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We study the Jacobian Poisson structures in any dimension invariant with respect to the discrete
Heisenberg group. The classification problem is related to the discrete volume of suitable solids.
Particular attention is given to dimension 3 whose simplest example is the Artin-Schelter-Tate
Poisson tensors.

1. Introduction

This paper continues the authors’ program of studies of the Heisenberg invariance properties
of polynomial Poisson algebras which were started in [1] and extended in [2, 3]. Formally
speaking, we consider the polynomials in n variables C[x0, x1, . . . , xn−1] over C and the action
of some subgroupHn ofGLn(C) generated by the shifts operators xi → xi+1(mod Zn) and by
the operators x → εixi, where εn = 1.We are interested in the polynomial Poisson brackets on
C[x0, x1, . . . , xn−1]which are “stable” under this actions (we will give more precise definition
below).

The most famous examples of the Heisenberg invariant polynomial Poisson structures
are the Sklyanin-Odesskii-Feigin-Artin-Tate quadratic Poisson brackets known also as the
elliptic Poisson structures. One can also think about these algebras like the “quasiclassical
limits” of elliptic Sklyanin associative algebras. These is a class of Noetherian graded
associative algebras which are Koszul, Cohen-Macaulay, and have the same Hilbert function
as a polynomial ring with n variables. The above-mentioned Heisenberg group action
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provides the automorphisms of Sklyanin algebras which are compatible with the grading
and defines an Hn-action on the elliptic quadratic Poisson structures on P

n. The latter are
identified with Poisson structures on some moduli spaces of the degree n and rank k + 1
vector bundles with parabolic structure (= the flag 0 ⊂ F ⊂ C

k+1 on the elliptic curve E). We
will denote this elliptic Poisson algebras by qn;k(E). The algebras qn;k(E) arise in the Feigin-
Odesskii “deformational” approach and form a subclass of polynomial Poisson structures.
A comprehensive review of elliptic algebras can be found in [4] to which we refer for all
additional information.Wewill mention only that as we have proved in [3] all elliptic Poisson
algebras (being in particular Heisenberg-invariant) are unimodular.

Another interesting class of polynomial Poisson structures consists of so-called
Jacobian Poisson structures (JPS). These structures are a special case of Nambu-Poisson
structures. Their rank is two, and the Jacobian Poisson bracket {P,Q} of two polynomials
P and Q is given by the determinant of Jacobi matrix of functions (P,Q, P1, . . . , Pn−2). The
polynomials Pi, 1 ≤ i ≤ n − 2 are Casimirs of the bracket and under some mild condition
of independence are generators of the centrum for the Jacobian Poisson algebra structure on
C[x0, . . . , xn−1]. This type of Poisson algebras was intensively studied (due to their natural
origin and relative simplicity) in a huge number of publications among which we should
mention [1, 5–9].

There are some beautiful intersections between two described types of polynomial
Poisson structures: when we are restricting ourselves to the class of quadratic Poisson
brackets then there are only Artin-Schelter-Tate (n = 3) and Sklyanin (n = 4) algebras which
are both elliptic and Jacobian. It is no longer true for n > 4. The relations between the Sklyanin
Poisson algebras qn,k(E) whose centrum has dimension 1 (for n odd) and 2 (for n even) in
the case k = 1 and is generated by l = gcd(n, k + 1) Casimirs for qn,k(E) for k > 1 are in
general quite obscure. We can easily found that sometimes the JPS structures correspond to
some degenerations of the Sklyanin elliptic algebras. One example of such JPS for n = 5
was remarked in [8] and was attributed to so-called Briesckorn-Pham polynomials for
n = 5

P1 =
4∑

i=0

αixi; P2 =
4∑

i=0

βix
2
i ; P3 =

4∑

i=0

γix
2
i . (1.1)

It is easy to check that the homogeneous quintic P = P1P2P3 (see Section 4.2) defines a Casimir
for some rational degeneration of (one of) elliptic algebras q5,1(E) and q5,2(E) if it satisfies the
H-invariance condition.

In this paper, we will study the Jacobian Poisson structures in any number of variables
which are Heisenberg-invariant and we relate all such structures to some graded subvector
space H of polynomial algebra. This vector space is completely determined by some
enumerative problem of a number-theoretic type. More precisely, the homogeneous subspace
Hi ofH of degree i is in bijection with integer solutions of a system of Diophant inequalities.
Geometric interpretation of the dimension of Hi is described in terms of integer points in
a convex polytope given by this Diophant system. In the special case of dimension 3, H is
a subalgebra of polynomial algebra with 3 variables and all JPS are given by this space. We
solve explicitly the enumerative problem in this case and obtain a complete classification
of theH-invariant not necessarily quadratic Jacobian Poisson algebras with three generators.
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As a byproduct, we explicitly compute the Poincaré series ofH. In this dimension, we observe
that the H-invariant JPS of degree 5 is given by the Casimir sextic

P∨ =
1
6
a
(
x6
0 + x6

1 + x6
2

)
+
1
3
b
(
x3
0x

3
1 + x3

0x
3
2 + x3

1x
3
2

)
+ c

(
x4
0x1x2 + x0x

4
1x2 + x0x1x

4
2

)

+
1
2
dx2

0x
2
1x

2
2,

(1.2)

a, b, c, d ∈ C. This structure is a “projectively dual” to the Artin-Schelter-Tate elliptic Poisson
structure which is the H-invariant JPS given by the cubic

P =
(
x3
0 + x3

1 + x3
2

)
+ γx0x1x2, (1.3)

where γ ∈ C. In fact, the algebraic variety E∨ : {P∨ = 0} ∈ P
2 is the (generically) projectively

dual to the elliptic curve E : {P = 0} ⊂ P
2.

The paper is organized as follows: in Section 2, we remind a definition of the
Heisenberg group in the Schroedinger representation and describe its action on Poisson
polynomial tensors and also the definition of JPS. In Section 3, we treat the above mentioned
enumerative problem in dimension 3. The last section concerns the case of any dimension.
Here, we discuss some possible approaches to the general enumerative question.

2. Preliminary Facts

Throughout of this paper,K is a field of characteristic zero. Let us start by remembering some
elementary notions of the Poisson geometry.

2.1. Poisson Algebras and Poisson Manifold

Let R be a commutative K-algebra. One says that R is a Poisson algebra if R is endowed
with a Lie bracket, indicated with {·, ·}, which is also a biderivation. One can also say that
R is endowed with a Poisson structure, and therefore, the bracket {·, ·} is called the Poisson
bracket. Elements of the center are called Casimirs: a ∈ R is a Casimir if {a, b} = 0 for all
b ∈ R.

A Poisson manifold M (smooth, algebraic, etc.) is a manifold whose function algebra
A (C∞(M), regular, etc.) is endowed with a Poisson bracket.

As examples of Poisson structures let us consider a particular subclass of Poisson
structures which are uniquely characterized by their Casimirs. In the dimension 4, let

q1 =
1
2

(
x2
0 + x2

2

)
+ kx1x3,

q2 =
1
2

(
x2
1 + x2

3

)
+ kx0x2

(2.1)

be two elements of C[x0, x1, x2, x3], where k ∈ C.
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On C[x0, x1, x2, x3], a Poisson structure π is defined by

{
f, g

}
π :=

df ∧ dg ∧ dq1 ∧ dq2
dx0 ∧ dx1 ∧ dx2 ∧ dx3

, (2.2)

or more explicitly (mod Z4)

{xi, xi+1} = k2xixi+1 − xi+2xi+3,

{xi, xi+2} = k
(
x2
i+3 − x2

i+1

)
, i = 0, 1, 2, 3.

(2.3)

Sklyanin had introduced this Poisson algebra which carries today his name in a Hamiltonian
approach to the continuous and discrete integrable Landau-Lifshitz models [10, 11]. He
showed that the Hamiltonian structure of the classical model is completely determined by
two quadratic “Casimirs”. The Sklyanin Poisson algebra is also called elliptic due to its
relations with an elliptic curve. The elliptic curve enters in the game from the geometric
side. The symplectic foliation of Sklyanin’s structure is too complicated. This is because the
structure is degenerated and looks quite different from a symplectic one. But the intersection
locus of two Casimirs in the affine space of dimension four (one can consider also the
projective situation) is an elliptic curve E given by two quadrics q1,2. We can think about
this curve E as a complete intersection of the couple q1 = 0, q2 = 0 embedded in CP 3 (as it was
observed in Sklyanin’s initial paper).

A possible generalization one can be obtained considering n − 2 polynomials Qi inKn

with coordinates xi, i = 0, . . . , n − 1. We can define a bilinear differential operation

{·, ·} : K[x1, . . . , xn] ⊗K[x1, . . . , xn] −→ K[x1, . . . , xn], (2.4)

by

{
f, g

}
=

df ∧ dg ∧ dQ1 ∧ · · · ∧ dQn−2

dx1 ∧ dx2 ∧ · · · ∧ dxn
, f, g ∈ K[x1, . . . , xn]. (2.5)

This operation, which gives a Poisson algebra structure on K[x1, . . . , xn], is called a Jacobian
Poisson structure (JPS), and it is a partial case of more general n − m-ary Nambu operation
given by an antisymmetric n − m-polyvector field introduced by Nambu [6] and was
extensively studied by Takhtajan [5].

The polynomials Qi, i = 1, . . . , n − 2 are Casimir functions for the brackets (2.5).
There exists a second generalization of the Sklyanin algebra that we will describe

briefly in the next subsection (see, for details, [4]).

2.2. Elliptic Poisson Algebras qn(E, η) and qn,k(E, η)

(We report here this subsection from [2] for sake of self-consistency).
These algebras, defined by Feı̆gin and Odesskiı̆, arise as quasiclassical limits of elliptic

associative algebras Qn(E, η) and Qn,k(E, η) [12, 13].
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Let Γ = Z + τZ ⊂ C be an integral lattice generated by 1 and τ ∈ C, with Im τ > 0.
Consider the elliptic curve E = C/Γ and a point η on this curve.

In their article [13], given k < n, mutually prime, Odesskiı̆ and Feı̆gin construct an
algebra, called elliptic, Qn,k(E, η), as an algebra defined by n generators {xi, i ∈ Z/nZ} and
the following relations:

∑

r∈Z/nZ

θj−i+r(k−1)(0)

θkr
(
η
)
θj−i−r

(
−η

)xj−rxi+r = 0, i /= j, i, j ∈ Z

nZ
, (2.6)

where θα are theta functions [13].
These family of algebras has the following properties:

(1) the center of the algebraQn,k(E, η), for generic E and η, is the algebra of polynomial
ofm = pgcd(n, k + 1) variables of degree n/m,

(2) Qn,k(E, 0) = C[x1, . . . , xn] is commutative,

(3) Qn,n−1(E, η) = C[x1, . . . , xn] is commutative for all η,

(4) Qn,k(E, η) 
 Qn,k′(E, η), if kk′ ≡ 1 (mod n),

(5) the maps xi → xi+1 et xi → εixi, where εn = 1, define automorphisms of the algebra
Qn,k(E, η),

(6) the algebras Qn,k(E, η) are deformations of polynomial algebras. The associated
Poisson structure is denoted by qn,k(E, η),

(7) among the algebras qn,k(E, η), only q3(E, η) (the Artin-Schelter-Tate algebra) and
the Sklyanin algebra q4(E, η) are Jacobian Poisson structures.

2.3. The Heisenberg Invariant Poisson Structures

2.3.1. The G-Invariant Poisson Structures

Let G be a group acting on a Poisson algebra R.

Definition 2.1. A Poisson bracket {·, ·} onR is said to be aG-invariant ifG acts onR by Poisson
automorphisms.

In other words, for every g ∈ G, the morphism ϕg : R → R, a → g · a is an
automorphism and the following diagram is a commutative:

R × R ϕg×ϕg

{·,·}

R × R
{·,·}

R ϕg R
(2.7)
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2.3.2. The H-Invariant Poisson Structures

In their paper [2], the authors introduced the notion of H-invariant Poisson structures. That
is, a special case of a G-invariant structure when G in the finite Heisenberg group and R is
the polynomial algebra. Let us remember this notion.

Let V be a complex vector space of dimension n and e0, . . . , en−1 a basis of V . Take the
nth primitive root of unity ε = e2πi/n.

Consider σ, τ of GL(V ) defined by

σ(em) = em−1,

τ(em) = εmem.
(2.8)

The Heisenberg of dimension n is nothing else that the subspace Hn ⊂ GL(V ) generated by
σ and τ .

From now on, we assume that V = C
n, with x0, x1, . . . , xn−1 as a basis and consider the

coordinate ring C[x0, x1, . . . , xn−1].
Naturally, σ and τ act by automorphisms on the algebra C[x0, x1, . . . , xn−1] as follows:

σ ·
(
αxα0

0 xα1
1 · · ·xαn−1

n−1
)
= αxαn−1

0 xα0
1 · · ·xαn−2

n−1 ,

τ ·
(
αxα0

0 xα1
1 · · ·xαn−1

n−1
)
= εα1+2α2+···+(n−1)αn−1αxα0

0 xα1
1 · · ·xαn−1

n−1 .
(2.9)

We introduced in [2] the notion of τ-degree on the polynomial algebra C[x0, x1, . . . , xn−1].
The τ-degree of a monomial M = αxα0

0 xα1
1 · · ·xαn−1

n−1 is the positive integer α1 + 2α2 + · · · + (n −
1)αn−1 ∈ Z/nZ if α/= 0 and −∞ if not. The τ-degree of M is denoted τ�(M). A τ-degree of a
polynomial is the highest τ-degree of its monomials.

For simplicity, the Hn-invariance condition will be referred from now on just as H-
invariance. AnH-invariant Poisson bracket onA = C[x0, x1, . . . , xn−1] is nothing but a bracket
on A which satisfy the following:

{
xi+1, xj+1

}
= σ ·

{
xi, xj

}
,

τ ·
{
xi, xj

}
= εi+j

{
xi, xj

}
,

(2.10)

for all i, j ∈ Z/nZ.
The τ invariance is, in some sense, a “discrete” homogeneity.

Proposition 2.2 (see [2]). The Sklyanin-Odesskii-Feigin Poisson algebras qn,k(E) are H-invariant
Poisson algebras.

Therefore, an H-invariant Poisson structures on the polynomial algebra R includes as
the Sklyanin Poisson algebra or more generally of the Odesskii-Feigin Poisson algebras.

In this paper, we are interested in the intersection of the two classes of generalizations
of Artin-Shelter-Tate-Sklyanin Poisson algebras: JPS andH-invariant Poisson structures.

Proposition 2.3 (see [2]). If {·, ·} is an H-invariant polynomial Poisson bracket, the usual polyno-
mial degree of the monomial of {xi, xj} equals to 2 + sn, s ∈ N.
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Proposition 2.4 (see [2]). Let P ∈ R = C[x0, . . . , xn−1].
For all i ∈ {0, . . . , n − 1},

σ · ∂F
∂xi

=
∂(σ · F)
∂(σ · xi)

. (2.11)

3. H-Invariant JPS in Dimension 3

We consider first a generalization of Artin-Schelter-Tate quadratic Poisson algebras. Let R =
C[x0, x1, x2] be the polynomial algebra with 3 generators. For every P ∈ A, we have a JPS
π(P) on R given by

{
xi, xj

}
=

∂P

∂xk
, (3.1)

where (i, j, k) ∈ Z/3Z is a cyclic permutation of (0, 1, 2). Let H be the set of all P ∈ A such
that π(P) is an H-invariant Poisson structure.

Proposition 3.1. If P ∈ H is a homogeneous polynomial, then σ · P = P and τ�(P) = 0.

Proof. Let (i, j, k) ∈ (Z/3Z)3 be a cyclic permutation of (0, 1, 2). One has

{
xi, xj

}
=

∂P

∂xk
, (3.2)

{
xi+1, xj+1

}
=

∂P

∂xk+1
. (3.3)

Using Proposition 2.4, we conclude that for allm ∈ Z/3Z, ∂σP/∂xm = ∂P/∂xm.
It gives that σ · P = P .
On the other hand, from (3.2), one has τ−�(P) ≡ i+j+k mod 3. Andwe get the second

half of the proposition.

Proposition 3.2. H is a subalgebra of R.

Proof. Let P,Q ∈ H. It is clear that for all α, β ∈ C, αP + βQ belongs toH.
Let us denote by {·, ·}F the JPS associated with the polynomial F ∈ R. It is easy to verify

that {xi, xj}PQ = P{xi, xj}Q +Q{xi, xj}P . Therefore, it is clear that theH-invariance condition
is verified for the JPS associated to the polynomial PQ.

We endowHwith the usual grading of the polynomial algebraR. For F, an element of
R, we denote by �(F) its usual weight degree. We denote by Hi the homogeneous subspace
ofH of degree i.

Proposition 3.3. If 3 does not divide i ∈ N (in other words i /= 3k), thenHi = 0.

Proof. First of all H0 = C. We suppose now that i /= 0. Let P ∈ Hi, P /= 0. Then, �(P) = i. It
follows from Proposition 2.3 and the definition of the Poisson brackets that there exists s ∈ N

such that �(xi, xj) = 2 + 3s. The result follows from the fact that �(xi, xj) = �(P) − 1.
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Set P =
∑

cαx
α0
0 xα1

1 xα2
2 , where α = (α0, α1, α2). We suppose that �(P) = 3(1 + s). We

want to find all α0, α1, α2 such that P ∈ H and, therefore, the dimension H3(1+s) as C-vector
space.

Proposition 3.4. There exist s′, s′′, and s′′′ such that

α0 + α1 + α2 = 3(1 + s),

0α0 + α1 + 2α2 = 3s′,

α0 + 2α1 + 0α2 = 3s′′,

2α0 + 0α1 + 1α2 = 3s′′′.

(3.4)

Proof. This is a direct consequence of Proposition 3.3.

Proposition 3.5. The system equation (3.4) has as solutions the following set:

α0 = 4r − 2s′ − s′′,

α1 = −2r + s′ + 2s′′,

α2 = r + s′ − s′′,

(3.5)

where r = 1 + s, s′ and s′′ live in the polygon given by the following inequalities in R
2 :

x + y � 3r,

2x + y � 4r,

−x − 2y � −2r,

−x + y � r.

(3.6)

Remark 3.6. For r = 1, one obtains the Artin-Schelter-Tate Poisson algebra which is the JPS
given by the Casimir P = α(x3

0 + x3
1 + x3

2) + βx0x1x2, α, β ∈ C. Suppose that α/= 0, then it can
take the form

P =
(
x3
0 + x3

1 + x3
2

)
+ γx0x1x2, (3.7)

where γ ∈ C. The interesting feature of this Poisson algebra is that their polynomial character
is preserved even after the following nonalgebraic changes of variables. Let

y0 = x0; y1 = x1x
−1/2
2 ; y2 = x3/2

2 . (3.8)

The polynomial P in the coordinates (y0;y1;y2) has the form

P̃ =
(
y3
0 + y3

1y2 + y2
2

)
+ γy0y1y2. (3.9)
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The Poisson bracket is also polynomial (which is not evident at all!) and has the same form

{
xi, xj

}
=

∂P̃

∂xk
, (3.10)

where (i, j, k) is the cyclic permutation of (0, 1, 2). This JPS structure is no longer satisfying
the Heisenberg invariance condition. But it is invariant with respect the following toric action:
(C∗)3 × P

2 → P given by

λ · (x0 : x1 : x2) =
(
λ2x0 : λx1 : λ3x2

)
. (3.11)

Put degy0 = 2; degy2 = 1; degy2 = 3. Then, the polynomial P̃ is also homogeneous
in (y0;y1;y2) and defines an elliptic curve P̃ = 0 in the weighted projective space WP2;1;3.

The similar change of variables

z0 = x−3/4
0 x3/2

1 ; z1 = x1/4
0 x−1/2

1 x2; z2 = x3/2
0 (3.12)

defines the JPS structure invariant with respect to the torus action (C∗)3 × P
2 → P given by

λ · (x0 : x1 : x2) =
(
λx0 : λx1 : λ2x2

)
, (3.13)

and related to the elliptic curve 1/3(z22 + z20z2 + z0z
3
1) + kz0z1z2 = 0 in the weighted projective

space WP1;1;2.
These structures had appeared in [1], their Poisson cohomology was studied by

Pichereau [14], and their relation to the noncommutative del Pezzo surfaces and Calabi-Yau
algebras were discussed in [15].

Proposition 3.7. The subset of R
2 given by the system (3.6) is a triangle Tr with (0, r), (r, 2r), and

(2r, 0) as vertices. Then, dimH3r = Card(Tr ∩ N
2).

Remark 3.8. For r = 2, the case of Figure 1, the generic Heisenberg-invariant JPS is given by
the sextic polynomial

P∨ =
1
6
a
(
p60 + p61 + p62

)
+
1
3
b
(
p30p

3
1 + p30p

3
2 + p31p

3
2

)
+ c

(
p40p1p2 + p0p

4
1p2 + p0p1p

4
2

)
+
1
2
dp20p

2
1p

2
2,

a, b, c, d ∈ C.

(3.14)

The corresponding Poisson bracket takes the form

{
xi, xj

}
= ax5

k + b
(
x3
i + x3

j

)
x2
k + cxixj

(
x3
i + x3

j + 4x3
k

)
+ dx2

i x
2
j xk, (3.15)

where i, j, k are the cyclic permutations of 0, 1, 2.
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−2 2 4 6

6

4

2

−2

y

x

Figure 1: An example of the triangle T2 in the case r = 2.

This new JPS should be considered as the “projectively dual” to the Artin-Schelter-Tate
JPS, since the algebraic variety E∨ : P∨ = 0 is generically the projective dual curve in P

2 to the
elliptic curve

E : P =
(
x3
0 + x3

1 + x3
2

)
+ γx0x1x2 = 0. (3.16)

To establish the exact duality and the explicit values of the coefficients, we should use
(see [16, chapter 1]) Schläfli’s formula for the dual of a smooth plane cubic E = 0 ⊂ P

2. The
coordinates (p0 : p1 : p2) ∈ P

2∗ of a point p ∈ P
2∗ satisfies to the sextic relation E∨ = 0 if and

only if the line x0p0 + x1p1 + x2p2 = 0 is tangent to the conic locus C(x, p) = 0, where

C
(
x, p

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 p0 p1 p2

p0
∂2P

∂x2
0

∂2P

∂x0∂x1

∂2P

∂x0∂x2

p1
∂2P

∂x1∂x0

∂2P

∂x1∂x1

∂2P

∂x1∂x2

p2
∂2P

∂x2∂x0

∂2P

∂x2∂x1

∂2P

∂x2∂x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.17)

Set Sr = Tr ∩ N
2. Sr = S1

r ∪ S2
r , S1

r = {(x, y) ∈ Sr : 0 ≤ x ≤ r} and S1
r = {(x, y) ∈ Sr :

r < x ≤ 2r}. dimH3r = Card(S1
r ) + Card(S2

r ).
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Proposition 3.9.

Card
(
S1
r

)
=

⎧
⎪⎪⎨

⎪⎪⎩

3r2 + 6r + 4
4

if r is even,

3r2 + 6r + 3
4

if r is odd.
(3.18)

Proof. Let α ∈ {0, . . . , r}, and set Dα
r = {(x, y) ∈ S1

r : x = α}. Therefore,

Card
(
S1
r

)
=

r∑

α=0

Card(Dα
r ). (3.19)

Let

βαmax = max
{
β :

(
α, β

)
∈ Dα

r

}
,

βαmin = min
{
β :

(
α, β

)
∈ Dα

r

}
.

(3.20)

Card(Dα
r ) = βαmax − βαmin + 1.
It is easy to prove that

Card(Dα
r ) = (α + 1) +

⌊α
2

⌋
=

⎧
⎪⎨

⎪⎩

3α + 2
2

if α is even,

3α + 1
2

if α is odd.
(3.21)

The result follows from the summation of all Card(Dα
r ), α ∈ {0, . . . , r}.

Proposition 3.10.

Card
(
S2
r

)
=

⎧
⎪⎪⎨

⎪⎪⎩

3r2

4
if r is even,

3r2 + 1
4

if r is odd.
(3.22)

Proof. Let α ∈ {r + 1, . . . , 2r}, and set Dα
r = {(x, y) ∈ S2

r : x = α}. Therefore,

Card
(
S2
r

)
=

2r∑

α=r+1

Card(Dα
r ). (3.23)

Let

βαmax = max
{
β :

(
α, β

)
∈ Dα

r

}
,

βαmin = min
{
β :

(
α, β

)
∈ Dα

r

}
.

(3.24)

Card(Dα
r ) = βαmax − βαmin + 1.
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It is easy to prove that

Card(Dα
r ) = (3r + 1) − 2α +

⌊α
2

⌋
=

⎧
⎪⎨

⎪⎩

6r + 2 − 3α
2

if α is even,

6r + 1 − 3α
2

if α is odd.
(3.25)

The result follows from the summation of all Card(Dα
r ), α ∈ {r + 1, . . . , 2r}.

Theorem 3.11.

dimH3(1+s) =
3
2
s2 +

9
2
s + 4. (3.26)

Proof. This result is a direct consequence of Propositions 3.9 and 3.10.

Corollary 3.12. The Poincaré series of the algebrasH is

P(H, t) =
∑

s≥−1
dim

(
H3(1+s)

)
t3(s+1) =

1 + t3 + t6

(
1 − t3

)3 . (3.27)

Remark 3.13. For r = 2, the case of Figure 1, our formula gives the same answer like the
classical Pick’s formula for integer points in a convex polygon Π with integer vertices on the
plane ([17, chapter 10])

Card
(
Π ∩ Z

2
)
= Area(Π) +

1
2
Card

(
∂Π ∩ Z

2
)
+ 1. (3.28)

Here, s = 1 and dimH3(1+1) = 10. In other hand the Pick’s formula ingredients are

Area(Π) =
1
2

∣∣∣∣∣
2 −4
4 −2

∣∣∣∣∣ = 6,
1
2
Card

(
∂Π ∩ Z

2
)
= 3, (3.29)

hence 6 + 3 + 1 = 10.

This remark gives a good hint how one can use the developed machinery of integer
points computations in rational polytopes to our problems.

4. H-Invariant JPS in Any Dimension

In order to formulate the problem in any dimension, let us remember some number theoretic
notions concerning the enumeration of nonnegative integer points in a polytope or more
generally discrete volume of a polytope.
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4.1. Enumeration of Integer Solutions to Linear Inequalities

In their papers [18, 19], the authors study the problem of nonnegative integer solutions to
linear inequalities as well as their relation with the enumeration of integer partitions and
compositions.

Define the weight of a sequence λ = (λ0, λ2, . . . , λn−1) of integers to be |λ| = λ0+· · ·+λn−1.
If sequence λ of weight N has all parts nonnegative, it is called a composition of N; if, in
addition, λ is a nonincreasing sequence, we call it a partition ofN.

Given an r × n integer matrix C = [ci,j], (i, j) ∈ ({−1} ∪Z/rZ) ×Z/nZ, consider the set
SC of nonnegative integer sequences λ = (λ1, λ2, . . . , λn) satisfying the constraints

ci,−1 + ci,0λ0 + ci,1λ1 + · · · + ci,n−1λn−1 � 0, 0 ≤ r ≤ n − 1. (4.1)

The associated full generating function is defined as follows:

FC(x0, x2, . . . , xn−1) =
∑

λ∈SC

xλ0
0 xλ1

1 · · ·xλn−1
n−1 . (4.2)

This function “encapsulates” the solution set SC: the coefficient of qN in FC(qx0, qx1, . . . ,
qxn−1) is a “listing” (as the terms of a polynomial) of all nonnegative integer solutions to
(4.1) of weight N, and the number of such solutions is the coefficient of qN in FC(q, q, . . . , q).

4.2. Formulation of the Problem in Any Dimension

Let R = C[x0, x1, . . . , xn−1] be the polynomial algebra with n generators. For given n − 2
polynomials P1, P2, . . . , Pn−2 ∈ R, one can associate the JPS π(P1, . . . , Pn−2) on R given by

{
f, g

}
=

df ∧ dg ∧ dP1 ∧ · · · ∧ dPn−2

dx0 ∧ dx1 ∧ · · · ∧ dxn−1
, (4.3)

for f, g ∈ R.
We will denote by P the particular Casimir P =

∏n−2
i=1 Pi of the Poisson structure

π(P1, . . . , Pn−2). We suppose that each Pi is homogeneous in the sense of τ-degree.

Proposition 4.1. Consider a JPS π(P1, . . . , Pn−2) given by homogeneous (in the sense of τ-degree)
polynomials P1, . . . , Pn−2. If π(P1, . . . , Pn−2) isH-invariant, then

τ −�(σ · P) = τ −�(P) =

⎧
⎨

⎩

n

2
if n is even,

0 if n is odd,
(4.4)

where P = P1P2 · · ·Pn−2.
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Proof. Let i < j ∈ Z/nZ, and consider the set Ii,j , formed by the integers i1 < i2 < · · · < in−2 ∈
Z/nZ \ {i, j}. We denote by Si,j the set of all permutation of elements of Ii,j . We have

{
xi, xj

}
= (−1)i+j−1

dxi ∧ dxj ∧ dP1 ∧ dP2 ∧ · · · ∧ dPn−2

dx0 ∧ dx1 ∧ dP2 ∧ · · · ∧ dxn−1

= (−1)i+j−1
∑

α∈Si,j

(−1)|α| ∂P1

∂xα(i1)
· · · ∂Pn−2

∂xα(in−2)
.

(4.5)

From the τ-degree condition,

i + j ≡ (τ −�(P1) − α(i1)) + · · · + (τ −�(Pn−2) − α(in−2)) modulo n. (4.6)

We can deduce, therefore, that

τ −�(P1 · · ·Pn−2) ≡
n(n − 1)

2
modulo n. (4.7)

And we obtain the first part of the result. The second part is the direct consequence of facts
that

σ ·
{
xi, xj

}
=
{
xi+1, xj+1

}
= (−1)i+j−1

∑

α∈Si,j

(−1)|α| ∂(σ · P1)
∂xα(i1)+1

· · · ∂(σ · Pn−2)
∂xα(in−2)+1

, (4.8)

α(i1) + 1/= · · · /=α(in−2) + 1 ∈ Z/nZ \ {i + 1, j + 1} and the τ-degree condition.

Set

l =

⎧
⎨

⎩

n

2
if n is even,

0 if n is odd.
(4.9)

Let H be the set of all Q ∈ R such that τ −�(σ ·Q) = τ −�(Q) = l. One can easily check the
following result.

Proposition 4.2. H is a subvector space of R. It is subalgebra of R if l = 0.

We endowHwith the usual grading of the polynomial algebraR. ForQ, an element of
R, we denote by�(Q) its usual weight degree. We denote byHi the homogeneous subspace
ofH of degree i.

Proposition 4.3. If n is not a divisor of i (in other words, i /=nm) thenHi = 0.

Proof. It is clear theH0 = C. We suppose now that i /= 0. Let Q ∈ Hi, Q/= 0. Then,

Q =
∑

k1,...,ki−1

ak1,...,ki−1xk1 · · ·xki−1xl−k1−···−ki−1 . (4.10)
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Hence,

σ ·Q =
∑

k1,...,ki−1

ak1,...,ki−1xk1+1 · · ·xki−1+1xl−k1−···−ki−1+1. (4.11)

Since τ −�(σ ·Q) = τ −�(Q) = l, i ≡ 0 modulo n.

Set Q =
∑

βxα0
0 xα1

1 · · ·xαn−1
n−1 . We suppose that �(Q) = n(1 + s). We want to find all

α0, α1, . . . , αn−1 such that Q ∈ H and, therefore, the dimension H3(1+s) as C-vector space.

Proposition 4.4. There exist s0, s1, . . . , sn−1 such that

α0 + α1 + · · · + αn−1 = n(1 + s),

0α0 + α1 + 2α2 + · · · (n − 1)αn−1 = l + ns0,

1α0 + 2α1 + 3α2 + · · · (n − 1)αn−2 + 0αn−1 = l + ns1,

...

(n − 2)α0 + (n − 1)α1 + 0α2 + · · · (n − 3)αn−4 + (n − 3)αn−1 = l + nsn−2,

(n − 1)α0 + 0α1 + 1α2 + · · · (n − 3)αn−3 + (n − 2)αn−1 = l + nsn−1.

(4.12)

Proof. That is, the direct consequence of the fact that τ −�(σ ·Q) = τ −�(Q) = l.

One can easily obtain the following result.

Proposition 4.5. The system equation (4.12) has as a solution

αi = sn−i−1 − sn−i + r, i ∈ Z

nZ
, (4.13)

where r = s + 1 and the s0, . . . , sn−1 satisfy the condition

s0 + s1 + · · · sn−1 =
(n − 1)n

2
r − l. (4.14)

Therefore α0, α1, . . . , αn−1 are completely determined by the set of nonnegative integer
sequences (s0, s1, . . . , sn−1) satisfying the constraints

ci : sn−i−1 − sn−i + r ≥ 0, i ∈ Z

nZ
, (4.15)
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and such that

s0 + s1 + · · · + sn−1 =
(n − 1)n

2
r − l. (4.16)

There are two approaches to determine the dimension of Hnr .
The first one is exactly as in the case of dimension 3. The constraint (4.16) is equivalent

to say that

sn−1 = −(s0 + s1 + · · · + sn−2) +
(n − 1)n

2
r − l. (4.17)

Therefore, by replacing sn−1 by this value, α0, . . . , αn−1 are completely determined by
the set of nonnegative integer sequences (s0, s1, . . . , sn−2) satisfying the constraints

c′−1 : s0 + s1 + · · · + sn−3 + sn−2 ≤
(n − 1)n

2
r − l,

c′0 : 2s0 + s1 + · · · + sn−3 + sn−2 ≤
[
(n − 1)n

2
+ 1

]
r − l,

c′1 : s0 + s1 + · · · + sn−3 + 2 + sn−2 ≥
[
(n − 1)n

2
k + 1

]
r − l,

c′i : sn−i−1 − sn−i + r ≥ 0, i ∈ Z/nZ \ {0, 1}.

(4.18)

Hence, the dimension Hnr is just the number of nonnegative integer points contained in the
polytope given by the system (4.18), where r = s + 1.

In dimension 3, one obtains the triangle in R
2 given by the vertices A(0, 2r), B(r, 2r),

and C(2r, 0) (see Section 3).
In dimension 4, we get the following polytope (see Figure 2).
For the second method, one can observe that the dimension of Hnr is nothing else

that the cardinality of the set SC of all compositions (s0, . . . , sn−1) of N = ((n − 1)n/2)r −
l subjected to the constraints (4.15). Therefore, if SC is the set of all nonnegative integers
(s0, . . . , sn−1) satisfying the constraints (4.15) and FC is the associated generating function,
then the dimension of Hnr is the coefficient of qN in FC(q, q, . . . , q). The set SC consists of all
nonnegative integers points contained in the polytope of R

n

Pn :

xn−i−1 − xn−i + r ≥ 0, i ∈ Z

nZ

xi ≥ 0, i ∈ Z

nZ
.

(4.19)

(See Figure 3).
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Figure 2: An example of the polytope T4 in the case r = 4. The vertices are in (−1/2, r − 1/2, 2r − 1/2),
(r−2/3, 2r−2/3, 3r−2/3), (r, 2r−1, 3r−1), (r, 2r, 3r−2), (2r−1/2, 3r−1/2,−1/2), and (3r−1/2,−1/2, r−1/2).
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Figure 3: An example of the polytope P3 in the case r = 2.
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