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Bonome et al., 1997, provided an algebraic characterization for an indefinite Sasakian manifold
to reduce to a space of constant φ-holomorphic sectional curvature. In this present paper, we
generalize the same characterization for indefinite g · f · f-space forms.

1. Introduction

For an almost Hermitian manifold (M2n, g, J) with dim(M) = 2n > 4, Tanno [1] has proved
the following.

Theorem 1.1. Let dim(M) = 2n > 4, and assume that almost Hermitian manifold (M2n, g, J)
satisfies

R(JX, JY, JZ, JX) = R(X,Y,Z,X) (1.1)

for every tangent vectorX, Y , andZ. Then (M2n, g, J) has a constant holomorphic sectional curvature
at x if and only if

R(X, JX)X is proportional to JX (1.2)

for every tangent vector X at x ∈ M.

Tanno [1] has also proved an analogous theorem for Sasakian manifolds as follows.
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Theorem 1.2. A Sasakian manifold ≥5 has a constant φ-sectional curvature if and only if

R
(
X,φX

)
X is proportional to φX (1.3)

for every tangent vector X such that g(X, ξ) = 0.

Nagaich [2] has proved the generalized version of Theorem 1.1, for indefinite almost
Hermitian manifolds as follows.

Theorem 1.3. Let (M2n, g, J) (n > 2) be an indefinite almost Hermitian manifold that satisfies (1.1),
then (M2n, g, J) has a constant holomorphic sectional curvature at x if and only if

R(X, JX)X is proportional to JX (1.4)

for every tangent vector X at x ∈ M.

Bonome et al. [3] generalized Theorem 1.2 for an indefinite Sasakian manifold as fol-
lows.

Theorem 1.4. Let (M2n+1, φ, η, ξ, g) (n ≥ 2) be an indefinite Sasakian manifold. Then M2n+1 has a
constant φ-sectional curvature if and only if

R
(
X,φX

)
X is proportional to φX (1.5)

for every vector field X such that g(X, ξ) = 0.

In this paper, we generalize Theorem 1.4 for an indefinite generalized g · f · f-space
form by proving the following.

Theorem 1.5. Let (M
2n+r

, F1, F2,F) be an indefinite generalized g · f · f-space form. ThenM
2n+r

is
of constant φ-sectional curvature if and only if

R
(
X,φX

)
X is proportional to φX (1.6)

for every vector field X such that g(X, ξα) = 0, for any α ∈ {1, . . . , r}.

2. Preliminaries

A manifold M is called a globally framed f-manifold (or g · f · f-manifold) if it is endowed with
a nonnull (1, 1)-tensor field φ of constant rank, such that kerφ is parallelizable; that is, there

exist global vector fields ξα, α ∈ {1, . . . , r}, with their dual 1-forms ηα, satisfying φ
2
= −I +

∑r
α=1 η

α ⊗ ξα and ηα(ξβ) = δα
β
.
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The g · f · f-manifold (M
2n+r

, φ, ξα, η
α), α ∈ {1, . . . , r}, is said to be an indefinite metric

g · f · f-manifold if g is a semi-Riemannian metric with index ν (0 < ν < 2n+ r) satisfying the
following compatibility condition:

g
(
φX, φY

)
= g(X,Y ) −

r∑

α=1

εαη
α(X)ηα(Y ), (2.1)

for any X,Y ∈ Γ(TM), being εα = ±1 according to whether ξα is spacelike or timelike. Then,
for any α ∈ {1, . . . , r}, one has ηα(X) = εαg(X, ξα). Following the notations in [4, 5], we
adopt the curvature tensor R, and thus we have R(X,Y,Z) = ∇X∇YZ−∇Y∇XZ−∇[X,Y ]Z and
R(X,Y,Z,W) = g(R(Z,W, Y ), X), for any X, Y , Z, W ∈ Γ(TM).

We recall that, as proved in [6], the Levi-Civita connection ∇ of an indefinite g · f · f-
manifold satisfies the following formula:

2g
((

∇Xφ
)
Y,Z

)
= 3dΦ

(
X,φY, φZ

)
− 3dΦ(X,Y,Z)

+ g
(
N(Y,Z), φX

)
+ εαN

φ
α (Y,Z)ηα(X)

+ 2εαdη
α
(
φY,X

)
ηα(Z) − 2εαdη

α
(
φZ,X

)
ηα(Y ),

(2.2)

where Nφ
α is given byN

φ
α (X,Y ) = 2dηα(φX, Y ) − 2dηα(φY,X).

An indefinite metric g · f · f-manifold is called an indefinite S-manifold if it is normal
and dηα = Φ, for any α ∈ {1, . . . , r}, where Φ(X,Y ) = g(X,φY ) for any X,Y ∈ Γ(TM). The
normality condition is expressed by the vanishing of the tensor fieldN = Nφ+

∑r
α=1 2dη

α⊗ξα,
Nφ being the Nijenhuis torsion of φ.

Furthermore, the Levi-Civita connection of an indefinite S-manifold satisfies

(
∇Xφ

)
Y = g

(
φX, φY

)
ξ + η(Y )φ

2
(X), (2.3)

where ξ =
∑r

α=1 ξα and η =
∑r

α=1 εαη
α. We recall that ∇Xξα = −εαφX and kerφ is an integrable

flat distribution since ∇ξα
ξβ = 0 (see more details in [6]).

A plane section in TpM is a φ-holomorphic section if there exists a vector X ∈ TpM

orthogonal to ξ1, . . . , ξr such that {X,φX} span the section. The sectional curvature of a φ-
holomorphic section, denoted by c(X) = R(X,φX, φX,X), is called a φ-holomorphic sectional
curvature.
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Proposition 2.1 (see [7]). An indefinite Sasakian manifold (M
2n+1

, φ, ξ, η, g) has φ-sectional cur-
vature c if and only if its curvature tensor verifies

R(X,Y )Z =
(c + 3)

4
{
g(Y,Z)X − g(X,Z)Y

}

+
(c − 1)

4

{
Φ(X,Z)φY −Φ(Y,Z)φX + 2Φ(X,Y ) φZ

− g(Z, Y )η(X)ξ + g(Z,X)η(Y )ξ − η(Y )η(Z)X + η(Z)η(X)Y
}

(2.4)

for any vector fields X,Y,Z,W ∈ Γ(TM).

A Sasakian manifold M
2n+1

with constant φ-sectional curvature c ∈ R is called a Sasakian

space form, denoted byM
2n+1

(c).

Definition 2.2. An almost contact metric manifold (M
2n+1

, φ, ξ, η, g) is an indefinite generalized

Sasakian space form, denoted by M
2n+1

(f1, f2, and f3), if it admits three smooth functions f1,
f2, f3 such that its curvature tensor field verifies

R(X,Y )Z = f1
{
g(Y,Z)X − g(X,Z)Y

}

+ f2
{
Φ(X,Z)φY −Φ(Y,Z)φX + 2Φ(X,Y )φZ

}

+ f3
{
−g(Z, Y )η(X)ξ + g(Z,X)η(Y )ξ

− η(Y )η(Z)X + η(Z)η(X)Y
}

(2.5)

for any vector fields X,Y,Z,W ∈ Γ(TM).

Remark 2.3. Any indefinite generalized Sasakian space form has φ-sectional curvature c =
f1 + 3f2. Indeed, f1 = (c + 3)/4 and f2 = f3 = (c − 1)/4.

Proposition 2.4 (see [6]). An indefinite S-manifold M
2n+r

has φ-sectional curvature c if and only
if its curvature tensor verifies

R(X,Y )Z =
(c + 3ε)

4

{
g
(
φX, φZ

)
φ
2
Y − g

(
φY, φZ

)
φ
2
X

}

+
(c − ε)

4

{
Φ(Z, Y )φX −Φ(Z,X)φY + 2Φ(X,Y )φZ

}

+
{
η(Z)η(X)φ

2
Y − η(Y )η(Z)φ

2
X + g

(
φZ, φY

)
η(X)ξ − g

(
φZ, φX

)
η(Y )ξ

}

(2.6)

for any vector fields X,Y,Z,W ∈ Γ(TM) and ε =
∑

εα.
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An indefinite S-manifoldM
2n+r

with constant φ-sectional curvature c ∈ R is called a S-space
form, denoted byM

2n+r
(c). One remarks that for r = 1 (2.6) reduces to (2.4).

3. An Indefinite Generalized g · f · f-Manifold

Let F denote any set of smooth functions Fij on M
2n+r

such that Fij = Fji for any i, j ∈
{1, . . . , r}.

Definition 3.1. An indefinite generalized g · f · f-space-form, denoted by (M
2n+r

, F1, F2,F), is an
indefinite g · f · f-manifold (M

2n+r
, φ, ξα, η

α, g) which admits smooth function F1, F2,F such
that its curvature tensor field verifies

R(X,Y )Z = F1

{
g
(
φX, φZ

)
φ
2
Y − g

(
φY, φZ

)
φ
2
X

}

+ F2

{
Φ(Z, Y )φX −Φ(Z,X)φY + 2Φ(X,Y )φZ

}

+
r∑

α,β=1

Fαβ

{
ηα(X)ηβ(Z)φ

2
Y − ηα(Y )ηβ(Z)φ

2
X

+ g
(
φZ, φY

)
ηα(X)ξβ − g

(
φZ, φX

)
ηα(Y )ξβ

}

(3.1)

for any vector fields X,Y,Z,W ∈ Γ(TM).

For r = 1, we obtain an indefinite Sasakian space form M
2n+1

(f1, f2, f3) with f1 = F1,
f2 = F2, and f3 = F1 − F11. In particular, if the given structure is Sasakian, (3.1) holds with
F11 = 1, F1 = (c + 3)/4, F3 = (c − 1)/4, and f3 = F1 − F11 = (c − 1)/4 = f2.

Theorem 3.2. Let (M
2n+r

, F1, F2,F) be an indefinite generalized g · f · f-space form. ThenM
2n+r

is
of constant φ-sectional curvature if and only if

R
(
X,φX

)
X is proportional to φX (3.2)

for every vector field X such that g(X, ξα) = 0, for any α ∈ {1, . . . , r}.

Proof. Let (M
2n+r

, F1, F2,F) be an indefinite generalized g · f · f-space form. To prove the
theorem for n ≥ 2, we will consider cases when n = 2 and when n > 2, that is, when n ≥ 3.

Case 1 (g(X,X) = g(Y, Y )). The proof is similar as given by Lee and Jin [8], so we drop the
proof.

Case 2 (g(X,X) = −g(Y, Y )). Here, if X is spacelike, then Y is timelike or vice versa. First of
all, assume that M is of constant φ-holomorphic sectional curvature. Then (3.1) gives

R
(
X,φX

)
X = {F1 + 3F2}φX = cφX. (3.3)
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Conversely, let {X,Y} be an orthonormal pair of tangent vectors such that g(φX, Y ) =
g(X,Y ) = g(Y, ξα) = 0, α ∈ {1, . . . , r}, and n ≥ 3. Then Ẍ = (X+iY )/

√
2 and Ÿ = (iφX+φY )/

√
2

also form an orthonormal pair of tangent vectors such that g(φẌ, Ÿ ) = 0. Then (3.1) and
curvature properties give

0 = R
(
Ẍ, φẌ, Ÿ , Ẍ

)

= g
(
R
(
X,φX

)
X,φX

)
− g

(
R
(
Y, φY

)
Y, φY

)

− 2g
(
R
(
X,φY

)
Y, φY

)
+ 2g

(
R
(
X,φX

)
Y, φX

)
.

(3.4)

From the assumption, we see that the last two terms of the right-hand side vanish. Therefore,
we get c(X) = c(Y ).

Now, if span{U,V } is φ-holomorphic, then for φU = aU + bV , where a and b are
constant, we have

span
{
U,φU

}
= span{U,aU + bV } = span{U,V }. (3.5)

Similarly,

span
{
V, φV

}
= span{U,V }, span

{
U,φU

}
= span

{
V, φV

}
. (3.6)

These imply

R
(
U,φU,U, φU

)
= R

(
V, φV, V, φV

)
, or c(U) = c(V ). (3.7)

If span{U,V } is not φ-holomorphic section, then we can choose unit vectors X ∈
span{U,φU}⊥ and Y ∈ span{V, φV }⊥ such that span{X,Y} is φ-holomorphic. Thus we get

c(U) = c(X) = c(Y ) = c(V ), (3.8)

which shows that any φ-holomorphic section has the same φ-holomorphic sectional curva-
ture.
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Now, let n = 2, and let {X,Y} be a set of orthonormal vectors such that g(X,X) =
−g(Y, Y ) and g(X,φX) = 0, and we have c(X) = c(Y ) as before. Using the property (3.2), we
get

R
(
X,φX

)
X = −{F1 + 3F2}φX = −c(X)φX,

R
(
X,φX

)
Y = −2F2φY,

R
(
X,φY

)
X = −F1φY,

R
(
X,φY

)
Y = F2φX,

R
(
Y, φX

)
Y = F1φX,

R
(
Y, φX

)
X = −F2φY,

R
(
Y, φY

)
X = 2F2φX,

R
(
Y, φY

)
Y = {F1 + 3F2}φ = c(Y )φY = c(X)φY.

(3.9)

Now, define X̂ = aX + bY such that a2 − b2 = 1 and a2 /= b2. Using the above relations, we get

R
(
X̂, φX̂

)
X̂ = C1φX + C2φY. (3.10)

Therefore, we have

C1 = −a3c(X) + ab2c(X),

C2 = b3c(X) − a2bc(X).
(3.11)

On the other hand,

R
(
X̂, φX̂

)
X̂ = c

(
X̂
)
φX̂ = c

(
X̂
){

aφX + bφY
}
. (3.12)

Comparing (3.11) and (3.12), we get

−a2c(X) + b2c(X) = c
(
X̂
)
,

b2c(X) − a2c(X) = c
(
X̂
)
.

(3.13)
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On solving (3.13), we have

c(X) = c
(
X̂
)
. (3.14)

Similary, we can prove

c(Y ) = c
(
Ŷ
)
. (3.15)

Therefore, M has constant φ-holomorphic sectional curvature.

Case 3 (g(U,U) = 0). It is enough to show a sufficient condition. Let Yα be a unit vector
tangent to ξα, for any α ∈ {1, . . . , r}, such that g(Yα, Yα) = −g(ξα, ξα) = −εα, and consider the
null vector Uα = ξα + Y . From (3.2),

c(Uα)φUα = c(Uα)φ(ξα + Yα)

= R
(
ξα + Yα, φ(ξα + Yα)

)
(ξα + Yα).

(3.16)

Therefore,

c(Uα) = g
(
c(Uα)φ(ξα + Yα), εαφYα

)

= εαg
(
R
(
ξα + Yα, φ(ξα + Yα)

)
(ξα + Yα), φYα

)

= εαg
(
R
(
ξα, φξα

)
ξα, φYα

)
+ εαg

(
R
(
ξα, φYα

)
ξα, φYα

)

+ εαg
(
R
(
ξα, φξα

)
Yα, φYα

)
+ εαg

(
R
(
ξα, φYα

)
Yα, φYα

)

+ εαg
(
R
(
Yα, φξα

)
ξα, φYα

)
+ εαg

(
R
(
Yα, φYα

)
ξα, φYα

)

+ εαg
(
R
(
Yα, φξα

)
Yα, φYα

)
+ εαg

(
R
(
Yα, φYα

)
Yα, φYα

)

+ εαg
(
R
(
ξα, φYα

)
ξα, φYα

)
+ 2εαg

(
R
(
Yα, φYα

)
ξα, φYα

)

+ εαg
(
R
(
Yα, φYα

)
Yα, φYα

)

= εαg
(
R
(
Yα, φYα

)
Yα, φYα

)
.

(3.17)

From Cases 1 and 2, depending on the sign of εα, g(R(Yα, φYα)Yα, φYα) = εαc(Yα) is constant,
and hence c(Uα) = c(Yα) is constant.
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Theorem 3.3 (see [9]). Let (M
2n+r

, φ, ηα, ξα, g)(n ≥ 2) be an indefinite S-manifold. ThenM2n+r is
of constant φ-sectional curvature if and only if

R
(
X,φX

)
X is proportional to φX (3.18)

for every vector field X such that g(X, ξα) = 0, for any α ∈ {1, . . . , r}.

Proof. An S-space form is a special case of g · f · f-space form, and hence the proof follows
from Theorem 3.2 and (2.6).

Theorem 3.4 (cf. Bonome et al. [3]). Let (M2n+1, φ, η, ξ, g)(n ≥ 2) be an indefinite Sasakian
manifold. ThenM2n+1 is of constant φ-sectional curvature if and only if

R
(
X,φX

)
X is proportional to φX (3.19)

for every vector field X such that g(X, ξ) = 0.

Proof. When r = 1, an indefinite S-space formM2n+1(c) reduces to a Sasakian space form. The
proof follows from (2.4) and Theorem 3.3.
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