ̂ε
(
ri − p

)
w
(
dp, dt

)
. (3.1)

For metric spaces M1,M2, and C(M1,M2) is the space of continuous functions from M1

into M2. If μ is a finite (signed) Borel measure on R
2, we set

μ

∫
Γ̂ε
(· − p)w(dp, t) :=

∫
Γ̂ε
(· − p)w(dp, t)μ(d·), (3.2)

that is,
∫
Γ̂ε(· − p)w(dp, t) is treated as a density with respect to μ.

If μ itself has a density with respect to the Lebesgue measure, we will denote this den-
sity also by μ (i.e., 〈φ, μ〉 = 〈φ, μ〉0), and the above expression reduces to pointwise multi-
plication between μ and the stochastic integral.

Lemma 3.1. To each F0-adapted initial condition qN(0) ∈ R
2N , (3.1) has a unique Ft-adapted

solution qN(·) ∈ C([0,∞);R2N) a.s.; which is an R
2N-valued Markov process.

Proof. Compare with Kotelenez [1, 8].
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For the square-integrable martingales in (1.5), we denote by 〈〈mi
k(rN, t), m

j

l (rN, t)〉〉
the mutual quadratic variation process of the one-dimensional components where k, l ∈
{1, 2}, i, j ∈ {1, . . . ,N} (cf. Métivier and Pellaumail [15]). For φ ∈ C2

0(R
2;R), it follows from

Ito’s formula that the empirical process associated with (1.5), XN (defined by (1.6)) satisfies
the following:

d
〈XN(t), φ

〉
=
〈XN(t), (Uδ,N • ∇)φ

〉
dt

+ ν
N∑
i=1

ai
2∑

k,l=1

∂2

∂rk∂rl
φ
(
ri(t)

)
d〈〈mi

k(rN, t), m
i
l(rN, t)〉〉

+
√
2ν

N∑
i=1

ai
(
∇φ

(
ri(t)

))
• dmi(rN, t),

(3.3)

where r = (r1, r2) and

Uδ,N(r, t) :=
∫
Kδ

(
r − q)XN

(
dq, t

)
. (3.4)

Recalling that the marginals in (1.15) are standard R
2-valued Brownian motions, we

obtain

ν
N∑
i=1

ai
2∑

k,l=1

∂2

∂rk∂rl
φ
(
ri(t)

)
d
〈〈
mi
k(rN, t), m

i
l(rN, t)

〉〉
= ν

N∑
i=1

aiΔφ
(
ri(t)

)
dt = ν

〈(
Δφ

)
(·),XN(t)

〉
,

(3.5)

and (in what follows, we use the duality between R
2-valued functions and R

2-valued genera-
lized functions by first applying the scalar product • and then for each component computing
the duality)

√
2ν

N∑
i=1

ai
(
∇φ

(
ri(t)

))
•
∫
Γ̂ε
(
ri(t) − p

)
w
(
dp, dt

)

=
〈(∇φ(·),

∫ √
2νΓ̂ε

(
ri(t) − p

)
w
(
dp, dt

)XN(t)
〉
.

(3.6)

Therefore, (3.3) yields

d
〈XN(t), φ

〉
=
〈XN(t), (Uδ,N • ∇)φ

〉
dt

+ ν
〈(
Δφ

)
(·),XN(t)

〉
dt +

〈(∇φ(·),
∫ √

2νΓ̂ε
(
ri(t) − p

)
w
(
dp, dt

)XN(t)
〉
.

(3.7)
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Integrating in (3.7) by parts in the sense of generalized funtions, we obtain that the em-
pirical process is the weak solution of the following stochastic Navier-Stokes equation (SNSE)
on Mf,s:

dX(t) =
[
νΔX −∇ •

(
ŨδX

)]
dt −

√
2ν∇ •

(
XΓ̂ε

(· − p))w(dp, dt),

Ũδ(r, t) :=
∫
Kδ

(
r − q)X(

dq, t
)
.

(3.8)

Lemma 3.2 (conservation of vorticity for discrete initial conditions). Consider

X±
N

(
R

2, t
)
= X±

N

(
R

2, 0
)
= a± a.s. (3.9)

Proof. By Kotelenez and Seadler [14], it suffices to verify that the coefficients of (3.1) satisfy
Lipschitz conditions. For the stochastic component, we note that if r, q ∈ R

2, we obtain that if
{φ̃n}n∈N

is a complete orthonormal system in L2(R2, dr) and

φn :=

⎛
⎝φ̃n 0

0 φ̃n

⎞
⎠, (3.10)

then it follows that

∫
Γ̂ε
(
r − p)w(dp, t) = ∞∑

n=1

∫
Γ̂ε
(
r − p)φn(p)dpβn(t), (3.11)

where βn(t) :=
∫
φn(p)w(dp, t) are i.i.d. R

2-valued standard Wiener processes (cf. Kotelenez
[8]). It follows from the definition of the correlation function that for i, j ∈ {1, 2}

∞∑
n=1

[∫(
Γ̃ε,ij

(
r − p) − Γ̃ε,ij

(
q − p))φ̃n(p)dp

]2
=
∫ (

Γ̃ε,ij
(
r − p) − Γ̃ε,ij

(
q − p))2

dp

≤ c�2(r − q).
(3.12)

Now, we note that the drift coefficient can be represented by F(XN(t), r) : Mf,s ×R
2 →

R
2, where F(μ, r) := Kδ ∗ μ(r), ∗ denotes convolution, and μ ∈ Mf,s. For μ1, μ2 ∈ Mf,s, r1, r2 ∈

R
2, we have the following (cf. Kotelenez [8, page 81]):

∣∣F(μ1, r1
) − F(μ2, r2

)∣∣ ≤ cK,δ(a�(r1, r2) + γ̂f(μ̂±
1 , μ̂

±
2

))
, (3.13)

where μ̂± = (μ+, μ−) and μ+, μ− is the Hahn-Jordan decomposition of μ and a := a+ + a− is the
total vorticity.

We wish to extend the result of Lemma 3.2 to arbitrary adapted initial conditions and
not just discrete adapted initial conditions. To accomplish this, we must derive a priori esti-
mates on the empirical distribution. We first introduce the following notation.
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If (Y, λ) is some metric space and p ≥ 1, Lp(Ω;Y) is the metric space of Y-valued p-
integrable random variables with metric (Eλp(ξ, η)1/p) for ξ, η ∈ Lp(Ω;Y ). Set

Mf,s,d :=
{
μ ∈ Mf,s : μ is a finite linear combination of point measures on R

2
}
,

M̃0 := L2
(
Ω;Mf,s,d

)
,

M0 := L2
(
Ω;Mf,s

)
,

M[0,T] := L2
(
Ω;C

(
[0, T];Mf,s

))
.

(3.14)

Let rN(t) := rN(t, Z1(t),XN,0) and qN(t) := qN(t, Z2(t),YN,0) be the solutions of the
SODE (3.1) with F0-measurable initial empirical distributions XN,0,YN,0 ∈ Mf,s. Denote
the empirical processes associated with rN(t, Z1(t),XN,0) and qN(t, Z2(t),YN,0) by XN

(t, Z1,XN,0) and YN(t, Z2,YN,0), respectively, where Z1(·), Z2(·) are also adaptedMf,s-valued
processes, replacing in (3.1) the empirical processes. Set

�N
(
rN, qN

)
:= max

i=1,...,N
�
(
riN, q

i
N

)
. (3.15)

Theorem 3.3. For any T > 0,

E sup
0≤t≤T∧τ

�2N
(
rN(t), qN(t)

) ≤ cT,δ,ε
(
E�2N

(
rN(0), qN(0)

)
+ E

∫ t
0
γ̂2f (Z1(s), Z2(s))ds

)
. (3.16)

Proof. This follows from Theorem 2.1 in Kotelenez and Seadler [14].

We can now derive the necessary a priori estimates to extend from discrete initial con-
ditions to arbitrary adapted initial conditions.

Lemma 3.4. For any T > 0, there is a c := cδ,ε,T > 0 such that for allN ∈ N

E sup
0≤t≤T

γ̂2f

(
X̂N(t), ŶN(t)

)
≤ cEγ̂2f

(
X̂N(0), ŶN(0)

)
. (3.17)

Proof. (i) Define X+
N(t, Zk) :=

∑
ai≥0 aiδri(t,Zk,r

i
0)
and X−

N(t, Zk) =
∑

ai<0 aiδxi(t,Zk,r
i
0)
. Similarly,

we decompose YN(t, Zk), where k = 1, 2.

E sup
0≤t≤T

γ̂2f

(
X̂N(t, Z1), ŶN(t, Z2)

)

≤ 4

(
E sup
0≤t≤T

γ2f
(X+

N(t, Z1),Y+
N(t, Z2)

)
+ E sup

0≤t≤T
γ2f
(X−

N(t, Z1),Y−
N(t, Z2)

))
.

(3.18)
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We show the estimate for E sup0≤t≤T γ
2
f(X+

N(t, Z1),Y+
N(t, Z2)) as a similar estimate will

hold for the second term. Note that

E sup
0≤t≤T

γ2f
(X+

N(t, Z1),Y+
N(t, Z2)

)

≤ 4

(
E sup
0≤t≤T

γ2f
(X+

N(t, Z1),X+
N(t, Z2)

)
+ E sup

0≤t≤T
γ2f
(X+

N(t, Z2),Y+
N(t, Z2)

))
.

(3.19)

Recall that XN,0 and YN,0 are the initial measures of X(t) and Y(t), respectively. Let
Q0 ∈ C(X+

N(0),Y+
N(0)), then, by Cauchy-Schwarz and Theorem 3.3, the right hand side of the

last inequality equals

4E sup
0≤t≤T

⎛
⎝ sup

‖f‖L,∞≤1

∫(
f
(
ri
(
t, Z1, q

)) − f
(
ri
(
t, Z2, q

)))XN,0
(
dq
)
⎞
⎠

2

+ 4E sup
0≤t≤T

⎛
⎝ sup

‖f‖L,∞≤1

∫∫(
f
(
ri
(
t, Z2, q

)) − f
(
qi
(
t, Z2, q̃

)))
Q0

(
dq, dq̃

)
⎞
⎠

2

≤ E sup
0≤t≤T

c

∫
�2
(
ri
(
t, Z1, q

) − ri(t, Z2, q
))XN,0

(
dq
)

+ E sup
0≤t≤T

c

∫∫
�2
(
ri
(
t, Z2, q

) − qi(t, Z2, q̃
))
Q0

(
dq, dq̃

)
.

≤ c̃T,a
(
Eγ2f

(
X+
N,0,Y+

N,0

)
+
∫T
0
Eγ̂2f

(
Ẑ1(s), Ẑ2(s)

)
ds

)
,

(3.20)

by Theorem 3.3, (2.14), and the Kantorovich-Rubinste in theorem.
Combining the terms for the positive and negative parts, choosing Z1 ≡ XN and Z2 ≡

YN and applying Gronwall’s Inequality yields the claim.

The following theorem asserts that the total vorticity of the fluid is conserved.

Theorem 3.5 (conservation of vorticity in the continuum limit). (1) The map XN(0) �→
Xε(·,XN(0)) from M̃0 intoM[0,T] extends uniquely to a mapX0 �→ Xε(·,X0) fromM0 intoM[0,T],
and this extension is a weak solution of (3.8). Moreover, for anyX0,Y0 ∈ M0, there exists a constant
c̃ := c̃T,δ,a <∞

E sup
0≤t≤T

γ̂2f

(
X̂ε(t,X0), X̂ε(t,Y0)

)
≤ c̃Eγ̂2f

(
X̂0, Ŷ0

)
, (3.21)

(2)

X±
ε

(
R

2, t,X0

)
= X±

ε

(
R

2, 0,X0

)
= a± a.s. (3.22)
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Proof. (i) By (3.17), X̂N(0) �→ X̂ε(·, X̂N(0)) is uniformly continuous. Hence, we can extend
our solutions of (3.8) by continuity to allX0 ∈ M0 by the density of M̃0 inM0. We can see that
(3.21) follows from (3.17).

Since φ ∈ C2
0(R

2;R), ‖Δφ‖L.∞ < ∞ and ‖(∂/∂rl)φ‖L,∞ < ∞, l = 1, 2. So, the right-hand
side of (3.7) is defined if we replace XN(t) byXε(t,X0).

(ii) Set fN(t) := Xε(t,X0) − X(t,XN(0)). Then,

E

(∫ t
0

〈
fN(s),

∫
Γ̂ε
(· − p)w(dp, ds) · ∇φ

〉)2

=
2∑

l,k,l̃,k̃=1

E

∫ t
0

∫∫
fN(s, dr)fN

(
s, dq

)

×
∫
Γ̃ε,lk

(
r, p

)
Γ̃ε,l̃k̃

(
q, p

)
dp

∂

∂rl
φ(r)

∂

∂ql̃
φ
(
q
)
ds.

(∗)

Since for any q,

∣∣∣∣
∫[

Γ̃ε,lk
(
r − p) − Γ̃ε,lk

(
r̃ − p)]Γ̃ε,l̃k̃(q − p)dp

∣∣∣∣ ≤ c
(∫

(Γ̃ε,lk(r − p) − Γ̃ε,lk(r̃ − p))2
)1/2

≤ c̃�(q, q̃),
(3.23)

we obtain that
∫
Γ̃ε,lk(r, p)Γ̃ε,l̃k̃(q, p)dp(∂/∂rl)φ(r) is a bounded Lipschitz function in r uni-

formly in q. Similarly, if the roles of r and q are reversed, the right-hand side of (∗) tends to
zero asN → ∞ as a consequence of Lemma 3.4.

(iii) Because supp‖Kδ(· − p)‖L,∞ ≤ c < ∞, the analogue to step (ii) also holds for the
deterministic integrals on the right-hand side of (3.8).

Next, we must show conservation of vorticity for all X0 ∈ M0. For X0 ∈ M0, choose
a sequence {XN,0}N≥1 ⊂ M̃0 such that X̂N,0 → X̂0 in γ̂f . We first solve (3.8) on the product
space by Corollary 3.3 in Kotelenez and Seadler [14]. By Lemma 3.4 and the fact that γ̂f do-
minates γ̂f,s, we have that Xε(·,XN,0) is a converging Cauchy sequence for γf,s. By
Theorem 2.1, we have that the limit, Xε(·,X0) must be in Hahn-Jordan form. Since positive
and negative vorticities are conserved, we have conservation of total vorticity (3.22).

4. The Macroscopic Limit

Set

ΛN :=
{
rN ∈ R

2N : ∃(i, j), 1 ≤ i < j ≤N, such that ri = rj
}
, (4.1)

and denote by “⇒” weak convergence. Based on the recent work of Kotelenez and Kurtz [9],
we conjecture the following.
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Conjecture 4.1. For each N ∈ N suppose rN(0) /∈ ΛN a.s. and suppose that the two-dimensional
coordinates of rN(0) are exchangeable. Let φ ∈ C2

0(R
2,R) and suppose that 〈XN,0, φ〉 ⇒ 〈X(0), φ〉0,

asN → ∞. Then, there is a sequence δ(N) → 0, asN → ∞ such that for any t > 0,

〈Xε,δ(N)(t), φ
〉
=⇒ 〈

X(t), φ
〉
0 as ε −→ 0, N −→ ∞, (4.2)

where X(·) is the solution of (1.1).
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