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Following Linchenko and Montgomery’s arguments we show that the smash product of an
involutive weak Hopf algebra and a semiprime module algebra, satisfying a polynomial identity,
is semiprime.

1. Introduction

Group actions, Lie algebras acting as derivations and finite group gradings are typical
examples of Hopf algebra actions which have been studied for many years. Several generali-
zations of Hopf algebras have emerged in recent years, like weak Hopf algebras (or quantum
groupoids) introduced by Böhm et al. [1]. The action of such objects on algebras, as given by
quantum groupoids acting on C∗-algebras, [2] or weak Hopf algebras arising from Jones
towers [3] are particularly interesting. New examples of weak Hopf algebras arose from
double groupoids [4], which were also used to find new weak Hopf actions (see [2]).

A long-standing open problem in the theory of Hopf action is to show that the smash
product A#H of a semiprime module algebra A and a semisimple Hopf algebra H is again
semiprime (see [5]) (an algebra A is semiprime if it does not contain nonzero nilpotent
ideals.). The case of A being commutative had been settled in [6]. The most recent partial
answer to this problem has been given by Linchenko and Montgomery in [7] where they
prove the semiprimness of A#H under the condition of A satisfying a polynomial identity.
The purpose of this note is that their result carries over to actions of weak Hopf algebras.
We reach more generality by considering actions of linear operators that satisfy certain
intertwining relations with the regular multiplications on the algebra.
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Let k be a commutative ring and let A be an associative unital k-algebra. For any
a ∈ A define two linear operators L(a) and R(a) in Endk(A) given by 〈L(a), x〉 = ax and
〈R(a), x〉 = xa for all x ∈ A. We identify A with the subalgebra L(A) of Endk(A) generated
by all left multiplications L(a) and denote the subalgebra generated by all operators L(a)
and R(a) by M(A), which is also sometimes referred to as the multiplication algebra of A.
As a left L(A)-module, A is isomorphic to L(A) since we assume A to be unital. We will be
interested in certain actions on an algebraA that may stem from a bialgebra or more generally
a bialgebroid. The situation we will encounter is the one where we have an extension A ⊆ B
where B acts on A through a ring homomorphism φ : B → Endk(A) such that (a)φ = L(a)
for all a ∈ A. For the intrinsic properties of A under this action it is enough to look at the
subalgebra φ(B) in Endk(A) generated by this action and we might consider intermediate
algebras L(A) ⊆ B ⊆ Endk(A) instead. Hence let B be a subalgebra of Endk(A) that contains
L(A). Then A becomes a cyclic faithful left B-module by evaluating endomorphisms, that is,
for all b ∈ B, a ∈ A : b ·a := 〈b, a〉. Note that for any a′ ∈ Awe have L(a′) ·a = 〈L(a′), a〉 = a′a.

Since we assume A to be unital, the map Ψ : EndB(A) → A with Ψ(f) = (1)f , for all
f ∈ EndB(A)—evaluating endomorphisms at 1—is an injective ring homomorphism, since
for all f, g ∈ EndB(A) : Ψ(f ◦ g) = ((1)f)g = ((1)f · 1)g = (1)f · (1)g = Ψ(f)Ψ(g). Moreover
if Ψ(f) = (1)f = 0, then (a)f = a(1)f = 0 and f = 0. The subalgebra Ψ(EndB(A)) can be
described as the set of elements a ∈ A such that for any b ∈ B : b · a = (b · 1)a, which we
will denote by AB. On one hand if a = (1)f = Ψ(f) for some f ∈ EndB(A), then for any
b ∈ B : b ·a = (b ·1)f = L((b ·1)) · (1)f = (b ·1)a and on the other hand if a ∈ AB, then f = R(a)
is left B-linear since for any b ∈ B and x ∈ A:

b · (x)f = b · (xa) = b · (L(x) · a) = (bL(x)) · a = (bL(x) · 1)a
= (b · (L(x) · 1))a = (b · x)a = (b · x)f.

(1.1)

Thus EndB(A) 
 AB.
LetM be any left B-module and defineMB = {m ∈M : ∀b ∈ B : b ·m = (b · 1)m}. With

the same argument as above one sees that ΨM : HomB(A,M) → MB with Ψ(f) = (1)f is an
isomorphism of abelian groups, hence yielding a left AB-module structure onMB. Moreover
it is possible to show that HomB(A,−) is isomorphic to (−)B as functors from B-Mod to AB-
Mod.

A subset I of A is called B-stable if B · I ⊆ I. The B-stable left ideals are precisely the
(left) B-submodules of A. In particular HomB(A, I) 
 IB = I ∩AB, for any B-stable left ideal
of A.

Examples 1.1. The following list illustrates that our aproach reflects many interesting cases of
algebras with actions.

(1) Let B = M(A) be the multiplication algebra of A, then A is a faithful cyclic left
B-module. The left B-modules are precisely the A-bimodules, in particular the left
ideals of A are the two-sided ideals of A, and HomB(A,M) 
 MB = Z(M) = {m ∈
M | ∀a ∈ A : am = ma} holds for any A-bimoduleM. The operator algebra B is a
quotient of the enveloping algebraAe = A⊗Aop through themap a⊗b �→ L(a)◦R(b),
for all a ⊗ b ∈ Ae.

(2) Let G be a group acting as (k-linear) automorphisms on A, that is, there exists a
group homomorphism η : G → Autk(A). Set ga = 〈η(g), a〉 for any a ∈ A, g ∈ G.
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Define B = 〈L(A) ∪ {η(g) | g ∈ G}〉 ⊆ Endk(A). Then the left B-submodules I of A
are precisely the G-stable left ideals of A and HomB(A, I) 
 IB = {x ∈ I | gx = x}.
B is a quotient of the skew group ring A#G whose underlying A-submodule
is the free left A-module with basis {g | g ∈ G} and whose multiplication is
given by (a#g)(b#h) = agb#gh. Note that for any left A#G-module M we have,
HomA#G(A,M) = HomB(A,M) 
MG is the set of fixed elements ofM.

(3) Let A be an k-algebra with involution ∗ and let B be the subalgebra of EndA( )
generated by A and ∗. Since for any a ∈ A : R(a) = ∗ ◦ L(a∗) ◦ ∗ we gotM(A) ⊆ B.
This means (as it is well-known) that any left ideal of A which is stable under ∗ is
a two-sided ideal. Note that B can be seen as the factor ring of the skew-group ring
Ae#G where G = {id, ∗} is the cyclic group of order two and ∗ ∈ Aut(Ae) is given
by (a ⊗ b)∗ := b∗ ⊗ a∗.

(4) Let δ ∈ Derk(A) be an k-linear derivation of A and consider B = 〈L(A) ∪ {δ}〉 ⊆
Endk(A). The left B-submodules of A are the left ideals I that satisfy δ(I) ⊆ I. The
operator algebra B is a factor of the ring of differential operator A[z; δ], which as
a left A-module is equal to A[z] and its multiplication is given by za = az + δ(a).
The map A[z; δ] → B with

∑n
i=0 aiz

i �→ ∑n
i=0 L(ai) ◦ δi ∈ B is a surjective k-algebra

homomorphism and for any left A[z; δ]-module M we have HomA[z;δ](A,M) =
HomB(A,M) = Mδ = {m ∈ M | zm = 0}. In particular EndA[z;δ](A) 
 Aδ = Ker(δ).
The subring Aδ of A is called the ring of constants of δ.

(5) Let H be an k-Hopf algebra action on A. Let us denote the action of an element
h ∈ H on A by λh ∈ Endk(A) and define B = 〈L(A) ∪ {λh | h ∈ H}〉 ⊆ Endk(A).
The smash product A#H is an extension with additional module structure. Define
ϕ : A#H → Endk(A) by ϕ(a#h) := L(a) ◦ λh.

2. Linear Operators Acting on Algebras Satisfying
a Polynomial Identity

Let L(A) ⊆ B ⊆ Endk(A) be any intermediate algebra as above.
The first technical lemma generalizes a corresponding result of Linchenko [8, Theo-

rem 3.1] for Hopf actions and Nikshych [9, Theorem 6.1.3] for weak Hopf actions. Recall that
an ideal whose elements are nilpotent is called a nil ideal.

Lemma 2.1. Let L(A) ⊆ B ⊆ Endk(A) and suppose that for all ψ ∈ B there existm ≥ 1 and elements
ψ1
1 , . . . , ψ

1
m, ψ

2
1 , . . . , ψ

2
m ∈ B such that

L
(〈
ψ, a

〉)
=

m∑

i=1

ψ1
i ◦ L(a) ◦ ψ2

i ,
n∑

i=1

ψ2
i ◦ ψ1

i ∈ L(A) (2.1)

for any a ∈ A. If A is finite dimensional over a field of characteristic 0 and if I is a nil ideal, then B · I
is nil. In particular the Jacobson radical of A is B-stable.
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Proof. Denote the trace of a k-linear endomorphism f of A by Tr(f). Let ψ ∈ B, a ∈ A. Using
Tr(fgh) = Tr(hfg) and the hypotheses we get

Tr
(
L
(〈
ψ, a

〉))
= Tr

((
n∑

i=1

ψ2
i ◦ ψ1

i

)

◦ L(a)
)

= Tr
(
L
(
y
) ◦ L(a)) = Tr

(
L
(
ya

))
(2.2)

for some y ∈ A. Suppose that a ∈ I with I a nil ideal, then ya ∈ I is nilpotent, hence
Tr(L(〈ψ, a〉)) = Tr(L(ya)) = 0. For any k > 0 set zk := 〈ψ, a〉k. Then

zk =
〈
L
(〈
ψ, a

〉)
, zk−1

〉
=

n∑

i=1

〈
ψ1
i , ai

〉
(2.3)

for ai = a〈ψ2
i , z

k−1〉. Since I is an ideal, ai ∈ I. Hence

Tr
(
L(z)k

)
= Tr

(
L
(
zk

))
=

n∑

i=1

Tr
(
L
(〈
ψ1
i , ai

〉))
= 0. (2.4)

Since A is finite dimensional, char(k) = 0 and the trace of all powers of L(z) is zero, L(z) is a
nilpotent operator, that is, z = 〈ψ, a〉 is nilpotent. Thus B · I is a nil ideal. Since the Jacobson
radical of an Artinian ring is the largest nilpotent ideal, we have B · Jac(A) = Jac(A).

The last lemma, which had been proven first by Linchenko for Hopf actions and then
by Nikshych for weak Hopf actions allows us to show the stability of the Jacobson radical of
an algebra A which satisfies a polynomial identity and on which act some operator algebra
B which is finitely generated over A. The hypotheses of the following theorem allow the
reduction to finite-dimensional factors.

Theorem 2.2. Let L(A) ⊆ B ⊆ Endk(A) over some field k of characteristic 0 with B being
finitely generated as right A-module. Suppose that for all ψ ∈ B there exist n ≥ 1 and elements
ψ1
1 , . . . , ψ

1
m, ψ

2
1 , . . . , ψ

2
m ∈ B satisfying

L
(〈
ψ, a

〉)
=

m∑

i=1

ψ1
i ◦ L(a) ◦ ψ2

i ,
m∑

i=1

ψ2
i ◦ ψ1

i ∈ L(A) (2.5)

for any a ∈ A. If A satisfies a polynomial identity or if k is an uncountable algebraically closed field,
A countably generated and all left primitive factor rings of A are Artinian, then B · I ⊆ Jac(A) for all
nil ideals I of A.

Proof. Let I be a nil ideal. It is enough to show that (B ·I)V = 0 for all simple leftA-modules V ,
then B · I ⊆ Jac(A). Let V be a simple left A-module and P = AnnA(V ) be its annihilator. If k
is an uncountable algebraically closed field andA is countably generated, then it satisfies the
Nullstellensatz, hence Endk(V ) = k (see [10, 9.1.8]). If primitive factors ofA are Artinian, then
by the Weddeburn-Artin Theorem A/P 
 Mn(k) for some n, hence V is a finite-dimensional
simple left A-module. On the other hand, if A satisfies a polynomial identity, then A/P 

Mn(D) where D is a finite-dimensional division algebra over F = Z(A/P) by Kaplansky’s
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theorem [10, 13.3.8]. Tensoring A by F yields an F-algebra Ã := A ⊗ F with F-action on the
right. Then

L
(
Ã
)
= L(A) ⊗ F ⊆ B ⊗ F ⊆ Endk(A) ⊗ F ⊆ EndF(A ⊗ F) = EndF

(
Ã
)
. (2.6)

Moreover V is a finite-dimensional simple left Ã-module since AnnÃ(V ) = P ⊗ F =: P̃ and
Ã/P̃ 
Mn(D) is finite dimensional over F. Note also that the nil ideal I extends to a nil ideal
Ĩ := I ⊗ F since by [11, Theorem 5] I is a locally nilpotent algebra and hence any element
∑m

i=1 ai ⊗ fi lies in a nilpotent finitely generated subalgebra generated by the ai’s and F.
To summarize, our hypothesis on A allows us to consider V to be a finite dimensional

simple left A-module, where A and B are algebras over some field k of characteristic 0.
Denote by W = B⊗AV the induced left B-module. Since BA is finitely generated and V is
finite dimensional, W is finite dimensional. Note that the left B-action on W is given by
ψ · (φ ⊗ v) := (ψ ◦ φ) ⊗ v. Let Q = AnnA(W). Then Q is B-stable, because if a ∈ Q and
ψ ∈ B, then by hypothesis there exist elements ψ1

1 , . . . , ψ
1
m, ψ

2
1 , . . . , ψ

2
m ∈ B satisfying (2.5).

Thus for any w = φ ⊗ v ∈W we have

〈
ψ, a

〉 · (φ ⊗ v) =
(
L
(〈
ψ, a

〉) ◦ φ) ⊗ v

=
m∑

i=1

ψ1
i ◦ L(a) ◦ ψ2

i ◦ φ ⊗ v

=
m∑

i=1

ψ1
i ·

(
a ·

(
ψ2
i ·w

))
= 0,

(2.7)

since ψ2
i ·w ∈W and a ·W = 0. Hence B ·Q ⊆ Q. Let QB = AnnB(A/Q). Then

A

Q

 L

(
A

Q

)

⊆ B

QB
⊆ Endk

(
A

Q

)

. (2.8)

Since W is finite dimensional, A/Q is finite dimensional. Note that V is a simple left A/Q-
module. Any nil ideal I of A yields a nil ideal (I + Q)/Q of A/Q. Moreover every element
ψ +QB ∈ B/QB satisfies (2.5). By Lemma 2.1, ((B · I) +Q)/Q = B/QB · (I +Q)/Q is included
in Jac(A/Q). Thus

(B · I)V =
(
B

QB
· (I +Q)

Q

)

· V ⊆ Jac
(
A

Q

)

· V = 0. (2.9)

Hence B · I ⊆ Jac(A) for any nil ideal I of A.

3. Weak Hopf Actions on Algebras Satisfying a Polynomial Identity

Before we apply the results from the previous section, we recall the definition of weak Hopf
algebras (or quantum groupoids) as introduced by Böhm et al. in [1].
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Definition 3.1. An associative k-algebra H with multiplication m and unit 1 which is also a
coassociative coalgebra with comultiplication Δ and counit ε is called a weak Hopf algebra if
it satisfies the following properties:

(1) the comultiplication is multiplicative, that is, for all g, h ∈ H:

Δ
(
gh

)
= Δ

(
g
)
Δ(h), (3.1)

(2) the unit and counit satisfy:

(Δ ⊗ id)Δ(1) = (Δ(1) ⊗ 1)(1 ⊗Δ(1)) = (1 ⊗Δ(1))(Δ(1) ⊗ 1),

ε
(
fgh

)
= ε

(
fg1

)
ε
(
g2h

)
= ε

(
fg2

)
ε
(
g1h

)
,

(3.2)

(3) there exists a linear map S : A → A, called antipode, such that

h1S(h2) = (ε ⊗ id)(Δ(1)(h ⊗ 1)) =: εt(h),

S(h1)h2 = (id ⊗ ε)((1 ⊗ h)Δ(1)) =: εs(h),

S(h) = S(h1)h2S(h3).

(3.3)

Note that we will use Sweedler’s notation for the comultiplication with suppressed
summation symbol.

The image of εt and εs are subalgebrasHt andHs ofH which are separable over k [15,
2.3.4] and their images commute with each other. Those subalgebras are also characterized
byHt = {h ∈ H : Δ(h) = 11h ⊗ 12}, respectively,Hs = {h ∈ H : Δ(h) = 11 ⊗ 12h}.

A leftH-module algebraA over aweakHopf algebraH is an associative unital algebra
A such that A is a leftH-module and for all a, b ∈ A, h ∈ H:

h · (ab) = (h1 · a)(h2 · b), h · 1A = εt(h) · 1A. (3.4)

Let A be a left H-module algebra over a weak Hopf algebra H and let λ be the ring
homomorphism from H to Endk(A) that defines the left module structure on A, that is,
〈λ(h), a〉 := h · a for all h ∈ H,a ∈ A. Property (3.4) of the definition above can be interpreted
as an intertwining relation λ(h) ◦ L(a) = L(h1 · a) ◦ λ(h2) of left multiplications L(a) and left
H-actions λ(h).

The following properties are now deduced from the axioms.

Lemma 3.2. Let A be a leftH-module algebra over a weak Hopf algebraH. Then

(1) for all z ∈ Ht : λ(z) = L(z · 1A) and for all z ∈ Hs : λ(z) = R(z · 1A),
(2) for all h ∈ H,a ∈ A : L(h · a) = λ(h1) ◦ L(a) ◦ λ(S(h2)),
(3) if S2 = id, then λ(S(h2)) ◦ λ(h1) ∈ L(A) for all h ∈ H.
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Proof. (1) Let z ∈ Ht. Since Δ(z) = 11z ⊗ 12, we have for all a ∈ A:

z · a = z · (1Aa) = (11z · 1A)(12 · a) = 1H · ((z · 1A)a) = (z · 1A)a. (3.5)

The proof of the second statement is analogous.
(2) For h ∈ H,a, x ∈ Awe have

(h · a)x = (h1 · a)(εt(h2) · 1A)x
= (h1 · a)(εt(h2) · x) = (h1 · a)(h2S(h3) · x) = h1 · (a(S(h3) · x)).

(3.6)

(3) Suppose S2 = id, then S(εs(h)) = S(h2)h1 and as S(Hs) ⊆ Ht, we have using (1):

λ(S(h2)) ◦ λ(h1) = λ(S(εs(h))) = L(S(εs(h)) · 1A) ∈ L(A). (3.7)

We say that a weak Hopf algebra H is involutive if its antipode is an involution.
Any groupoid algebra is an involutive weak Hopf algebra. Moreover any semisimple Hopf
algebra over a field of characteristic zero is involutive. Say that H acts finitely on a left H-
module algebra A if the image of λ : H → Endk(A) is finite dimensional. The following
statement follows from the last lemma and Theorem 2.2.

Theorem 3.3. Let H be an involutive weak Hopf algebra over a field k of characteristic zero acting
finitely on a left H-module algebra A. If A satisfies a polynomial identity or if k is an uncountable
algebraically closed field,A is countably generated and all left primitive factor rings ofA are Artinian,
then the Jacobson radical of A isH-stable.

Proof. Let λ : H → Endk(A) be the ring homomorphism inducing the left H-module
structure on A. Denote by B the subalgebra of Endk(A) generated by L(A) and λ(H). Let
h1, . . . , hm be elements ofH such that {λ(h1), . . . , λ(hm)} forms a basis of λ(H). We claim that
any element of B is of the form

∑m
i=1 λ(hi) ◦ L(ai) for some ai ∈ A. It is enough to show

L(A)λ(H) ⊆ λ(H)L(A). So take elements h ∈ H and a, b ∈ A. Then using Lemma 3.2(2),
S−1 = S and S(Ht) = Hs we have

h2 · ((S(h1) · a)b) = (h2S(h1) · a)(h3 · b)
= (S(εt(h1)) · a)(h2 · b) = a(εt(h1) · 1A)(h2 · b) = a(h · b).

(3.8)

This shows the intertwining relation L(a) ◦ λ(h) = λ(h2) ◦ L(S(h1) · a) in B which yields that
B is finitely generated as a right A-module. By the definition of module algebras, we also
have that λ(h) ◦ L(a) = L(h1 · a) ◦ λ(h2). Hence λ(H)L(A) = L(A)λ(H). For any a ∈ A and
ψ =

∑m
i=1 L(ai) ◦ λ(hi) ∈ B we have by Lemma 3.2(3) and by (3.8):

L
(〈
ψ, a

〉)
=
∑

L(ai) ◦ L(〈hi, a〉)

=
∑

L(ai) ◦ λ(hi1) ◦ L(a) ◦ λ(S(hi2))

=
∑

λ(hi2) ◦ L((S(hi1) · ai)) ◦ L(a) ◦ λ(S(hi3)) =
∑

j

ψ1
j ◦ L(a) ◦ ψ2

j

(3.9)
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for ψ1
j = λ(hi2) ◦ L(S(hi1) · ai), ψ2

j = λ(S(hi3), and some appropriate choice of indices j.
Moreover

∑
ψ2
j ◦ ψ1

j =
∑

λ(S(hi3)) ◦ λ(hi2) ◦ L(S(hi1) · ai) =
∑

L
(
yhi2

) ◦ L(S(hi1) · ai) ∈ L(A) (3.10)

for some elements yhi2 ∈ A that exist by Lemma 3.2(4). Therefore the hypotheses of
Theorem 2.2 are fulfilled and the statement follows.

3.1. Smash Products of Weak Hopf Actions

Recall that the smash product A#H of a left H-module algebra A and a weak Hopf algebra
H is defined on the tensor product A⊗HtH where A is considered a right Ht-module by
a · z = a(z · 1A) for a ∈ A, z ∈ Ht. The (k-linear) dual H∗ of H becomes also a weak Hopf
algebra and acts on A#H by φ · (a#h) := a#φ(⇀ h), where φ ⇀ h = h1〈φ, h2〉. Using the
Montgomery-Blattner duality theorem for weak Hopf algebras proven by Nikshych we have
the following.

Lemma 3.4. Let H be a finite-dimensional weak Hopf algebra and A a left H-module algebra.
Then A#H is a finitely generated projective right A-module and A#H#H∗ 
 eMn(A)e for some
idempotent e ∈Mn(A) whereMn(A) denotes the ring of n × n-matrixes for some number n > 0.

Proof. By [14, Theorem 3.3] A#H#H∗ 
 End(A#HA). Since Ht is a separable k-algebra, it is
semisimple Artinian. Hence H is a (finitely generated) projective right Ht-module and H is
a direct summand of Hn

t for some n > 0. Moreover it follows from the proof of Lemma 3.2
thatA#H = (1#H)(A#1). ThusH⊗HtA 
 A#H as rightA-modules by h⊗a �→ (1#h)(a#1). On
the other handH⊗HtA is a direct summand ofHn

t ⊗HtA 
 An as rightA-module. HenceA#H
is a projective right A-module of rank n and End(A#H)A 
 eMn(A)e for some idempotent
e ∈Mn(A).

3.2. Semiprime Smash Products for Weak Hopf Actions

We can now transfer Linchenko and Montgomery’s result [7, Theorem 3.4] on the
semiprimness of smash products to weak Hopf actions.

Theorem 3.5. Let A be a left H-module algebra over a finite dimensional involutive weak Hopf
algebra H over a field of characteristic zero. If A is semiprime and satisfies a polynomial identity,
then A#H is semiprime.

Proof. Set B = A#H#H∗. Note that H∗ is also involutive since its antipode is defined by
〈S∗(φ), h〉 := 〈φ, S(h)〉 for all φ ∈ H∗, h ∈ H. By [12, Corollary 6.5]H∗ is semisimple and by
[1, 3.13] there exists a normalized left integral Λ ∈ H∗. This implies that A#H is a projective
left B-module as the left B-linear map A#H → B with a#h �→ a#h#Λ splits the projection
B → A#H given by a#h#φ �→ a#h(φ ⇀ 1).

First suppose that Jac(A) = 0. By Lemma 3.4, Jac(B) 
 eMn(Jac(A))e = 0 for some
idempotent e. This implies also that RadB(A#H) = 0 as well, since A#H is supposed to be
a projective left B-module. Recall that the radical Rad(M) of a moduleM is the intersection
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of all maximal submodules ofM or equivalently the sum of all small submodules, that is, of
those submodulesN ofM such thatN + L/=M for all L/=M.

Since A#H is a finite extension of A, also A#H satisfies a polynomial identity and
since H∗ is finite dimensional it acts finitely on A#H. Thus Theorem 3.3 applies and for any
nil ideal I of A#H we have B · I ⊆ Jac(A#H). On the other hand any B-submodule N of
Jac(A#H) is contained in RadB(A#H), which is zero. Hence I = 0 and A#H is semiprime.

In general, if A is semiprime, we can extend theH-action of A to the polynomial ring
A[x] by identifyingA[x]withA⊗HtHt[x], which is a leftH-module algebra, whereH acts on
x by h · x = (εt(h) · 1A)x. Since A is semiprime, satisfying a polynomial identity, Jac(A[x]) =
0 by [13]. Moreover A[x] also satisfies a polynomial identity and by the argument above
A[x]#H is semiprime. As any ideal I of A#H can be extended to an ideal I[x] of A#H[x] =
A[x]#H, also A#H is semiprime.
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