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we propose a new high-order approximation for the solution of two-space-dimensional quasilinear
hyperbolic partial differential equation of the form utt = A(x, y, t, u)uxx + B(x, y, t, u)uyy + g(x, y,
t, u, ux, uy, ut), 0 < x, y < 1, t > 0 subject to appropriate initial and Dirichlet boundary conditions ,
where k > 0 and h > 0 are mesh sizes in time and space directions, respectively. We use only five
evaluations of the function g as compared to seven evaluations of the same function discussed by
(Mohanty et al., 1996 and 2001). We describe the derivation procedure in details and also discuss
how our formulation is able to handle the wave equation in polar coordinates. The proposed
method when applied to a linear hyperbolic equation is also shown to be unconditionally stable.
Some examples and their numerical results are provided to justify the usefulness of the proposed
method.

1. Introduction

We consider the following two-space dimensional quasilinear hyperbolic partial differential
equation:

utt = A
(
x, y, t, u

)
uxx + B

(
x, y, t, u

)
uyy + g

(
x, y, t, u, ux, uy, ut

)
, 0 < x, y < 1, t > 0

(1.1)

subject to the initial conditions

u
(
x, y, 0

)
= φ

(
x, y

)
, ut

(
x, y, 0

)
= ψ

(
x, y

)
, 0 ≤ x, y ≤ 1, (1.2)
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and the boundary conditions

u
(
0, y, t

)
= a0

(
y, t

)
, u

(
1, y, t

)
= a1

(
y, t

)
, 0 ≤ y ≤ 1, t ≥ 0, (1.3a)

u(x, 0, t) = b0(x, t), u(x, 1, t) = b1(x, t), 0 ≤ x ≤ 1, t ≥ 0, (1.3b)

where (1.1) is assumed to satisfy the hyperbolicity condition A(x, y, t, u) > 0 and
B(x, y, t, u) > 0 in the solution region Ω ≡ {(x, y, t) : 0 < x, y < 1, t > 0}. Further we assume
that u(x, y, t) ∈ C6, A(x, y, t, u), B(x, y, t, u) ∈ C4, and φ(x, y) and ψ(x, y) are sufficiently
differentiable function of as higher-order as possible.

Second-order quasilinear hyperbolic partial differential equation with appropriate
initial and boundary conditions serves as models in many branches of physics and
technology. Ciment and Leventhal [1, 2] have discussed operator compact implicit method to
solve wave equation. Using finite volume technique, Schwartzkopff et al. [3] have studied
high-order ADER schemes for first-order linear hyperbolic systems. Even much higher
order ADER finite volume schemes have been presented and analyzed by Schwartzkopff
et al. [4] on Cartesian meshes, and by Dumbser and Käser [5] on general two- and three-
dimensional unstructured meshes. In 1996, Mohanty et al. [6] have developed a high-
order numerical method for the solution of two-space dimensional second-order nonlinear
hyperbolic equation. Later, Mohanty et al. [7] have extended their technique to solve second-
order quasilinear hyperbolic equations. In both cases they have used seven evaluations of
the function g and 19-grid points. It has been shown that the linear schemes discussed
in [6, 7] are conditionally stable. In the recent past, many researchers (see [8–16]) have
developed unconditionally stable implicit finite difference methods for the solution of two-
space dimensional linear hyperbolic equations with significant first derivative terms. Most
recently, Mohanty and Singh [17] have derived a high accuracy numerical method based on
Numerov type discretization for the solution of one space dimensional nonlinear hyperbolic
equations, in which they have shown that the linear scheme is unconditionally stable.

In this paper, using nineteen grid-points, we derive a new compact three-level implicit
numerical method of accuracy two in time and four in space for the solution of two-
space dimensional quasilinear hyperbolic equation (1.1). In this method we require only
five evaluations of the function g as compared to seven evaluations of the same function
discussed in [6, 7]. In the next section, we give formulation of the method. In Section 3, we
give the complete derivation of the method. In Section 4, we discuss the application of the
proposed method to two-space dimensional wave equation in polar coordinates and discuss
the stability analysis. In this section, we modify our method in such a way that the solution
retains its order and accuracy everywhere in the vicinity of the singularity. In Section 5, we
discuss superstable method for two-space dimensional telegraphic equation. In Section 6,
we examine our new method over a set of linear and nonlinear second-order hyperbolic
equations whose exact solutions are known and compared the results with the results of other
known methods. Concluding remarks are given in Section 7.

2. Formulation of the Numerical Method

In this section, we aim to discuss a numerical method for the solution of nonlinear wave
equation:

utt = A
(
x, y, t

)
uxx + B

(
x, y, t

)
uyy + g

(
x, y, t, u, ux, uy, ut

)
, 0 < x, y < 1, t > 0. (2.1)
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Let h > 0 and k > 0 be the mesh spacing in the space and time directions, respectively.
We replace the solution region Ω = {(x, y, t) | 0 < x, y < 1, t > 0} by a set of grid points
(xl, ym, tj), where xl = lh, l = 0(1)N + 1, ym = mh, m = 0(1)N + 1, and tj = jk, 0 < j < J , N
and J being positive integers and (N + 1)h = 1. Let p = k/h > 0 be the mesh ratio parameter.
The exact values of u(x, y, t), A(x, y, t), and B(x, y, t) at the grid point (xl, ym, tj) are denoted
by Uj

l,m, A
j

l,m, and B
j

l,m, respectively. Similarly at the grid point (xl, ym, tj), we denote Aj
xl,m =

∂A
j

l,m
/∂x, A

j
yl,m = ∂Aj

l,m
/∂y,A

j
xxl,m = ∂2Aj

l,m
/∂x2, . . . and so forth. Let uj

l,m
be the approximate

value of u(x, y, t) at the same grid point.
At the grid point (xl, ym, tj), we consider the following approximations:

U
j

tl,m =

(
U
j+1
l,m −Uj−1

l,m

)

(2k)
, (2.2a)

U
j

tl±1,m =

(
U
j+1
l±1,m −Uj−1

l±1,m
)

(2k)
, (2.2b)

U
j

tl,m±1 =

(
U
j+1
l,m±1 −U

j−1
l,m±1

)

(2k)
, (2.2c)

U
j

ttl,m =

(
U
j+1
l,m − 2Uj

l,m +Uj−1
l,m

)

(k2)
, (2.2d)

U
j

ttl±1,m =

(
U
j+1
l±1,m − 2Uj

l±1,m +Uj−1
l±1,m

)

(k2)
, (2.2e)

U
j

ttl,m±1 =

(
U
j+1
l,m±1 − 2Uj

l,m±1 +U
j−1
l,m±1

)

(k2)
, (2.2f)

U
j

xl,m =

(
U
j

l+1,m −Uj

l−1,m
)

(2h)
, (2.3a)

U
j

xl±1,m =

(
±3Uj

l±1,m ∓ 4Uj

l,m ±Uj

l∓1,m
)

(2h)
, (2.3b)

U
j

xl,m±1 =

(
U
j

l+1,m±1 −U
j

l−1,m±1
)

(2h)
, (2.3c)

U
j

xxl,m =

(
U
j

l+1,m − 2Uj

l,m +Uj

l−1,m
)

(h2)
, (2.3d)

U
j

xxl,m±1 =

(
U
j

l+1,m±1 − 2Uj

l,m±1 +U
j

l−1,m±1
)

(h2)
, (2.3e)
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U
j

yl,m =

(
U
j

l,m+1 −U
j

l,m−1
)

(2h)
, (2.4a)

U
j

yl±1,m =

(
U
j

l±1,m+1 −U
j

l±1,m−1
)

(2h)
, (2.4b)

U
j

yl,m±1 =

(
±3Uj

l,m±1 ∓ 4Uj

l,m ±Uj

l,m∓1
)

(2h)
, (2.4c)

U
j

yyl,m =

(
U
j

l,m+1 − 2Uj

l,m
+Uj

l,m−1
)

(h2)
, (2.4d)

U
j

yyl±1,m =

(
U
j

l±1,m+1 − 2Uj

l±1,m +Uj

l±1,m−1
)

(h2)
, (2.4e)

G
j

l±1,m = g
(
xl±1, ym, tj ,U

j

l±1,m,U
j

xl±1,m , U
j

yl±1,m , U
j

tl±1,m

)
, (2.5a)

G
j

l,m±1 = g
(
xl, ym±1, tj , U

j

l,m±1, U
j

xl,m±1 , U
j

yl,m±1 , U
j

tl,m±1

)
, (2.5b)

U
j

xl,m = U
j

xl,m +
h

16Aj

l,m

(
G
j

l+1,m −Gj

l−1,m
)
− h

16Aj

l,m

(
U
j

ttl+1,m −Uj

ttl−1,m

)

+
hB

j

i,m

16Aj

l,m

(
U
j

yyl+1,m −Uj

yyl−1,m

)
+

h2

8Aj

l,m

(
A
j
xl,mU

j

xxl,m + Bjxl,mU
j

yyl,m

)
,

(2.6a)

U
j

yl,m = U
j

yl,m +
h

16Bj
l,m

(
G
j

l,m+1 −G
j

l,m−1
)
− h

16Bj
l,m

(
U
j

ttl,m+1
−Uj

ttl,m−1

)

+
hA

j

l,m

16Bj
l,m

(
U
j

xxl,m+1
−Uj

xxl,m−1

)
+

h2

8Bj
l,m

(
A
j
yl,mU

j

xxl,m + Bjyl,mU
j

yyl,m

)
,

(2.6b)

G
j

l,m = g
(
xl, ym, tj ,U

j

l,m,U
j

xl,m ,U
j

yl,m ,U
j

tl,m

)
. (2.7)
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Then at each grid point (xl, ym, tj), l,m = 1, 2, . . . ,N, j = 2, . . . , J , an approximation
with accuracy ofO(k2+k2h2+h4) for the solution of differential equation (2.1)may be written
as

Lu ≡ p2
⎡

⎣A
j

l,m
− h2

6

⎛

⎝A
j
xl,m

A
j

l,m

⎞

⎠A
j
xl,m − h2

6

⎛

⎝
B
j
yl,m

B
j

l,m

⎞

⎠A
j
yl,m +

h2

12
A
j
xxl,m +

h2

12
A
j
yyl,m

⎤

⎦δ2xU
j

l,m

+ p2
⎡

⎣B
j

l,m − h2

6

⎛

⎝A
j
xl,m

A
j

l,m

⎞

⎠B
j
xl,m − h2

6

⎛

⎝
B
j
yl,m

B
j

l,m

⎞

⎠B
j
yl,m +

h2

12
B
j
xxl,m +

h2

12
B
j
yyl,m

⎤

⎦δ2yU
j

l,m

+
hp2

12

⎡

⎣A
j
yl,m −

⎛

⎝
B
j
yl,m

B
j

l,m

⎞

⎠A
j

l,m

⎤

⎦
(
δ2x2μyδy

)
U
j

l,m

+
hp2

12

⎡

⎣B
j
xl,m −

⎛

⎝A
j
xl,m

A
j

l,m

⎞

⎠B
j

l,m

⎤

⎦
(
δ2y2μxδx

)
U
j

l,m
+
p2

12

[
A
j

l,m
+ Bj

l,m

]
δ2xδ

2
yU

j

l,m

=
k2

12

⎡

⎣

⎛

⎝1 − hA
j
xl,m

A
j

l,m

⎞

⎠U
j

ttl+1,m +

⎛

⎝1 +
hA

j
xl,m

A
j

l,m

⎞

⎠U
j

ttl−1,m +

⎛

⎝1 − hB
j
yl,m

B
j

l,m

⎞

⎠U
j

ttl,m+1

+

⎛

⎝1 +
hB

j
yl,m

B
j

l,m

⎞

⎠U
j

ttl,m−1 + 8U
j

ttl,m

⎤

⎦

− k2

12

⎡

⎣

⎛

⎝1 − hA
j
xl,m

A
j

l,m

⎞

⎠G
j

l+1,m +

⎛

⎝1 +
hA

j
xl,m

A
j

l,m

⎞

⎠G
j

l−1,m +

⎛

⎝1 − hB
j
yl,m

B
j

l,m

⎞

⎠G
j

l,m+1

+

⎛

⎝1 +
hB

j
yl,m

B
j

l,m

⎞

⎠G
j

l,m−1 + 8G
j

l,m

⎤

⎦ + T
j

l,m,

l = 1, 2, . . . ,N; m = 1, 2, . . . ,N; j = 1, 2, . . . , J,

(2.8)

where δxU
j

l,m
= (Uj

l+
1
2
,m

−Uj

l−
1
2
,m

), μxU
j

l,m
= (1/2)(Uj

l+1/2,m +Uj

l−(1/2),m), . . . and so forth and

T
j

l,m = O(k4 + k4h2 + k2h4).

3. Derivation Procedure of the Approximation

At the grid point (xl, ym, tj), let us denote

α
j

l,m =
(
∂g

∂Ux

)j

l,m

, β
j

l,m =

(
∂g

∂Uy

)j

l,m

. (3.1)
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Further at the grid point (xl, ym, tj), the exact solution valueUj

l,m satisfies

U
j
ttl,m

−A(
xl, ym, tj

)
U
j
xxl,m − B(xl, ym, tj

)
U
j
yyl,m

= g
(
xl, ym, tj ,U

j

l,m
,U

j
xl,m ,U

j
yl,m ,U

j
tl,m

)
≡ Gj

l,m

(
say

)
.

(3.2)

Using Taylor expansion about the grid point (xl, ym, tj), first we obtain

Lu =
k2

12

⎡

⎣

⎛

⎝1 − hA
j
xl,m

A
j

l,m

⎞

⎠U
j

ttl+1,m +

⎛

⎝1 +
hA

j
xl,m

A
j

l,m

⎞

⎠U
j

ttl−1,m +

⎛

⎝1 − hB
j
yl,m

B
j

l,m

⎞

⎠U
j

ttl,m+1

+

⎛

⎝1 +
hB

j
yl,m

B
j

l,m

⎞

⎠U
j

ttl,m−1 + 8U
j

ttl,m

⎤

⎦

− k2

12

⎡

⎣

⎛

⎝1 − hA
j
xl,m

A
j

l,m

⎞

⎠G
j

l+1,m +

⎛

⎝1 +
hA

j
xl,m

A
j

l,m

⎞

⎠G
j

l−1,m +

⎛

⎝1 − hB
j
yl,m

B
j

l,m

⎞

⎠G
j

l,m+1

+

⎛

⎝1 +
hB

j
yl,m

B
j

l,m

⎞

⎠G
j

l,m−1 + 8Gj

l,m

⎤

⎦ + O
(
k4 + k4h2 + k2h4

)
.

(3.3)

With the help of the approximations (2.2a)–(2.2e), and from (2.5a) and (2.5b), we
obtain

G
j

l±1,m = Gj

l±1,m − h2

3

∂3U
j

l,m

∂x3
α
j

l,m
+
h2

6

∂3U
j

l,m

∂y3
β
j

l,m
+O

(
k2 ± k2h ± h3 + h4

)
,

G
j

l,m±1 = G
j

l,m±1 +
h2

6

∂3U
j

l,m

∂x3
α
j

l,m
− h2

3

∂3U
j

l,m

∂y3
β
j

l,m
+O

(
k2 ± k2h ± h3 + h4

)
.

(3.4)

Now we define the following approximations:

U
j

xl,m = U
j

xl,m + a11h
(
G
j

l+1,m −Gj

l−1,m
)
+ a12h

(
U
j

ttl+1,m −Uj

ttl−1,m

)

+ a13h
(
U
j

yyl+1,m −Uj

yyl−1,m

)
+ h2

(
a14U

j

xxl,m + a15U
j

yyl,m

)
,

U
j

yl,m = U
j

yl,m + b11h
(
G
j

l,m+1 −G
j

l,m−1
)
+ b12h

(
U
j

ttl,m+1
−Uj

ttl,m−1

)

+ b13h
(
U
j

xxl,m+1
−Uj

xxl,m−1

)
+ h2

(
b14U

j

xxl,m + b15U
j

yyl,m

)
,

(3.5)

where a1i and b1i, i = 1, 2, . . . , 5, are free parameters to be determined.
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By using the approximations (2.2a)–(2.4e) and (3.4), from (3.5), we get

U
j

xl,m = Uj
xl,m +

h2

6
T1 +O

(
k2 + k2h2 + h4

)
,

U
j

yl,m = Uj
yl,m +

h2

6
T2 +O

(
k2 + k2h2 + h4

)
,

(3.6)

where

T1 =
(
1 − 12a11A

j

l,m

)
U
j
xxxl,m + 12(a11 + a12)U

j
ttxl,m

+ 12
(
−a11Bjl,m + a13

)
U
j
xyyl,m

+
(
6a14 − 12a11A

j
xl,m

)
U
j
xxl,m +

(
6a15 − 12a11B

j
xl,m

)
U
j
yyl,m

,

T2 =
(
1 − 12b11B

j

l,m

)
U
j
yyyl,m

+ 12(b11 + b12)U
j
ttyl,m

+ 12
(
−b11Aj

l,m
+ b13

)
U
j
xxyl,m

+
(
6b14 − 12b11A

j
yl,m

)
U
j
xxl,m +

(
6b15 − 12b11B

j
yl,m

)
U
j
yyl,m

.

(3.7)

Thus from (2.7), we obtain

G
j

l,m = Gj

l,m
+
h2

6
T1α

j

l,m
+
h2

6
T2β

j

l,m
+O

(
k2 + k2h2 + h4

)
. (3.8)

Finally by the help of the approximations (3.4) and (3.8), from (2.8) and (3.3), we get

T
j

l,m =
−k2h2
36

⎛

⎝
∂3U

j

l,m

∂x3
α
j

l,m +
∂3U

j

l,m

∂y3
β
j

l,m − 4
(
T1α

j

l,m + T2β
j

l,m

)
⎞

⎠ +O
(
k4 + k4h2 + k2h4

)
.

(3.9)

In order to obtain the difference approximation of O(k2 + k2h2 + h4) the coefficient of
k2h2 in (3.9)must be zero, which gives the values of parameters:

a11 =
1

16Aj

l,m

, a12 =
−1

16Aj

l,m

, a13 =
B
j

l,m

16Aj

l,m

, a14 =
A
j
xl,m

8Aj

l,m

, a15 =
B
j
xl,m

8Aj

l,m

,

b11 =
1

16Bj
l,m

, b12 =
−1

16Bj
l,m

, b13 =
A
j

l,m

16Bj
l,m

, b14 =
A
j
yl,m

8Bj
l,m

, b15 =
B
j
yl,m

8Bj
l,m

.

(3.10)

Thus we obtain the difference method ofO(k2 +k2h2 +h4) for the differential equation

(2.1) and the local truncation error reduces to T
j

l,m = O(k4 + k4h2 + k2h4).
Now we consider the numerical method of O(k2 + k2h2 + h4) for the solution of the

quasilinear hyperbolic equation (1.1). Whenever the coefficients are A = A(x, y, t, u) and
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B = B(x, y, t, u), the difference scheme (2.8) needs to be modified. For this purpose, we use
the following central differences:

A
j
xl,m =

(
A
j

l+1,m −Aj

l−1,m
)

(2h)
+O

(
h2

)
,

A
j
xxl,m =

(
A
j

l+1,m − 2Aj

l,m
+Aj

l−1,m
)

(h2)
+O

(
h2

)
,

A
j
yl,m =

(
A
j

l,m+1 −A
j

l,m−1
)

(2h)
+O

(
h2

)
,

A
j
yyl,m

=

(
A
j

l,m+1 − 2Aj

l,m
+Aj

l,m−1
)

(h2)
+O

(
h2

)
,

B
j
xl,m =

(
B
j

l+1,m − Bj
l−1,m

)

(2h)
+O

(
h2

)
,

B
j
xxl,m =

(
B
j

l+1,m − 2Bj
l,m

+ Bj
l−1,m

)

(h2)
+O

(
h2

)
,

B
j
yl,m =

(
B
j

l,m+1 − B
j

l,m−1
)

(2h)
+O

(
h2

)
,

B
j
yyl,m

=

(
B
j

l,m+1 − 2Bjl,m + Bjl,m−1
)

(h2)
+O

(
h2

)
,

(3.11)

where

A
j

l,m = A
(
xl, ym, tj ,U

j

l,m

)
, A

j

l±1,m = A
(
xl±1, ym, tj ,U

j

l±1,m
)
, A

j

l,m±1 = A
(
xl, ym±1, tj , U

j

l,m±1
)
,

B
j

l,m
= B

(
xl, ym, tj ,U

j

l,m

)
, B

j

l±1,m = B
(
xl±1, ym, tj ,U

j

l±1,m
)
, B

j

l,m±1 = B
(
xl, ym±1, tj , U

j

l,m±1
)
.

(3.12)

By the help of the approximations (3.11), it is easy to verify that

A
j

l,m
− h2

6

⎛

⎝A
j
xl,m

A
j

l,m

⎞

⎠A
j
xl,m − h2

6

⎛

⎝
B
j
yl,m

B
j

l,m

⎞

⎠A
j
yl,m +

h2

12
A
j
xxl,m +

h2

12
A
j
yyl,m

= Aj

l,m
− 1

24Aj

l,m

(
A
j

l+1,m −Aj

l−1,m
)2 − 1

24Bj
l,m

(
B
j

l,m+1 − B
j

l,m−1
)(
A
j

l,m+1 −A
j

l,m−1
)

+
1
12

(
A
j

l+1,m − 2Aj

l,m
+Aj

l−1,m
)
+

1
12

(
A
j

l,m+1 − 2Aj

l,m
+Aj

l,m−1
)
+O

(
h4

)
,
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B
j

l,m − h2

6

⎛

⎝A
j
xl,m

A
j

l,m

⎞

⎠B
j
xl,m − h2

6

⎛

⎝
B
j
yl,m

B
j

l,m

⎞

⎠B
j
yl,m +

h2

12
B
j
xxl,m +

h2

12
B
j
yyl,m

= Bj
l,m

− 1

24Bj
l,m

(
B
j

l,m+1 − B
j

l,m−1
)2 − 1

24Aj

l,m

(
A
j

l+1,m −Aj

l−1,m
)(
B
j

l+1,m − Bj
l−1,m

)

+
1
12

(
B
j

l+1,m − 2Bj
l,m

+ Bj
l−1,m

)
+

1
12

(
B
j

l,m+1 − 2Bj
l,m

+ Bj
l,m−1

)
+O

(
h4

)
, . . . , and so forth.

(3.13)

Thus substituting the central difference approximations (3.11) into (2.8), we obtain
the required numerical method ofO(k2 + k2h2 +h4) for the solution of quasilinear hyperbolic
partial differential equation (1.1).

Note that the initial and Dirichlet boundary conditions are given by (1.2), (1.3a) and
(1.3b), respectively. Incorporating the initial and boundary conditions, we can write the
method (2.8) in a block tridiagonal matrix form. If the differential equation (1.1) is linear, we
can solve the linear system using operator splitting method or, alternating direction implicit
method (see [18, 19]); in the nonlinear case, we can use Newton-Raphson iterative method
to solve the non-linear system (see [20–24]).

4. Stability Analysis

In this section, we aim to discuss a stable difference scheme for the two-space dimensional
linear hyperbolic equation with singular coefficients and ensure that the numerical method
developed here retains its order and accuracy.

Let us consider the equation of the following form:

utt = uxx + uyy +D(x)ux + f
(
x, y, t

)
, 0 < x, y < 1, t > 0. (4.1)

Applying the approximation (2.8) to the differential equation (4.1), we obtain

p2
[
δ2x + δ

2
y +

1
6
δ2xδ

2
y

]
U
j

l,m

=
k2

12

[
U
j

ttl+1,m +U
j

ttl−1,m +U
j

ttl,m+1
+U

j

ttl,m−1 + 8U
j

ttl,m

]

− k2

12

[
G
j

l+1,m +G
j

l−1,m +G
j

l,m+1 +G
j

l,m−1 + 8G
j

l,m

]
+O

(
k4 + k4h2 + k2h4

)

l = 1, 2, . . . ,N; m = 1, 2, . . . ,N; j = 2, 3, . . . , J,

(4.2)
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where we denote

Dl = D(xl), f
j

l,m = f
(
xl, ym, tj

)
,

G
j

l±1,m = Dl±1U
j

xl±1,m + fj
l±1,m,

G
j

l,m±1 = DlU
j

xl,m±1 + f
j

l,m±1,

G
j

l,m = DlU
j

xl,m + fj
l,m
.

(4.3)

Note that the linear scheme (4.2) is of O(k2 + k2h2 + h4) for the solution of differential
equation (4.1). However, the scheme (4.2) fails to compute at l = 1, if the coefficient D(x)
and/or the function f(x, y, t) contains the singular terms like 1/x, 1/x2, . . ., and so forth. We
overcome this difficulty bymodifying the method (4.2) in such a way that the solution retains
its order and accuracy everywhere in the vicinity of singularity x = 0.

We need the following approximations:

Dl±1 = Dl ± hDxl +
h2

2
Dxxl ±O

(
h3

)
,

f
j

l±1,m = fj
l,m

± hfjxl,m +
h2

2
f
j
xxl,m ±O

(
h3

)
,

f
j

l,m±1 = f
j

l,m ± hfjyl,m +
h2

2
f
j
yyl,m

±O
(
h3

)
.

(4.4)

Using the approximations (4.4) in the scheme (4.2) and neglecting local truncation
error, we get

[

1 +
1
12

(
δ2x + R0

(
2μxδx

))
+
δ2y

12

]

δ2t u
j

l,m

= p2
[
R1δ

2
x + R2

(
2μxδx

)
+ δ2y +

R0

6
δ2y

(
2μxδx

)
+
1
6
δ2xδ

2
y

]
u
j

l,m
+
∑

f,

(4.5)

where

R0 =
hDl

2
, R1 = 1 +

h2

12

(
2Dxl + (Dl)2

)
, R2 = R0 +

h3

24
(Dxxl +DlDxl),

∑
f =

k2

12

(
12fj

l,m
+ h2

(
f
j
xxl,m + fjyyl,m +Dlf

j
xl,m

))
.

(4.6)
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The previous scheme in product form may be written as

[
1 +

1
12

(
δ2x + R0

(
2μxδx

))
][

1 +
δ2y

12

]

δ2t u
j

l,m

= p2
[
R1δ

2
x + R2

(
2μxδx

)
+ δ2y +

R0

6
δ2y

(
2μxδx

)
+
1
6
δ2xδ

2
y

]
u
j

l,m
+
∑

f.

(4.7)

It is difficult to find the stability region for the scheme (4.7). In order to obtain a valid
stability region, we may modify the scheme (4.7) (see [23]) as

[
1 +

1
12

(
R1δ

2
x + R2

(
2μxδx

))
][

1 +
δ2y

12

]

δ2t u
j

l,m

= p2
[
R1δ

2
x + R2

(
2μxδx

)
+ δ2y +

1
6

(
R1δ

2
x + R2

(
2μxδx

))
δ2y

]
u
j

l,m
+
∑

f.

(4.8)

The additional terms added in (4.7) and (4.8) are of high orders and do not affect the
accuracy of the scheme.

For stability, we put uj
l,m

= AlBmξjeiβleiγm (where ξ = eiφ such that |ξ| = 1) in the
homogeneous part of the scheme (4.8), and we get

ξ − 2 + ξ−1 = −4 sin2φ

2
=

p2[M1 +M2 + (1/6)M1M2]
[1 + (1/12)M1][1 + (1/12)M2]

, (4.9)

where

M1 = R1

{(
A +A−1

)
cos β − 2 + i

(
A −A−1

)
sin β

}
+ R2

{(
A −A−1

)
cos β + i

(
A +A−1

)
sin β

}
,

M2 =
(
B + B−1

)
cos γ − 2 + i

(
B − B−1

)
sin γ,

(4.10)

whereA and B are nonzero real parameters to be determined. Left-hand side of (4.9) is a real
quantity. Thus the imaginary part of right-hand side of (4.9) must be zero. Thus we obtain

(R1 + R2)A − (R1 − R2)A−1 = 0,

B − B−1 = 0.
(4.11)

On solving, we get A =
√
(R1 − R2)/(R1 + R2), A−1 =

√
(R1 + R2)/(R1 − R2), and B = B−1 = 1,

provided that R1 ± R2 > 0,
Substituting the values of A, A−1, B and B−1 in (4.10), we obtain

M1 = −2
[
R1 +

√
R2

1 − R2
2

(
2 sin2 β

2
− 1

)]
, M2 = −4 sin2 γ

2
. (4.12)
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LetM1 = −2M3 andM2 = −4M4, where

M3 = R1 +
√
R2

1 − R2
2

(
2 sin2 β

2
− 1

)
, M4 = sin2 γ

2
. (4.13)

Substituting the values ofM1 andM2 in (4.9), we obtain

sin2φ

2
=
p2[M3 + 2M4 − (2/3)M3M4]
2[1 − (1/6)M3][1 − (1/3)M4]

. (4.14)

Since sin2(φ/2) ≤ 1, hence the method (4.8) is stable as long as

max
(
p2

[
M3 + 2M4 − 2

3
M3M4

])
≤ min

(
2
[
1 − 1

6
M3

][
1 − 1

3
M4

])
. (4.15)

this implies

0 < p2 ≤
4 −

(
R2 +

√
R2

2 − R3
2
)

3
(
2 + R2 +

√
R2

2 − R3
2
) , (4.16)

which is the required stability interval for the scheme (4.8).
In order to facilitate the computation, we may rewrite (4.8) in operator split form (see

[18, 19]) as

[

1 +
δy

2

12

]

u∗l,m = p2
[
R1δx

2 + R2
(
2μxδx

)
+ δy

2 +
1
6

(
R1δx

2 + R2
(
2μxδx

))
δy

2
]
u
j

l,m
+
∑

f,

[
1 +

1
12

(
R1δx

2 + R2
(
2μxδx

))
]
δt

2u
j

l,m
= u∗l,m

(4.17)

or,

[
1 +

1
12

(
R1δx

2 + R2
(
2μxδx

))
]
u
j+1
l,m

= u∗l,m +
[
1 +

1
12

(
R1δ

2
x + R2

(
2μxδx

))
](

2uj
l,m

− uj−1
l,m

)
,

(4.18)

where u∗l,m is an intermediate value. The intermediate boundary values required for solving
(4.17) can be obtained from (4.18).

The left-hand sides of (4.17) and (4.18) are factorizations into y- and x-differences,
respectively, which allows us to solve by sweeping first (4.17) in the y- and then (4.18) in the
x-direction. It will be seen that these sweeps require only the solution of tri-diagonal systems.
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5. Super Stable Method for Two-Dimensional
Linear Hyperbolic Equation

Let us consider the equation of the following form:

utt + 2αut + β2u = uxx + uyy + f
(
x, y, t

)
, 0 < x, y < 1, t > 0, α > 0, β ≥ 0 (5.1)

subject to appropriate initial and Dirichlet boundary conditions that are prescribed. The
equation above represents two-space dimensional linear telegraphic hyperbolic equation.
Applying the difference method (2.8) to the differential equation (5.1), we obtain

δ2t u
j

l,m
+
√
a
(
2μtδt

)
u
j

l,m
+
√
a

12

(
δ2x + δ

2
y

)(
2μtδt

)
u
j

l,m
+ buj

l,m

+
(
b

12
− p2

)(
δ2x + δ

2
y

)
u
j

l,m − p2

6
δ2xδ

2
yU

j

l,m +
1
12

(
δ2x + δ

2
y

)
δ2t U

j

l,m = FF,

(5.2)

where

a = α2k2, b = β2k2, FF =
k2

12

(
f
j

l+1,m + fj
l−1,m + fj

l,m+1 + f
j

l,m−1 + 8fj
l,m

)
. (5.3)

The previous scheme is conditionally stable (see [7]). In order to obtain a superstable
method, we simply follow the ideas given by Chawla [24] and the scheme (5.2) may be re-
written as

[
1 + ηb2 +

(
1
12

− γp2
)(

δ2x + δ
2
y

)]
δ2t u

j

l,m +
√
a

(

1 +
δ2x
12

+
δ2y

12

)
(
2μtδt

)
u
j

l,m

=

[(
p2 − b

12

)(
δ2x + δ

2
y

)
+
p2

6
δ2xδ

2
y − b

]

u
j

l,m + FF,

(5.4)

where η and γ are free parameters to be determined. The additional terms are of high orders
and do not affect the accuracy of the scheme.

To study stability for the scheme (5.4), we substitute u
j

l,m = ξjeiθleiφm in the
homogeneous part of the (5.4), and we obtain the characteristic equation:

Aξ2 + Bξ + C = 0, (5.5)
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where

A = 1 + ηb2 +
√
a −

√
a

3

(
sin2 θ

2
+ sin2φ

2

)
+
(
4γp2 − 1

3

)(
sin2 θ

2
+ sin2φ

2

)
,

B = −2 − 2ηb2 + 4
(
p2 − b

12

)(
sin2 θ

2
+ sin2φ

2

)
+ b

+
(
2
3
− 8γp2

)(
sin2 θ

2
+ sin2φ

2

)
− 8p2

3
sin2 θ

2
sin2φ

2
,

C = 1 + ηb2 − √
a +

√
a

3

(
sin2 θ

2
+ sin2φ

2

)
+
(
4γp2 − 1

3

)(
sin2 θ

2
+ sin2φ

2

)
.

(5.6)

Using the transformation ξ = (1 + z)/(1 − z) in (5.5), we obtain the transformed
characteristic equation:

(A − B + C)z2 + 2(A − C)z + (A + B + C) = 0. (5.7)

For stability of the scheme (5.4), we must have the following conditions:

A + B + C > 0, A − C > 0, A − B + C > 0. (5.8)

It is easy to verify that the coefficient is as follows:

A + B + C =
b

6

(
sin2 θ

2
+ sin2φ

2

)
+
b

2

(
cos2

θ

2
+ cos2

φ

2

)
+ 4p2

(
sin2 θ

2
+ sin2φ

2
− 2sin2 θ

2
sin2φ

2

)

+
16p2

3
sin2 θ

2
sin2φ

2
> 0 for α > 0, β ≥ 0, and all θ, φ, except θ = φ = 0 or 2π.

(5.9)

We can treat this case separately.
The coefficient is as follows:

A − C =
√
a

(
1
3

(
sin2 θ

2
+ sin2φ

2

)
+ cos2

θ

2
+ cos2

φ

2

)
> 0 for α > 0, β ≥ 0, and all θ, φ.

(5.10)

For stability, it is required that the third coefficient is as follows:

A − B + C = 4 + 4ηb2 − b + b

3

(
sin2 θ

2
+ sin2φ

2

)

+ 4
(
(
4γ − 1

)
p2 − 1

3

)(
sin2 θ

2
+ sin2φ

2

)
+
8p2

3
sin2 θ

2
sin2φ

2
> 0.

(5.11)
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Multiplying throughout of (5.11) by 16η, we get

(
64η − 1

)
+
(
8ηb − 1

)2 +
16bη
3

(
sin2 θ

2
+ sin2φ

2

)

+ 64η
[
(
4γ − 1

)
p2 − 1

3

](
sin2 θ

2
+ sin2φ

2

)
+
128p2

3
sin2 θ

2
sin2φ

2
> 0.

(5.12)

Thus the scheme is stable if

η ≥ 1
64

, γ ≥ 1 + 3p2

12p2
. (5.13)

For θ = φ = 0 or 2π and β = 0, we have the characteristic equation:

(
1 +

√
a
)
ξ2 − 2ξ +

(
1 − √

a
)
= 0 (5.14)

whose roots are ξ1,2 = 1, (1 − √
a)/(1 +

√
a) = (1 − αk)/(1 + αk).

In this case also |ξ| ≤ 1 and the scheme (5.4) is stable.
Hence for α > 0, β ≥ 0, η ≥ 1/64, γ ≥ (1 + 3p2)/12p2 (which are independent of h and

k), the scheme (5.4) is superstable.
Further, the scheme (5.4) in product form may be written as

[
1 +

(
1
12

− γp2
)
δ2y

]{[
1 + ηb2 +

(
1
12

− γp2
)
δ2x

]
δ2t u

j

l,m +
√
a

(

1 +
δ2x
12

)
(
2μtδt

)
u
j

l,m

}

=

[(
p2 − b

12

)(
δ2x + δ

2
y

)
+
p2

6
δ2xδ

2
y − b

]

u
j

l,m
+ FF.

(5.15)

In this case also additional terms are of high orders, which do not affect the accuracy
of the scheme. In order to facilitate the computation, we may rewrite the scheme (5.15) in
two-step operator split form:

[
1 +

(
1
12

− γp2
)
δ2y

]
u∗l,m =

[(
p2 − b

12

)(
δ2x + δ

2
y

)
+
p2

6
δ2xδ

2
y − b

]

u
j

l,m
+ FF, (5.16a)

[
1 + ηb2 +

(
1
12

− γp2
)
δ2x

]
δ2t u

j

l,m +
√
a

(

1 +
δ2x
12

)
(
2μtδt

)
u
j

l,m = u∗l,m, (5.16b)

where u∗
l,m

is any intermediate value, and the intermediate boundary conditions required for
the solution of u∗l,m may be obtained from (5.16b). The left-hand side matrices represented by
(5.16a) and (5.16b) are tridiagonal, thus very easily solved in the region 0 < x, y < 1, t > 0
using a tridiagonal solver.
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6. Numerical Illustrations

In this section, we have solved some benchmark problems using the method described
by (2.8) and compared our results with the results of the fourth-order numerical method
discussed in [6, 7]. The exact solutions are provided in each case. The initial and
boundary conditions may be obtained using the exact solution as a test procedure. The
linear difference equations have been solved using a tridiagonal solver, whereas non-
linear difference equations have been solved using the Newton-Raphson method. While
using the Newton-Raphson method, the iterations were stopped when absolute error
tolerance ≤10−12 was achieved. In order to demonstrate the fourth-order convergence of
the proposed method, for the computation of Example 6.1, we have chosen the fixed
value of the parameter σ = k/h2 = 3.2 for Example 6.1, and for other examples
we have chosen the value of σ = 1.6. For this choice, our method behaves like a
fourth-order method in space. All computations were carried out using double precision
arithmetic.

Note that the proposed method (2.8) for second-order hyperbolic equations is a three-
level scheme. The value of u at t = 0 is known from the initial condition. To start any
computation, it is necessary to know the numerical value of u of required accuracy at t = k.
In this section, we discuss an explicit scheme of O(k2) for u at first time level, that is, at t = k
in order to solve the differential equation (1.1) using the method (2.8), which is applicable to
problems in both Cartesian and polar coordinates.

Since the values of u and ut are known explicitly at t = 0, this implies that all
their successive tangential derivatives are known at t = 0; that is, the values of u, ux, uxx,
uy, uyy, . . . , ut, utx, uty, . . ., and so forth are known at t = 0.

An approximation for u of O(k2) at t = k may be written as

u1l,m = u0l,m + ku0tl,m +
k2

2
(utt)0l,m +O

(
k3

)
. (6.1)

From (1.1), we have

(utt)0l,m =
[
A
(
x, y, t, u

)
uxx + B

(
x, y, t, u

)
uyy +G

(
x, y, t, u, ux, uy, ut

)]0
l,m
. (6.2)

Thus using the initial values and their successive tangential derivative values, from
(6.2) we can obtain the value of (utt)

0
l,m, and then ultimately, from (6.1) we can compute the

value of u at first time level, that is, at t = k.

Example 6.1 (the telegraphic equation with forcing function).

utt + 2αut + β2u = uxx + uyy +
(
2 − 4α + β2

)
e−2t sinhx sinhy, 0 < x, y < 1, t > 0, (6.3)

where α > 0 and β ≥ 0 are real parameters. The exact solution is u = e−2t sinhx sinhy. The
maximum absolute errors and CPU time (in seconds) are tabulated in Table 1 at t = 5 for
α > 0 and β ≥ 0.
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Table 1: Example 6.1: the maximum absolute errors (using proposedO(k2+k2h2+h4)-method) (with CPU
time).

h
α = 10, β = 5,
η = 0.5, γ = 1

α = 20, β = 10,
η = 1, γ = 1

α = 40, β = 4,
η = 10, γ = 20

α = 50, β = 5,
η = 0.25, γ = 0.75

α = 10, β = 0,
η = 5, γ = 5

1/8 (CPU time)
0.5800E-07
(0.2087)

0.1784E-06
(0.2781)

0.4051E-02
(0.2084)

0.1119E-04
(0.2214)

0.6781E-04
(0.2120)

∗0.9234E-07
(0.2548)

∗0.6873E-06
(0.3442)

∗0.6677E-02
(0.2526)

∗0.8820E-04
(0.2610)

∗0.8873E-04
(0.2566)

1/16 (CPU time)
0.2390E-08
(1.9938)

0.2318E-08
(2.0041)

0.1930E-03
(1.9580)

0.6200E-06
(1.9844)

0.3125E-05
(1.9636)

∗0.6894E-08
(2.3690)

∗0.8329E-08
(2.4715)

∗0.3210E-03
(2.3427)

∗0.5033E-05
(2.3677)

∗0.5012E-05
(2.3525)

1/32 (CPU time)
0.1450E-09
(30.9160)

0.1132E-09
(31.1875)

0.1178E-04
(30.8334)

0.3899E-07
(31.2224)

0.1917E-06
(31.2644)

∗0.3634E-09
(38.8461)

∗0.4418E-09
(39.1400)

∗0.2144E-04
(38.3874)

∗0.2482E-06
(39.3487)

∗0.2898E-06
(39.9912)

1/64 (CPU time)
0.9055E-11
(493.5212)

0.6948E-11
(503.4469)

0.7365E-06
(492.8654)

0.2439E-08
(498.1166)

0.1198E-07
(500.2034)

∗0.2239E-10
(602.1290)

∗0.2746E-10
(620.2021)

∗0.1312E-05
(601.6682)

∗0.1419E-07
(611.8769)

∗0.1767E-07
(616.1248)

∗Result obtained by using the Method discussed in [13].

Example 6.2 (wave equation in cylindrical polar coordinates).

utt = urr + uzz +
1
r
ur −

(
3 cosh r +

sinh r
r

)
cosh z sin t, 0 < r, z < 1, t > 0. (6.4)

The aforementioned equation represents the two-space dimensional wave equation in
cylindrical polar coordinates. The exact solution is u = cosh r cosh z sin t. The maximum
absolute errors and CPU time (in seconds) are tabulated in Table 2 at t = 1 and t = 2.

Example 6.3 (Van der Pol type nonlinear wave equation).

utt = uxx + uyy + γ
(
u2 − 1

)
ut +

(
2π2 + γ2e−2γtsin2(πx)sin2(πy

))
e−γt sin(πx) sin

(
πy

)
,

0 < x, y < 1, t > 0,
(6.5)

with exact solution u = e−γt sin(πx) sin(πy). The maximum absolute errors and CPU time (in
seconds) are tabulated in Table 3 at t = 2 for γ = 1, 2, and 3.

Example 6.4 (dissipative nonlinear wave equation).

utt = uxx + uyy − 2uut +
(
2 sin(πx) sin

(
πy

)
cos t + 2π2 − 1

)
sin(πx) sin

(
πy

)
sin t,

0 < x, y < 1, t > 0,
(6.6)
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Table 2: Example 6.2: the maximum absolute errors (with CPU time).

h
Proposed O(k2 + k2h2 + h4)-method O(k4 + k2h2 + h4)-method discussed in [6]

t = 1 t = 2 t = 1 t = 2

1/8 (CPU time) 0.1073E-05 0.7883E-06 0.8782E-05 0.7260E-05

(0.1077) (0.1488) (0.1344) (0.1985)

1/16 (CPU time) 0.6026E-07 0.5424E-07 0.4888E-06 0.3842E-06

(0.6614) (1.2736) (1.0404) (1.6892)

1/32 (CPU time) 0.4626E-08 0.4533E-08 0.2718E-07 0.2146E-07

(9.2670) (16.4166) (12.8822) (20.3392)

1/64 (CPU time) 0.2892E-09 0.2864E-09 0.1616E-08 0.1284E-08

(142.9786) (300.5124) (178.3944) (380.6638)

Table 3: Example 6.3: the maximum absolute errors (with CPU time).

h
Proposed O(k2 + k2h2 + h4)-method O(k4 + k2h2 + h4)-method discussed in [6]

γ = 1 γ = 2 γ = 3 γ = 1 γ = 2 γ = 3

1/4 (CPU time) 0.4719E-03 0.9207E-04 0.2974E-04 0.8616E-03 0.7412E-03 0.4433E-04

(0.2680) (0.2530) (0.2712) (0.3322) (0.3221) (0.3476)

1/8 (CPU time) 0.3186E-04 0.7369E-05 0.2594E-06 0.5050E-04 0.4244E-04 0.2211E-05

(3.0112) (2.9443) (2.9417) (3.8616) (3.7824) (3.8806)

1/16 (CPU time) 0.2041E-05 0.4868E-06 0.1008E-07 0.3368E-05 0.2018E-05 0.1060E-06

(49.9442) (47.6788) (49.0598) (63.8846) (62.1258) (63.1625)

1/32 (CPU time) 0.1279E-06 0.3061E-07 0.6260E-09 0.2100E-06 0.1212E-06 0.6214E-08

(703.2124) (659.7450) (685.7455) (879.6670) (825.1212) (832.6086)

with exact solution u = sin(πx) sin(πy) sin t. The maximum absolute errors and CPU time
(in seconds) are tabulated in Table 4 at t = 1.

Example 6.5 (nonlinear wave equation with variable coefficients).

utt =
(
1 + x2

)
uxx +

(
1 + y2

)
uyy + γu

(
ux + uy + ut

)

+
[
γe−t

(
coshx coshy − sinh

(
x + y

)) − 1 − x2 − y2
]
e−t coshx coshy,

0 < x, y < 1, t > 0,

(6.7)

with exact solution u = e−t coshx coshy. The maximum absolute errors and CPU time (in
seconds) are tabulated in Table 5 at t = 1 for γ = 1, 2 and 5.
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Table 4: Example 6.4: the maximum absolute errors (with CPU time).

h Proposed O(k2 + k2h2 + h4)-method O(k4 + k2h2 + h4)-method discussed in [6]

1/4 (CPU time) 0.8996E-03 0.1440E-03
(0.1841) (0.2312)

1/8 (CPU time) 0.5807E-04 0.8614E-04
(1.4538) (1.8412)

1/16 (CPU time) 0.3656E-05 0.5644E-05
(22.3786) (27.1590)

1/32 (CPU time) 0.2299E-06 0.3246E-06
(307.0478) (384.4488)

Table 5: Example 6.5: The maximum absolute errors (with CPU time).

h
Proposed O(k2 + k2h2 + h4)-method O(k4 + k2h2 + h4)-method discussed in [6]

γ = 1 γ = 2 γ = 5 γ = 1 γ = 2 γ = 5

1/4 (CPU time) 0.1067E-03 0.3903E-03 0.8100E-02 0.7776E-03 0.9220E-03 0.2318E-01
(0.2404) (0.2493) (0.2482) (0.3002) (0.3122) (0.3120)

1/8 (CPU time) 0.9365E-05 0.3437E-04 0.6271E-03 0.4418E-04 0.6072E-04 0.1272E-02
(1.6889) (1.7670) (2.0218) (2.1122) (2.2424) (2.5560)

1/16 (CPU time) 0.6667E-06 0.2416E-05 0.4248E-04 0.2218E-05 0.3664E-05 0.8814E-04
(25.9590) (27.6302) (32.5906) (31.0244) (33.4255) (40.1616)

1/32 (CPU time) 0.4148E-07 0.1523E-06 0.2608E-05 0.1360E-06 0.2214E-06 0.5416E-05
(367.1442) (396.0654) (455.2458) (459.1677) (495.8262) (569.1088)

Example 6.6 (quasilinear hyperbolic equation).

utt =
(
1 + u2

)(
uxx + uyy

)
+ γu

(
ux + uy + ut

)

+
[
γe−t

(
sinhx coshy − cosh

(
x + y

)) − 1
]
e−t sinhx coshy

− 2
(
e−t sinhx coshy

)3
, 0 < x, y < 1, t > 0,

(6.8)

with exact solution u = e−t sinhx coshy. The maximum absolute errors and CPU time (in
seconds) are tabulated in Table 6 at t = 1 for γ = 1, 2, and 5.

The order of convergence may be obtained by using the following formula:

log(eh1) − log(eh2)
log(h1) − log(h2)

, (6.9)

where eh1and eh2 are maximum absolute errors for two uniform mesh widths h1 and h2,
respectively. For computation of order of convergence of the proposed method, we have
considered errors for last two values of h, that is, h1 = 1/32, h2 = 1/64 for two linear problems,
and h1 = 1/16, h2 = 1/32 for all non-linear and quasilinear problems, and results are reported
in Table 7.
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Table 6: Example 6.6: The maximum absolute errors (with CPU time).

h
Proposed O(k2 + k2h2 + h4)-method O(k4 + k2h2 + h4)-method discussed in [7]

γ = 1 γ = 2 γ = 5 γ = 1 γ = 2 γ = 5

1/4 (CPU time) 0.1286E-03 0.1251E-03 0.3733E-03 0.6618E-03 0.7715E-03 0.8812E-03
(0.2602) (0.2607) (0.2532) (0.3288) (0.3292) (0.3166)

1/8 (CPU time) 0.9423E-05 0.8670E-05 0.2271E-04 0.3336E-04 0.4112E-04 0.5080E-04
(1.9640) (1.9835) (1.9870) (2.3361) (2.3410) (2.3422)

1/16 (CPU time) 0.6313E-06 0.5622E-06 0.1452E-05 0.2112E-05 0.2446E-05 0.2863E-05
(30.0540) (29.7286) (32.0085) (37.6212) (37.2268) (40.1020)

1/32 (CPU time) 0.3939E-07 0.3490E-07 0.9018E-07 0.1308E-06 0.1512E-06 0.1744E-06
(414.6224) (405.4874) (450.4474) (517.6668) (507.6543) (563.5578)

Table 7: Order of convergence.

Example Parameters Order of the method

01

α = 10, β = 5, η = 0.5, γ = 1 at t = 5 4.00
α = 20, β = 10, η = 1, γ = 1 at t = 5 4.02
α = 40, β = 4, η = 10, γ = 20 at t = 5 3.99

α = 50, β = 5, η = 0.25, γ = 0.75 at t = 5 3.99
α = 10, β = 0, η = 5, γ = 5 at t = 5 4.00

02 at t = 1 4.00
at t = 2 3.99

03
γ = 1 at t = 2 3.99
γ = 2 at t = 2 3.99
γ = 3 at t = 2 4.00

04 t = 1 3.99

05
γ = 1 at t = 1 4.00
γ = 2 at t = 1 3.99
γ = 5 at t = 1 4.01

06
γ = 1 at t = 1 4.00
γ = 2 at t = 1 4.01
γ=5 at t = 1 4.00

7. Concluding Remarks

Available numerical methods for the numerical solution of second-order quasilinear wave
equations are of order four, which require 19-grid points. In this article, using the same
number of grid points and five evaluations of the function g (as compared to seven
evaluations of the function g discussed in [6, 7]), we have derived a new stable numerical
method of O(k2 + k2h2 + h4) accuracy for the solution of quasilinear wave equation (1.1).
Ultimately, we use less algebra for computation, and for a fixed parameter value σ = k/h2, the
proposed method behaves like a fourth-order method, which is exhibited from the computed
results. The proposed numerical method is applicable to wave equation in polar coordinates,
and for the damped wave equation and telegraphic equation the method is shown to be
unconditionally stable.
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