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We study spectral properties of a family of quasiperiodic Schrödinger operators on the real line
in the adiabatic limit. We assume that the adiabatic iso-energetic curve has a real branch that is
extended along the momentum direction. In the energy intervals where this happens, we obtain
an asymptotic formula for the Lyapunov exponent and show that the spectrum is purely singular.
This result was conjectured and proved in a particular case by Fedotov and Klopp (2005).

1. Introduction

We consider the following Schrödinger equation:

(
Hz,εψ

)
(x) = − d2

dx2
ψ(x) + [V (x − z) +W(εx)]ψ(x) = Eψ(x), x ∈ R, (1.1)

where x �→ V (x) is 1-periodic, ζ �→ W(ζ) is 2π-periodic, and ε small is chosen so that the
potential V (· − z) +W(ε·) be quasi-periodic. Note that in this case, the family of equations
(1.1) is ergodic; see [1]; so its spectrum does not depend on z; see [2]. The operator Hz,ε can
be regarded as an adiabatic perturbation of the periodic operator H0:

H0 = − d2

dx2
+ V (x). (1.2)
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Figure 1: The iso-energy curve for “isolated band” model.

Equation (1.1) is one of the main models of solid state physics. The function ψ is the wave
function of an electron in a crystal with an external electric field. V represents the potential
of the perfect crystal; as such it is periodic. The potential W represents an external electric
field. In the semiconductors, this perturbation is slow-varying with respect to the field of the
crystal, [3]. It is natural to consider the semiclassical limit.

The Iso-Energy Curve

Let E(κ) be the dispersion relation associated to H0. Consider the complex and real-isoenergy
curves ΓC and ΓR defined by

ΓC(E) =
{
(κ, ζ) ∈ C

2;E(κ) +W(ζ) = E
}

;

ΓR(E) =
{
(κ, ζ) ∈ R

2;E(κ) +W(ζ) = E
}
.

(1.3)

Notice that the iso-energy curves ΓC(E) and ΓR(E) are 2π-periodic in ζ and κ and ΓC is the
Riemann surface uniformizing κ.

The real iso-energy curve has a well-known role for adiabatic problems [4]. The
adiabatic limit can be regarded as a “semiclassical” limit and the Hamiltonian E(κ) +W(ζ)
can be interpreted as a “classical” Hamiltonian corresponding to (1.1).

In the case when the interval E −W(R) contains one spectral band (we refer to that by
“isolated band” model), the iso-energy curve is presented in Figure 1. The real branches are
vertical curves, they are connected by complex loops (closed curves) lying on ΓC; loops are
represented by horizontal closed curves. In this case the connected components are extended
in κ-direction and bounded in ζ-direction.

In the case when the interval E−W(R) is contained in a spectral band (we refer to that
by the “band middle” model), the iso-energy curve is presented in Figure 2. The horizontal
curves are connected components of ΓR; the vertical loops are situated in ΓC. In this case the
connected components are bounded in κ direction and extended in ζ-direction.
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Figure 2: The iso-energy curve for “band middle” model.

When W has in a period exactly one maximum and one minimum, that are
nondegenerate, it is proved in [5] that in the energy intervals where the adiabatic iso-
energetic curves are extended along the momentum direction, the spectrum is purely
singular. This result leads to the following conjecture: in a given interval, if the iso-energy
curve has a real branch (a connected component of the real iso-energy curve ΓR, see Figure 1
and [5]) that is an unbounded vertical curve, then in the adiabatic limit, in this interval, the
spectrum is singular. This paper is devoted to prove this conjecture.

Heuristically when the real iso-energy curve is extended along the momentum axis,
the quantum states should be extended in momentum and thus localized in the position
space.

1.1. Results and Discussions

Now, we state our assumptions and results.

1.1.1. Assumptions on the Potentials

We assume the following.

(H1) V and W are periodic:

V (x + 1) = V (x), W(x + 2π) =W(x), ∀x ∈ R. (1.4)

(H2) V is real-valued and locally square-integrable.

(H3) W is real analytic in the strip SY = {z ∈ C; | Im z| < Y}.

We define

W− = inf
t∈R

W(t), W+ = sup
t∈R

W(t). (1.5)
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We define the spectral windowW(E) by

W(E) = E −W(R) = [E −W+, E −W−]. (1.6)

1.1.2. Assumptions on the Energy Region

To describe the energy regions where we study the spectral properties, we consider the
periodic Schrödinger operator H0 acting on L2(R) and defined by (1.2).

1.1.3. The Periodic Operator

The spectrum of (1.2) is absolutely continuous and consists of intervals of the real axis, say
[E2n+1, E2n+2] for n ∈ N, such that E1 < E2 ≤ E3 < E4, . . . , E2n ≤ E2n+1 < E2n+2, . . . and
En → +∞, n → +∞. The points (Ej)j∈N are the eigenvalues of the self-adjoint operator
obtained by considering H0 defined by (1.2) and acting in L2([0, 2]) with periodic boundary
conditions (see [6, 7]). The intervals [E2n+1, E2n+2], n ∈ N, are the spectral bands, and the
intervals (E2n, E2n+1), n ∈ N

∗, the spectral gaps. When E2n < E2n+1, one says that the nth gap is
open; when [E2n−1, E2n] is separated from the rest of the spectrum by open gaps, the nth band
is said to be isolated. The spectral bands and gaps are represented in Figure 4.

1.1.4. The Geometric Assumption

Let us describe the energy region where we study (1.1). We assume that J is a real compact
interval such that, for all E ∈ J , the window W(E) contains exactly N ≥ 1 isolated bands of
the periodic operator. So, we fix two positive integers n and N > 0 and assume that:

(H4a) The bands [E2(n+j)−1, E2(n+j)], j = 1, 2, . . . ,N, are isolated.

(H4b) For all E ∈ J, these bands are contained in the interior ofW(E).

(H4c): For all E ∈ J , the rest of the spectrum of H0 is outside ofW(E).

Remark 1.1. The geometric assumption assures that the iso-energy curve ΓR(E) contains a real
branch that is an unbounded vertical curve.

We asked that the window contains only isolated bands of the periodic operator to
have a control on the branch points of the Bloch quasimomentum and on its properties of
analyticities.

1.1.5. The Main Result

The main object of this paper is to prove the following.

Theorem 1.2. Let J be a real compact interval. We assume that (H1)–(H4) are satisfied. For ε > 0
sufficiently small, for almost all z ∈ R, one has

σac(Hz,ε) ∩ J = ∅. (1.7)

Here σac(Hz,ε) is the absolutely continuous spectrum of the family of (Hz,ε).



Advances in Mathematical Physics 5

Remark 1.3. (1) It is proved in [8] that for Σ = σ(H0) +W(R) = σ(H0) + [W−,W+], one has the
following for all ε ≥ 0, σ(Hz,ε) ⊂ Σ, and for any K ⊂ Σ, compact, there exists C > 0 such that
for all ε sufficiently small and all E ∈ K,

σ(Hz,ε) ∩
(
E − Cε1/2, E + Cε1/2

)
/= ∅. (1.8)

So, for an interval J as in Theorem 1.2, we have

σ(Hz,ε) ∩ J /= ∅. (1.9)

(2) Using the Ishii-Pastur-Kotani Theorem [1, 9], one can see that the result of
Theorem 1.2 is deduced from the positivity of the Lyapunov exponent. This will be done
by computing the asymptotics for the Lyapunov exponent. With the aim of simplifying the
introduction, we do not give it here; it is the subject of Section 3.1.

2. Periodic Schrödinger Operators

This section is devoted to the study of the periodic Schrödinger operator (1.2) where V is a
1-periodic, real-valued, L2

loc- function. We recall known facts needed on the present paper and
we introduce notations. Basic references are [6, 10–12].

2.1. Geometric Description

2.1.1. The SetW−1(R)

As E ∈ R, the set (E −W)−1(R) coincides with W−1(R). It is 2π-periodic. It consists of the
real line and of complex branches (curves) which are symmetric with respect to the real line.
There are complex branches beginning at the real extrema of W that do not cross again the
real line.

Consider an extremum of W of order ni on the real line, say ζi. Near ζi, the set W−1(R)
consists of a real segment and of ni −1 complex curves symmetric with respect to the real axis
and intersecting the real axis only on ζi. The angle between two neighboring curves is equal
to π/ni. Let Y > 0. We set SY = {−Y ≤ Im ζ ≤ Y}. We assume that Y is so small that

(i) SY is contained in the domain of analyticity of W ;

(ii) the setW−1(R)∩SY consists of the real line and of the complex lines passing through
the real extrema of W .

An example of subset W−1(R) is shown in Figure 3.

2.1.2. Notations and Description of (E −W)−1(σ(H0))

For all E ∈ J , we write

(E −W)−1(σ(H0)) ∩ R =
⋃

k∈Z

N⋃

j=1

{[
ϕ−j (E), ϕ

+
j (E)

]
+ 2kπ

}
, (2.1)
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Figure 3: A subset of W−1(R) ∩ SY .

with the following properties.

(i) ϕ−1 (E) < ϕ
+
1 (E) < ϕ

−
2 (E) < · · · < ϕ

−
N(E) < ϕ+

N(E), 0 < ϕ+
N(E) − ϕ−1 (E) < 2π.

(ii) As we deal with the case when the iso-energy curve has a real branch that
is extended along the momentum direction, without loss of generality we
consider that the connected component [ϕ−1 (E), ϕ

+
1 (E)] is associated to a connected

component of ΓR(E) which is an unbounded vertical curve. See Remark 2.3.

(iii) We generally define the following

ϕ−j+k+N(E) = ϕ−j (E) + 2kπ, ∀j ∈ {1, . . . ,N}, ∀k ∈ Z. (2.2)

We set Bj(E) = [ϕ−j (E), ϕ
+
j (E)], Z=∪Nj=1Bj(E),Gj(E) = ]ϕ+

j (E), ϕ
−
j+1(E)[, and GN(E) = (ϕ+

N(E),

ϕ−1 (E)+2π) = (ϕ+
N(E), 2π)∪(2π, 2π +ϕ−1 (E)). Let (ζji )1≤i≤pj be the extrema of W in Gj . We recall

that nji is the order of ζji .
We have the following description.

Lemma 2.1. Fix [A,B] a compact interval of R.
There exists a finite number p of real extrema ofW in [A,B].

(i) If p = 0, there exists Y > 0 such that

(E0 −W)−1(R) ∩ {ζ ∈ SY ; Re ζ ∈ [A,B]} = [A,B]. (2.3)

(ii) For p > 0, one denotes by {ζ1, . . . , ζp} the real extrema ofW in [A,B]. There exists Y > 0
and a sequence {Σ1

i , . . . ,Σ
ni−1
i }i∈{1...p} of disjoint and strictly vertical lines of C+ starting at

ζi such that

(E0 −W)−1(R) ∩ {ζ ∈ SY ; Re ζ ∈ [A,B]} = [A,B]
p⋃

i=1

(
ni−1⋃

k=1

(
Σk
i ∪ Σk

i

))

. (2.4)
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2.2. Bloch Solutions

Let ψ be a solution of the equation

− d2

dx2
ψ(x,E) + V (x)ψ(x,E) = Eψ(x,E), x ∈ R (2.5)

satisfying the relation

ψ(x + 1,E) = λ(E)ψ(x,E) (2.6)

for all x ∈ R and some nonvanishing complex number λ(E) independent of x. Such a solution
exists and is called the Bloch solution and λ(E) is called Floquet multiplier. We discuss its
analytic properties as a function of E.

As in Section 1.1.2, we denote the spectral bands of the periodic Schrödinger operator
by [E2n+1, E2n+2], n ∈ N. Consider S± two copies of the complex plane E ∈ C cut along the
spectral bands. Paste them together to get a Riemann surface with square root branch points.
We denote this Riemann surface by S.

One can construct a Bloch solution ψ(x,E) meromorphic on S. It is normalized by the
condition ψ(1,E) ≡ 1. The poles of this solution are located in the open spectral gaps or at their
edges; the closure of each spectral gap contains exactly one pole that, moreover, is simple. It
is located either on S+ or on S−. The position of the pole is independent of x.

For E ∈ S, we denote by Ê the point on S different from E and having the same
projection on C as E. We let

ψ̂(x,E) = ψ
(
x, Ê
)
, Ê ∈ S. (2.7)

The function ψ̂(x,E) is another Bloch solution of (2.5). Except at the edges of the spectrum,
the functions ψ and ψ̂ are linearly independent solutions of (2.5). In the spectral gaps, ψ and
ψ̂ are real-valued functions of x, and, on the spectral bands, they differ only by complex
conjugation.

2.3. The Bloch Quasimomentum

Consider the Bloch solution ψ(x,E). The corresponding Floquet multiplier λ(E) is analytic
on S. Represent it in the form λ(E) = exp(ik(E)). The function E �→ k(E) is the Bloch
Quasimomentum of H0. Its inverse k �→ E(k) is the dispersion relation of H0. A branching point
ζ is a point where k′(ζ) = 0.

Let D be a simply connected domain containing no branch point of the Bloch
Quasimomentum. In D, one can fix an analytic single-valued branch of k, say k0. All the
other single-valued branches of k that are analytic in D are related to k0 by the following
formulae:

k(E) = ±k0(E) + 2πl, l ∈ Z. (2.8)
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Figure 4: Bands, gaps, and the action of mapping of the quasimomentum kp on some curves.

Consider C+, the upper half plane of the complex plane. On C+, one can fix a single-valued
analytic branch of the Quasimomentum continuous up to the real line. It can be determined
uniquely by the conditions Re k(E+ i0) = 0 and Im k(E+ i0) > 0 for E < E1. We call this branch
the main branch of the Bloch Quasimomentum and denote it by kp.

The function kp conformally maps C+ onto the first quadrant of the complex plane
cut at compact vertical slits starting at the points πl, l ∈ N. It is monotonically increasing
along the spectral zones so that [E2n−1, E2n], the nth spectral band, is mapped on the interval
[π(n−1), πn]. Along any open gap, Re kp(E+ i0) is constant, and Im kp(E+ i0) is positive and
has only one nondegenerate maximum.

Consider C0, the complex plane cut along the spectral the real line from E1 to +∞. In
Figure 4, we drew two curves in C0 and their images under the transformation E �→ kp(E).

All the branch points of kp are of square root type. Let El be a branch point of kp. In a
sufficiently small neighborhood of El, the function kp is analytic in

√
E − El, and

kp(E) − kp(El) = cl
√
E − El + o(E − El), cl /= 0. (2.9)

Finally, we note that the main branch can be continued analytically to the complex plane cut
along (−∞, E1] and the spectral gaps ]E2n, E2n+1[, n ∈ N

∗, of the periodic operator H0.

2.4. A Meromorphic Function

Now let us discuss a function playing an important role in the adiabatic constructions.
In [10], it is shown that, on S, there is a meromorphic function ω having the following

properties:

(i) the differential Ω = ωdE is meromorphic; its poles are the points of P ∪Q, where P
is the set of poles of E �→ ψ(x,E), and Q is the set of zeros of k′;

(ii) all the poles of Ω are simple;
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(iii) if the residue of Ω at a point p is denoted by respΩ, one has

respΩ = 1, ∀p ∈ P \Q,

resqΩ = −1
2
, ∀q ∈ Q \ P,

resrΩ =
1
2
, ∀r ∈ P ∩Q.

(2.10)

(iv) if E ∈ S projects into a gap, then ω(E) ∈ R.

(v) if E ∈ S projects inside a band, then ω(E) = ω(Ê).

2.4.1. The Complex Momentum

It is the main analytic object of the complex WKB method. Let ζ ∈ SY . We define κ, in D(W)
the domain of analyticity of W, by

κ(ζ) = k(E −W(ζ)). (2.11)

Here, k is the Bloch Quasimomentum defined in Section 2.3. Though κ depends on E, we omit
the E-dependence. Relation (2.11) translates the properties of k into properties of κ. Hence,
ζ �→ κ(ζ) is a multivalued analytic function, and its branch points are related to the branch
points of the Quasimomentum by the relations

E −W(ζ) = El, l = 1, 2, 3, . . . . (2.12)

Let ζ0 be a branch point of κ. If W ′(ζ0)/= 0, then ζ0 is a branch point of square root type.
If D ⊂ D(W) is a simply connected set containing no branch points of κ, we call it

regular. Let κp be a branch of the complex momentum analytic in a regular domain D. All the
other branches that are analytic in D are described by the following formulae:

κ±m = ±κp + 2πm. (2.13)

Here ± and m ∈ Z are indexing the branches.

2.4.2. Index of an Interval [ϕ−j (E), ϕ
+
j (E)]

Fix j ∈ {1, . . . ,N}. Fix a continuous branch κj of the complex momentum on [ϕ−j (E), ϕ
+
j (E)].

We define

κ+j = κj
(
ϕ+
j

)
; κ−j = κj

(
ϕ−j

)
; pjπ = κ+j − κ

−
j . (2.14)

pj is the index of [ϕ−j (E), ϕ
+
j (E)] associated to κj .

Let us give some properties of pj .
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Lemma 2.2. Assume that (H4) is satisfied. The indices pj have the following properties.

(1) For j ∈ {1, . . . ,N}, pj ∈ {−1, 0, 1}.
(2)
∑N

j=1 |pj | ∈ 2N.

Proof. The points (E −W)(ϕ−j (E)) and (E −W)(ϕ+
j (E)) are the ends of a band of σ(H0): they

are distinct or coincide. If they coincide, that is, if (E−W)(ϕ−j (E)) = (E−W)(ϕ+
j (E)), the index

pj satisfies pj = 0. Else, we consider kj the branch of the Quasimomentum associated to κj .
We have that

∣
∣
∣kj
(
(E −W)

(
ϕ−j (E)

))
− kj
(
(E −W)

(
ϕ+
j (E)

))∣∣
∣ = π, (2.15)

see (2.8), and |pj | = 1.
Let us prove point (2). As for any j ∈ {1, . . . ,N}, we have |pj | = pjmod 2. We write

N∑

j=1

∣∣pj
∣∣ ≡

N∑

j=1

pj mod 2,

N∑

j=1

pj =
N∑

j=1

κj
(
ϕ+
j

)
− κj
(
ϕ−j

)

π
=
κN
(
ϕ+
N

)
− κ1
(
ϕ−1
)

π
+
N−1∑

j=1

κj+1

(
ϕ−j+1

)
− κj
(
ϕ+
j

)

π
.

(2.16)

For j ∈ {1, . . . ,N − 1}, (E −W)(ϕ−j+1(E)) and (E −W)(ϕ+
j (E)) are the ends of a same gap and

kj+1

(
(E −W)

(
ϕ−j+1(E)

))
≡ kj
(
(E −W)

(
ϕ+
j (E)

))
[2π]. (2.17)

By periodicity, (E −W)(ϕ−1 (E)) and (E −W)(ϕ+
N(E)) are the ends of the same gap.

This ends the proof of Lemma 2.2.

If pj /= 0, we say that we cross a band. In this case, (E −W)(ϕ−j )/= (E −W)(ϕ+
j ) and the

associated connected component of the iso-energy curve is unbounded vertically.
We notice that p1 /= 0, and thus

∑N
j=1 |pj | > 0.

Remark 2.3. We can choose the determination of κ such that p1 = 1.

2.4.3. Tunneling Coefficients

For j ∈ {1, . . . ,N}, we denote by γj a smooth closed curve that goes once around
[ϕ+

j (E), ϕ
−
j+1(E)]. Notice that this curve is the projection of a closed curve on the complex

Riemann surface κ(ζ) = k(E −W(ζ)). We consider the tunneling actions Sj given by

Sj(E) = i
∮

γj

κ(ζ)dζ, ∀j ∈ {1, . . .N}. (2.18)

It is straightforward to prove that for E ∈ J, each of these actions is real and nonzero and
that Sj(E) is analytic in a complex neighborhood of J (for analogous statements, we refer to
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[13, 14]). By definition, we choose the direction of the integration so that all the tunneling
actions is positive. We set

tj = e−(1/2ε)Sj (E). (2.19)

Sj(E) is called the tunneling action; we choose the branch κ so that on J, Sj(E) is positive. We
define

T(E, ε) =
N∏

j=1

tj . (2.20)

So we get

T(E, ε) = e−
∑N

j=1 Sj (E)/2ε. (2.21)

Sj(E) being positive we get that T is exponentially small. For more details on the properties
of tunneling coefficients, see [5, Section 10].

3. The Proof of Theorem 1.2

3.1. The Asymptotics of the Lyapunov Exponent

3.1.1. Spectral Results

One of the main objects of the spectral theory of quasi-periodic operators is the Lyapunov
exponent (for a definition and additional information, see, e.g., [9]). The main result of this
section is as follows.

Theorem 3.1. We assume that the assumptions (H1)–(H4) are satisfied. Then, on the interval J, for
sufficiently small irrational ε/2π, the Lyapunov exponentΘ(E, ε) of (1.1) is positive and satisfies the
asymptotics

Θ(E, ε) =
ε

2π

N∑

j=1

ln
1
tj

+ o(1) =
1

4π

N∑

j=1

Sj(E) + o(1). (3.1)

This theorem implies that if ε/2π is sufficiently small and irrational, then, the
Lyapunov exponent is positive for all E ∈ J.

3.2. The Monodromy Matrix and the Lyapunov Exponents

The main object of our study in this subsection is the monodromy matrix for the family of
(1.1), and we define it briefly (we refer the reader to [5, 13]). In this paper, we compute the
asymptotics of its Fourier expansion in the adiabatic limit.
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3.2.1. Definition of the Monodromy Matrix

Fix E ∈ R. Consider the family of differential equations indexed by z ∈ R:

(

− d2

dx2
+ V (x − z) +W(εx)

)

ψ(x) = Eψ(x). (3.2)

Definition 3.2. We say that (ψi)i∈{1,2} is a consistent basis of solutions to (3.2) if the two
functions ((x, z) �→ ψi(x, z, E))i∈{1,2} are a basis of solutions to (3.2) whose Wronskian is
independent of z and that are 1-periodic in z, that is, that satisfy

∀x ∈ R, ∀z ∈ R, ∀i ∈ {1, 2}, ψi(x, z + 1, E) = ψi(x, z, E). (3.3)

We refer the reader to [5, 10] about the existence and details on consistent basis of
solutions to (3.2).

The functions ((x, z) �→ ψi(x + 2π/ε, z + 2π/ε, E))i∈{1,2} being also solutions of (3.2),
we get the relation

Ψ
(
x +

2π
ε
, z +

2π
ε
, E

)
=M(z, E)Ψ(x, z, E), (3.4)

where

(i) Ψ(x, z, E) =
(

ψ1(x,z,E)

ψ2(x,z,E)

)
,

(ii) M(z, E) is a 2 × 2-matrix with coefficients independent of x.

The matrix M is called the monodromy matrix associated to the consistent basis (ψ1,2).
We recall the following properties of this matrix:

detM(z, E) ≡ 1, M(z + 1, E) =M(z, E), ∀z ∈ R. (3.5)

The Matrix M belongs to SL (2,R) which is known to be isomorph to SU (1, 1).

3.3. The Lyapunov Exponents and the Monodromy Equation

Consider now a 1-periodic, SL(2,C)-valued function, say, z �→ M̃, and h > 0 irrational.
Consider the finite difference equation:

Fn+1 = M̃(z + nh)Fn ∀n ∈ Z, Fn ∈ C
2. (3.6)

Going from (1.1) to the (3.6) is close to the monodromization transformation introduced in
[8] to construct Bloch solutions of difference equation. Indeed, it appears that the behavior of
solutions of (1.1) for x → ∓∞ repeats the behavior of solutions of the monodromy equation
for n → ∓∞. And it is a well-known fact that the spectral properties of the one-dimensional
Schrödinger equations can be described in terms of the behavior of its solutions as x → ∓∞.
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The Lyapunov exponent of the finite difference equation (3.6) is

θ
(
M̃, h

)
= lim

N �→+∞

1
N

log ‖PN(z, h)‖, (3.7)

where the matrix cocycle (PN(z, h))N∈N is defined as

PN(z, h) = M̃(z +Nh) · M̃(z + (N − 1)h) · · ·M̃(z + h) · M̃(z). (3.8)

It is well known that if h is irrational, and M̃ is sufficiently regular in z, then the limit (3.7)
exists for almost all z and is independent of z.

Set h ≡ 2π/ε [2]. Let M be the monodromy matrix associated to a consistent basis
(ψ1,2). Consider the monodromy equation:

Fn+1 =M(z + nh, E)Fn ∀n ∈ Z, Fn ∈ C
2. (3.9)

The Lyapunov exponent of the monodromy equation (3.9) is defined by

θ(E, ε) = θ(M(z, E), h). (3.10)

There are several deep relations between (3.2) and the monodromy equation (3.9) (see [5,
15]). We describe only one of them. Recall that Θ(E, ε) is the Lyapunov exponent of (1.1). We
have the following result.

Theorem 3.3 (see [5]). Assume that ε/2π is irrational. The Lyapunov exponents Θ(E, ε) and
θ(E, ε) are related by the following relation:

Θ(E, ε) =
ε

2π
θ(E, ε). (3.11)

3.4. The Asymptotics of the Monodromy Matrix

As W and V are real on the real line, we construct a monodromy matrix of the following
form:

M(z, E) =

⎛

⎝
A(z, E) B(z, E)

B(z, E) A(z, E)

⎞

⎠. (3.12)

To get (3.12), it suffices to consider a basis of solutions of the form (u;u). The details on the
existence and the construction of such a basis are developed in [13].

The following result gives the asymptotics of A and B in the adiabatic case.

Theorem 3.4. Let E0 be in J. There exists Y > 0 and V0, a neighborhood of E0, such that, for
sufficiently small ε, the family of (3.2) has a consistent basis of solutions for which the corresponding
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monodromy matrixM is analytic in (z, E) ∈ {z ∈ C; | Im z| < Y/ε} × V0 and has the form (3.12).
When ε tends to 0, the coefficients A and B admit the asymptotics

A = A+(E, ε)e−2iQ+πz[1 + o(1)], B = B+(E, ε)e−2iP+πz[1 + o(1)], 0 < Im z <
Y

ε
, (3.13)

A = A−(E, ε)e2iQ−πz[1 + o(1)], B = B−(E, ε)e2iP−πz[1 + o(1)], −Y
ε
< Im z < 0. (3.14)

The integers P−, P+ andQ−, Q+ ∈ Z are specified in Section 3. There exists a constant C > 1 such that
for ε > 0 sufficiently small and E ∈ V0 ∩ R, one has

1
C
< T(E, ε)|A±(E, ε)| < C,

1
C
< T(E, ε)|B±(E, ε)| < C, (3.15)

where T(E, ε) is defined in (2.21).
For Y1 and Y2 such that 0 < Y1 < Y2 < Y , there exists V = V (Y1, Y2) a neighborhood of E0

such that the asymptotics (3.13) and (3.14) for A and B are uniform in (z, E) ∈ {z ∈ C; Y1/ε <
| Im z| < Y2/ε} × V.

Remark 3.5. The coefficientsA+,A−, B+, and B− are the leading terms of the asymptotics of the
Q∓th and P∓th Fourier coefficients of the monodromy matrix coefficients. From Theorem 3.4,
one deduces that, in the strip {−Y < Im ζ < Y}, only a few Fourier series terms of the
monodromy matrix dominate.

3.5. The Proof of Theorem 3.1

3.5.1. The Upper Bound

Fix P = max |P∓|, |Q∓|. The asymptotics (3.13) and (3.14) and estimates (3.15) imply the
following estimates for the coefficients of M(z, E), the monodromy matrix:

|A|, |B| ≤ C
(
y0
)
· T(E)−1e2πPy0/ε, Im z =

y0

ε
,

|A|, |B| ≤ C
(
y0
)
· T(E)−1e2πPy0/ε, Im z = −

y0

ε
.

(3.16)

Here, C(y0) is a positive constant independent of ε,Re z, and E. The estimates are valid for
sufficiently small ε. We recall that M is analytic and 1-periodic in z. Equation (3.16) and the
maximum principle imply that

|A|, |B| ≤ 2C
(
y0
)
T(E)−1 exp

(
2πPy0

ε

)
, z ∈ R. (3.17)
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This leads to the following upper bound for the Lyapunov exponent for the matrix cocycle
generated by M(z, E):

θ(E, ε) ≤ log
(
T(E)−1

)
+ C +

2πPy0

ε
, (3.18)

where C is a constant independent of E and ε. Using (3.11) one gets

Θ(E, ε) ≤ ε

2π
log
(
T(E)−1

)
+ εC + 2πPy0. (3.19)

3.5.2. The Lower Bound

For (M(z, ε)0<ε<1) a family of SL(2,C)-valued, 1-periodic functions of z ∈ C, and h an
irrational number, we recall the following result obtained in [8].

Proposition 3.6. Fix ε0 > 0. Assume that there exist y0 and y1 such that 0 < y0 < y1 <∞ and such
that, for any ε ∈ (0, ε0), one has

(i) the function z → M(z, ε) is analytic in the strip S = {z ∈ C; 0 ≤ Im z ≤ y1/ε};
(ii) in the strip S1 = {z ∈ C;y0/ε ≤ Im z ≤ y1/ε} ⊂ S,M(z, ε) admits the representation

M(z, ε) = λ(ε)ei2πn0z · (M0(ε) +M1(z, ε)); (3.20)

for some constant λ(ε), some integer n0, and a matrixM0(ε), all of them independent of z;

(iii) M(z, E) =
( 1 0

β(ε) α(ε)

)
;

(iv) there exist constants β > 0 and α ∈ (0, 1) independent of ε such that |α(ε)| ≤ α and
|β(ε)| ≤ β;

(v) m(ε) = supz∈S1
‖M1(z, ε)‖ → 0 as ε → 0.

Then, there exists C > 0 and ε1 > 0 (both depending only on y0, y1, α, β, and ε �→ m(ε)) such that,
if 0 < ε < ε1, one has

θ(M(·, ε), h) > log|λ(ε)| − Cm(ε). (3.21)

Proposition 3.6 is used by applying the arguments of [5, 10] to get the lower bound for
the Lyapunov exponent.

First for σ =
(

0 1

1 0

)
we prove that the matrix σM(z, E)σ completes the assumption of

Proposition 3.6.
Let y0 and y1 be fixed such that 0 < y0 < y1 < Y . The asymptotics of the monodromy

matrix are uniform for z in S = {z ∈ C; y0/ε ≤ Im z ≤ y1/ε} and E ∈ V0.
Let us assume that n =NN in (5.16) is even; then the following relations hold:

Q− = Q+ + 1, Q− = P− + 1, Q− = P+. (3.22)
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Equation (3.22) is derived from the expression of Q± and P±, given in Section 5.3. λ±j , β
±
j are

equals for 2 ≤ j ≤ N. The first expression of formula (3.22) deduced the relation between β+1
and β−1 (see (5.27) and (5.32)), the second one from the relation between λ−1 and β−1 (see (5.21)
and (5.32)), and the last one from the relation between λ+1 and β−1 (see (5.17) and (5.32)). We
notice that (3.22) depends only on the indices of G1 because we constructed the consistent
basis near [ϕ−1 (E), ϕ

+
1 (E)]. See Section 4.4.

For E ∈ V0 ∩ R and z ∈ S, Theorem 3.4 implies that

A(z, E) = A−(E, ε)e−2πiQ−z(1 + o(1)),
A(z, E)

A(z, E)
= o(1),

B(z, E)

A(z, E)
= o(1),

B(z, E)

A(z, E)
= c(E)(1 + o(1)),

(3.23)

where c(E) is independent of z and bounded by a constant uniformly in ε and E. So, we have

σ ·M(z, E) · σ = A−(E, ε)e−2πiQ−z ·
((

1 0

c(E) 0

)

+ o(1)

)

. (3.24)

This gives that the matrix-valued function

z �−→ σ ·M(z, E) · σ (3.25)

satisfies the assumptions of Proposition 3.6.

Remark 3.7. When n =NN in (5.16) is odd, then we get

Q+ = Q− + 1, P− = Q+, P+ + 1 = Q+. (3.26)

For E ∈ V0 ∩ R and z ∈ S, Theorem 3.4 implies that

A(z, E) = A+(E, ε)e−2πiQ+z(1 + o(1)),
A(z, E)
A(z, E)

= o(1),

B(z, E)
A(z, E)

= c(E)(1 + o(1)),
B(z, E)
A(z, E)

= o(1),

(3.27)

where c(E) is independent of z and bounded by a constant uniformly in ε and E. So, we have

σ ·M(z, E) · σ = A+(E, ε)e−2πiQ+z ·
((

0 c(E)

0 1

)

+ o(1)

)

. (3.28)

The most important properties of the matrix M(z, E) in Proposition 3.6 are that the bigger
eigenvalue is 1 [8].
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Using (3.21), we get that the Lyapunov exponent θ(E, ε) of the matrix cocycle
associated to (M(·, E), h) satisfies the estimates

θ(E, ε) ≥ log|A−| + o(1). (3.29)

Taking into account (1.2) we get that

Θ(E, ε) ≥ ε

2π
log|A−| + o(ε). (3.30)

By (3.15) we get

Θ(E, ε) ≥ ε

2π
log
(
T(E)−1

)
+O(ε). (3.31)

3.5.3. Conclusion

Now we obtain (3.1), by comparing (3.19) and (3.31). Indeed we see that

Θ(E, ε) =
ε

2π
log
(
T(E)−1

)
+ o(1). (3.32)

The expression of T(E) given by (3.32) and (3.31) gives (3.1) for any E ∈ V0 ∩ R.
Recall that V0 ∩R is an open interval containing E0 ∈ J . The above construction can be

carried out for any E0 ∈ J. The end of the proof of Theorem 1.2 follows from the compactness
of the interval J.

4. The Complex WKB Method for Adiabatic Problems

In this section, following [10, 16, 17], we describe the complex WKB method for adiabatically
perturbed periodic Schrödinger equations:

− d2

dx2
ψ(x) + [V (x) +W(εx + ζ)]ψ(x) = Eψ(x), x ∈ R. (4.1)

Here, V is 1-periodic and real valued, ε is a small positive parameter, and the energy E is
complex; one assumes that V is L2

loc and that W is analytic in a strip in the neighborhood SY
of the real line.

The parameter ζ is an auxiliary complex parameter used to decouple the slow variable
ζ = εx and the fast variable x. The idea of this method is to study solutions of (4.1) in some
domains of the complex plane of ζ and then to recover information on their behavior in x ∈
R. Therefore, for D being a complex domain, one studies solutions satisfying the following
condition:

ψ(x + 1, ζ) = ψ(x, ζ + ε), ∀ζ ∈ D. (4.2)
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The aim of the WKB method is to construct solutions to (4.1) satisfying (4.2) and that have
simple asymptotic behavior when ε tends to 0. This is possible in certain special domains of
the complex plane of ζ. These domains will depend continuously on V,W, and E. We will
use these solutions to compute the monodromy matrix; we consider V and W as fixed and
construct the WKB objects and solutions in a uniform way for energies near E.

4.1. Standard Behavior of Consistent Solutions

We start by defining another analytic object central to the complex WKB method, the canonical
Bloch solutions. Then, we describe the standard behavior of the solutions.

4.1.1. Canonical Bloch Solutions

To describe the asymptotic formulae of the complex WKB method, one needs to construct
Bloch solutions to the following equation

− d2

dx2
ψ(x) + V (x)ψ(x) = E(ζ)ψ(x), E(ζ) = E −W(ζ), x ∈ R, (4.3)

that are moreover analytic in ζ on a given regular domain.
Let ζ0 be a regular point (i.e., ζ0 is not a branch point of κ). Let E0 = E(ζ0). Assume that

E0 /∈ P ∪Q. Let U0 be a sufficiently small neighborhood of E0, and let V0 be a neighborhood of
ζ0 such that E(V0) ⊂ U0. In U0, we fix a branch of the function

√
k′(E) and consider ψ±(x,E),

the two branches of the Bloch solution ψ(x,E) and Ω±, and the corresponding branches of Ω
(see Section 2.4.). For ζ ∈ V0, we set

Ψ±(x, ζ) = q(E)e
∫E
E0

Ω±ψ±(x,E), q(E) =
√
k′(E), E = E(ζ). (4.4)

The functions Ψ± are called the canonical Bloch solutions normalized at the point ζ0.
The properties of the differential Ω imply that the solutions Ψ± can be analytically

continued from V0 to any regular domain containing V0.
The Wronskian of Ψ± satisfies (see [13])

w(Ψ+(·, ζ),Ψ−(·, ζ)) = w(Ψ+(·, ζ0),Ψ−(·, ζ0)) = k′(E0)w
(
ψ+(·, ζ0), ψ−(·, ζ0)

)
. (4.5)

For E0 /∈Q ∪ {El}, the Wronskian w(Ψ+(·, ζ),Ψ−(·, ζ)) is nonzero.

4.2. Solutions Having Standard Asymptotic Behavior

Fix E = E0. Let D be a regular domain (i.e., D ⊂ D(W), and simply connected set containing
no branch points of κ). Fix ζ0 ∈ D so that E(ζ0)/∈ P ∪ Q. Let κ be a continuous branch of
the complex momentum in D, and let Ψ± be the canonical Bloch solutions normalized at ζ0

defined on D and indexed so that κ is the Quasimomentum for Ψ+.
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Definition 4.1. Let σ ∈ {+,−}. We say that, in D, a consistent solution f has standard behavior
(or standard asymptotics) if

(i) there exists V0, a complex neighborhood of E0, and X > 0 such that f is defined and
satisfies (4.1) and (4.2) for any (x, ζ, E) ∈ (−X,X) ×D × V0;

(ii) f is analytic in ζ ∈ D and in E ∈ V0;

(iii) for any compact set K ⊂ D, there exists V ⊂ V0, a neighborhood of E0, such that,
for (x, ζ, E) ∈ (−X,X) ×K × V , f has the uniform asymptotic:

f = eσ(i/ε)
∫ζ
ζ0
κ(u)du(Ψσ + o(1)) as ε tends to 0; (4.6)

(iv) this asymptotic can be differentiated once in x without loosing its uniformity
properties. We set

f∗(x, ζ, E, ε) = f
(
x, ζ, E, ε

)
. (4.7)

We call ζ0 the normalization point for f. To say that a consistent solution f has standard
behavior, we will use the following notation:

f ∼ exp

(

σ
i

ε

∫ ζ

ζ0

κ(u)du

)

Ψσ. (4.8)

4.3. Some Results on the Continuation of Asymptotics

4.3.1. Description of the Stokes Lines near [ϕ−1(E), ϕ
+
1 (E)]

This section is devoted to the description of the Stokes lines under assumption (H4).

4.3.2. Definition

The definition of the Stokes lines is fairly standard [13, 15]. The integral ζ �→
∫ζ
κ(u)du has the

same branch points as the complex momentum. Let ζ0 be one of them. Consider the curves
beginning at ζ0 and described by the following equation:

Im
∫ ζ

ζ0

(κ(ξ) − κ(ζ0))dξ = 0. (4.9)

These curves are the Stokes lines beginning at ζ0. According to (2.8), the Stokes line definition
is independent of the choice of the branch of κ.

Assume that W ′(ζ0)/= 0. Equation (2.9) implies that there are exactly three Stokes lines
beginning at ζ0. The angle between any two of them at this point is equal to 2π/3. Indeed for
ζ near ζ0, we have

κ(ζ) = κ(ζ0) + c
√
ζ − ζ0(1 + o(1)). (4.10)
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σ−1 (E)

ϕ−1 (E)

σ−1 (E) σ+
1 (E)

ϕ+
1 (E)

σ+
1 (E)

Figure 5: Stokes lines for E ∈ J.

So

∫ ζ

ζ0

(κ(ζ) − κ(ζ0))dζ = c(ζ − ζ0)
3/2(1 + o(1)). (4.11)

4.3.3. Stokes Lines for E0 ∈ J

We describe the Stokes lines beginning at ϕ−1 (E) and ϕ+
1 (E). Since W is real on R, the set of the

Stokes lines is symmetric with respect to the real line.
First, κ1 is real on the interval [ϕ−1 (E), ϕ

+
1 (E)]; therefore this set is a Stokes line starting

at ϕ−1 (E). The two other Stokes lines beginning at ϕ−1 (E) are symmetric with respect to the
real axis. We denote by σ−1 (E) the Stokes line going downward and by σ1(E) its symmetric.
Similarly, we denote by σ+

1 (E) and σ+
1 (E) the two other Stokes lines starting at ϕ+

1 (E), and
σ+

1 (E) goes upward. These Stokes lines are represented in Figure 5.

Lemma 4.2. The Stokes lines σ−1 (E) and σ
+
1 (E) satisfy the following properties.

(i) The Stokes lines σ−1 (E) and σ
+
1 (E) stay vertical.

(ii) σ−1 (E) and σ
+
1 (E) do not intersect one another.

The proof of this lemma is similar to the studies done in [5, 14, 17, 18]. We do not give
the details.

4.4. Construction of a Consistent Basis near [ϕ−1(E), ϕ
+
1 (E)]

We recall this result, proved in [17].

Proposition 4.3 (see [17]). Fix E0 ∈ J, and let κ1 be a continuous determination of the complex
momentum on [ϕ−1 (E), ϕ

+
1 (E)]. There exists a real number Y > 0, a complex neighborhood V1 of

E0, and a consistent basis (f1, (f1)
∗) of solutions of (4.1) such that f1 has the standard asymptotic
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behavior:

f1 ∼ e(i/ε)
∫
κ̃1Ψ+

1 , (4.12)

f∗1 (x, ζ, E) = f(x, ζ, E) (4.13)

to the left of σ−1 (E) ∪ σ
+
1 (E) (resp., to the right of σ+

1 (E) ∪ σ
−
1 (E)). The determination κ̃1 is the

continuation of κ1 through {ζ ∈ (σ−1 (E) ∪ σ
+
1 (E)) ∩ SY ; Imκ1(ζ) > 0}(resp., through {ζ ∈

(σ−1 (E) ∪ σ
+
1 (E)) ∩ SY ; Imκ1(ζ) < 0}).

We mimic the analysis done in [5, Section 5]. Precisely, we start by a local construction
of the solution f using canonical domain; then, we apply continuation tools, that is, the
rectangle lemma, the adjacent domain principle, and the Stokes Lemma.

5. The Proof of Theorem 3.4

The Proof of Theorem 3.4 follows the same ideas as the computations given in [5, Section
10.2]. Below we give the details for the proof of (3.13), (3.14), and (3.15).

5.1. Strategy of the Computation

We now begin with the construction of the consistent basis the monodromy matrix of which
we compute. Recall that (H1)–(H4) are satisfied.

In the present section, we construct and study a solution f of (3.2) satisfying (3.3).
To use the complex WKB method, we perform the following change of variable in

(3.2):

x − z −→ x, εz −→ ζ. (5.1)

Then (3.2) takes the form (4.1). In the new variables, the consistency condition (3.3) becomes
(4.2). Note also that in the new variables, for two solutions to (4.1) to form a consistent basis,
in addition to being a basis of consistent solutions, their Wronskian has to be independent
of ζ.

Consider the basis (f1, f
∗
1 ) constructed around [ϕ−1 , ϕ

+
1 ] as in Proposition 4.3. Then the

monodromy matrix associated to the basis (f1, f
∗
1 ) (defined in Section 3.2.1) satisfies

(
f1(x, ζ, E, ε)

f∗1 (x, ζ, E, ε)

)

=M(ζ, E, ε)

(
f1(x, ζ − 2π,E, ε)

f∗1 (x, ζ − 2π,E, ε)

)

. (5.2)
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The aim of this section is the computation of M(ζ, E, ε). The definition of the monodromy
matrix implies that

A(ζ) =M1,1 =
w
(
f1(x + 2π, ζ)f∗1 (x, ζ)

)

w
(
f1(x, ζ), f∗1 (x, ζ)

) , B(ζ) =M12 =
w
(
f1(x, ζ), f1(x, ζ + 2π)

)

w
(
f1(x, ζ), f∗1 (x, ζ)

) .

(5.3)

This gives that the monodromy matrix is analytic in ζ in the strip SY and in E in a constant
neighborhood of E0. By the definition of f1 we get that A and B are ε-periodic in ζ ∈ SY . This
is an immediate consequence of the properties of f1.

Therefore, we will compute the Fourier series of A and B. The strategy of the
computation is based on the ideas of [5] and we first recall some notions presented there.
We refer the reader to this paper for more details.

Let h and g have a standard asymptotic behavior in regular domains Dh and Dg and
solutions of (4.1):

h ∼ e(i/ε)
∫ζ
ζh
κhdζψh(x, ζ), g ∼ e(i/ε)

∫ζ
ζg
κgdζψg(x, ζ). (5.4)

Here, κh (resp., κg) is an analytic branch of the complex momentum in Dh (resp., Dg), Ψh

(resp., Ψg) is the canonical Bloch solution defined on Dh (resp., Dg), and ζh (resp., ζg) is the
normalization point for h (resp., g).

As the solutions h and g satisfy the consistency condition (4.2), their Wronskian is
ε-periodic in ζ.

5.1.1. Arcs

We assume that Dg ∩ Dh contains a simply connected domain D̃. Let γ be a regular curve
going from ζg to ζh in the following way: staying in Dg , it goes from ζg to some point in D̃,
and then, staying in Dh, it goes to ζh. We say that γ is an arc associated to the triple h, g, and
D̃.

As D̃ is simply connected, all the arcs associated to the triple, h, g, and D̃. As D̃
is simply connected, all the arcs associated to one and the same triple can naturally be
considered as equivalent; we denote them by γ(h, g, D̃).

We continue κh and κg analytically along γ(h, g, D̃). From the properties of κ, we
deduce that, for V a small neighborhood of γ , one has

κg(ζ) = σκh + 2πm, for some m ∈ Z, σ ∈ {1,−1}. (5.5)

σ = σ, h, g, D̃ is called the signature of γ(h, g, D̃), and m = m(h, g, D̃) the index of γ(h, g, D̃).

5.1.2. The Meeting Domain

Let D̃ be as above. We call D̃ a meeting domain, if, in D̃, the functions Imκh and Imκg do not
vanish and are of opposite signs.
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Note that, for small values of ε, whether ζ �→ g(x, ζ) and ζ �→ h(x, ζ) increase or

decrease is determined by the exponential factor e
∫ζ
ζg κgdζ and e

∫ζ
ζh κhdζ. So, roughly, in a

meeting domain, along the lines Im ζ = Const, the solutions h and g increase in opposite
directions.

5.1.3. The Action and the Amplitude of an Arc

We call the integral

S
(
h, g, D̃

)
=
∫

γ(h,g,D̃)
κgdζ, (5.6)

the action of the arc γ = γ(h, g, D̃). Clearly, the action takes the same value for equivalent arcs.
Assume that E(ζ)/∈ P ∪Q along γ(h, f, D̃). Consider the function qg =

√
k′(E) and the

1-form Ωg(E(ζ)) in the definition of Ψg . Continue them analytically along γ. We set

A
(
h, g, γ

)
=
(
qg

qh

)
|ζ=ζhe

∫
γ ωg . (5.7)

A is called the the amplitude of the arc γ. The properties of Ω imply that the amplitudes of two
equivalent arcs γ(h, g, D̃) coincide.

5.2. Results on the Fourier Coefficients

We recall the following result from [5].

Proposition 5.1. Let d = d(h, g) be a meeting domain for h and g, and let m = m(h, g, d) be the
corresponding index. Then

w
(
h, g
)
= wme

(2πim/ε)(ζ−ζh)(1 + o(1)); ζ ∈ S(d), (5.8)

where wm is the constant given by

wm = A
(
h, g, d

)
e(i/ε)S(h,g,d)w

(
ψ+(·, ζh), ψ−(·, ζh)

)
. (5.9)

Here ψ+ = ψh and ψ− is complementary to ψ+. The asymptotic (5.8) is uniform in ζ and E when ζ
stays in a fixed compact of S(d) and E in a small enough neighborhood of E0.

5.2.1. The Indexm

Let ζ0 be a regular point. Consider a regular curve γ going from ζ0 to ζ0 + 2π . Let κ be a
branch of the complex momentum that is continuous on γ . We call the couple (γ, κ) a period.
Let (γ1, κ1) and (γ2, κ2) be two periods. Assume that one can continuously deform γ1 into γ2
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without intersecting any branching point. By this we define an analytic continuation of κ1 to
γ2. If the analytic continuation coincides with κ2, we say that the periods are equivalent.

Consider the branch κ along the curve γ of a period (γ, κ). In a neighborhood of ζ0, the
starting point γ , one has

κ(ζ + 2π) = σκ(ζ) + 2πm, σ ∈ {∓1}, m ∈ Z. (5.10)

The numbers σ = σ(γ, κ) and m = m(γ, κ) are called, respectively, the signature and the index
of the period (γ, κ). They coincide for equivalent periods.

Recall that

G = ∪k∈Z
{
∪Nj=1Gj + 2πk

}
(5.11)

is the preimage with respect to E of the union of the spectral gaps of H0. One has the
following.

Lemma 5.2 (see [10]). Let (γ, κ) be a period such that γ starts at a point ζ0 /∈G. Assume that γ
intersects G exactly n times (n ∈ N) and that at all intersection points, W ′ /= 0. Let r1, . . . , rn be the
values that Reκ takes consecutively at these intersection points as ζ moves along γ from ζ0 to ζ0 + 2π.
Then,

σ
(
γ, κ
)
= (−1)n,

m
(
γ, κ
)
=

1
π

(
rn − rn−1 + rn−2 − · · · + (−1)n−1r1

)

=
(−1)n−1

π

(
r1 − r2 + · · · + (−1)n−1rn

)
.

(5.12)

5.3. The Fourier Coefficients

5.3.1. For B

By (5.3), we have to compute w(f(·, ζ), f(·, ζ + 2π)). With this aim in view, we apply the
construction done in Section 5.1 with

h(x, ζ) = f(x, ζ), g(x, ζ) =
(
Tf
)
(x, ζ), with

(
Tf
)
(x, ζ) = f(x, ζ + 2π), (5.13)

Dh = D, Dg = D − 2π, ζh = ζ0, ζg = ζ0 − 2π, (5.14)

∀ζ ∈ Dh, κh(ζ) = κ(ζ), ∀ζ ∈ Dg, κg(ζ) = κ(ζ + 2π). (5.15)

We will start by the following.

5.3.2. Above the Real Line

We take the meeting domain D0 as the subdomain of the strip 0 < Im ζ < Y between the
Stokes lines σ+

1 − 2π and σ+
1 . In this domain we have Imκg = − Imκh < 0. Indeed we notice
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that the sign of Imκ changes to opposite one as ζ intersects Z at a point where W ′ /= 0 taking
into account that κg(ζ) = κh(ζ + 2π), and to go from ζ to ζ + 2π one has to intersect B1.

The arc γ0 connects the point ζg to ζh. By (5.14), this defines the period (γ0, κg). Using
(5.15), one gets that m(f(·, ζ), f(·, ζ + 2π,D0)) = m(γ0 + 2π, κ) [5].

We use Lemma 5.2 to compute the index. To do this, we have to compute Reκ at the
intersection of γ0 + 2π and G.

As ζ → Reκ(ζ) is constant on any connected component Gj of G. Let us start
by defining the index λ+j of Gj , the result of the alternated character of the coefficients
(. . . ,+,−,+,−, . . .) due to the crossing of Gj (see Lemma 5.2). We notice that λ+j ∈ {−1, 0, 1}.

We set

Nj = 1 +
j−1∑

i=1

(
ni∑

l=1

(ol − 1)

)

. (5.16)

Here nj is the number of extremum in Gj , and ol is the order of the lth extremum. The
following relations hold:

λ+1 =
1 + (−1)

∑n1
l=1(ol−1)

2
, (5.17)

and for 2 ≤ j ≤N,

λ+j = (−1)Nj

⎛

⎝−1 + (−1)
∑nj

l=1(ol−1)

2

⎞

⎠. (5.18)

Without loss of generality we assume that Reκ = 0 on (0, ϕ−1 ). By the above notation, we get
that

m
(
γ0, κ

)
= (−1)n

(

p1λ
+
1 +
(
p1 + p2

)
λ+2 + · · · +

(
j∑

i=1

pi

)

λ+j + · · · +
(

N∑

i=1

pi

)

λ+N

)

= P+. (5.19)

Here pi is the index of Bi and n =NN .
Now using (5.3) for B and Proposition 5.1 we get

B = A
(
f, T
(
f
)
, D̃0

)
e(i/ε)S(f,T(f),D̃0) · e−2iπP+ζ0/ε = B+(E, ε) · e−(i/2πε)P+ζ0 ,

T
(
f
)
(x, ζ) = f(x, ζ + 2π).

(5.20)

5.3.3. Below the Real Line

Below the real line, we take the domain of the strip −Y < Imζ < 0 located between the stokes
line σ−1 − 2π and σ−1 as a regular domain, which we denote by D̃0. We set γ̃0 = γ(f, T(f), D̃1);
then it defines a period, and so m(f, T(f), D̃1) = m(γ̃0 + 2π, κ). The curve defining a period
equivalent to (γ̃0 + 2π, κ) is represented in Figure 6.
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ζ0

ζ0

γ1

γ0

ζ0 + 2π
ζ0 + 2π

Figure 6: Periods equivalent to γ0 and γ1.

The computation of the index λ−j of Gj gives in this case that

λ−1 =
−1 + (−1)

∑n1
i=1(ol−1)

2
, (5.21)

λ−j = (−1)Nj

⎛

⎝−1 + (−1)
∑l=nj

l=1 (ol−1)

2

⎞

⎠. (5.22)

By this notation we get that

m
(
γ0, κ

)
= (−1)n

(

p1λ
−
1 +
(
p1 + p2

)
λ−2 + · · · +

(
j∑

i=1

pi

)

λ−j + · · · +
(

N∑

i=1

pi

)

λ−N

)

= P−. (5.23)

Using (5.3) for B and Proposition 5.1 we get

BP− = A
(
f, T
(
f
)
, D̃1

)
e(i/ε)(S(f,Tf,D̃1)−2πP−ζ0) = B−(E, ε) · e(i/ε)2πP−ζ0 ,

(
Tf
)
(x, ζ) = f(x, ζ + 2π).

(5.24)

5.4. For A

For the computation of A using (5.3), we have to compute w(f∗(·, ζ), f(·, ζ + 2π)). It suffices
to apply the method presented in Section 5.1 with

h(x, ζ) = f∗(x, ζ), g(x, ζ) =
(
Tf
)
(x, ζ), with

(
Tf
)
(x, ζ) = f(x, ζ + 2π), (5.25)

Dh = D∗, Dg = D − 2π, ζh = ζ0, ζg = ζ0 − 2π,

∀ζ ∈ Dh, κh(ζ) = −κ
(
ζ
)
, ∀ζ ∈ Dg, κg(ζ) = κ(ζ + 2π).

(5.26)

5.4.1. Above the Real Line

In this case, D̃0, the meeting domain, is the subdomain of the strip {0 < Im ζ < Y} located
between the lines σ+

1 −2π and σ−1 , the symmetric to σ−1 with respect to R. The arc γ(f∗, T(f), D̃0)
defines a period (γ̃0, κg); in Figure 7 we represent the curve γ̃0 + 2π.
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Similarly to the computation of B, we define the index β+j of Gj , and in this case, we
have

β+1 =
−1 + (−1)

∑n1
i=1(ol−1)

2
, (5.27)

β+j = (−1)Nj

⎛

⎝−1 + (−1)
∑l=nj

l=1 (ol−1)

2

⎞

⎠. (5.28)

By this notation we get that

m
(
γ0, κ

)
= (−1)n

(

p1β
+
1 +
(
p1 + p2

)
β+2 + · · · +

(
j∑

i=1

pi

)

β+j + · · · +
(

N∑

i=1

pi

)

β+N

)

= Q+. (5.29)

Using (5.3) for A and Proposition 5.1 we get that

m
(
f∗, Tf, D̃0

)
= m
(
γ̃0, κ

)
= Q+, (5.30)

A = A
(
f∗, Tf, D̃0

)
e(i/ε)(S(f

∗,Tf,D̃0)−2πQ+ζ0) = A+(E, ε) · e−(i/ε)2πQ+ ,
(
Tf
)
(x, ζ) = f(x, ζ + 2π).

(5.31)

5.4.2. Below the Real Line

In this case, D̃1, the meeting domain, is the subdomain of the band {−Y < Imζ < 0} located
between the lines σ+

1 , symmetric of σ+
1 with respect to R, and σ−1 − 2π . The arc γ(h, g, D̃1)

defines a period (γ̃1, κg); the curve γ̃1 + 2π is represented in Figure 7. One obtains that

β−1 =
1 + (−1)

∑n1
l=1(ol−1)

2
, (5.32)

and for 2 ≤ j ≤N,

β−j = (−1)Nj

⎛

⎝−1 + (−1)
∑nj

l=1(ol−1)

2

⎞

⎠. (5.33)

So by the above notation we get that

m
(
γ0, κ

)
= (−1)n

(

p1β
−
1 +
(
p1 + p2

)
β−2 + · · · +

(
j∑

i=1

pi

)

β−j + · · · +
(

N∑

i=1

pi

)

β−N

)

= Q−. (5.34)
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ζ0

ζ0

γ̃1

γ̃0

ζ0 + 2π

ζ0 + 2π

Figure 7: Periods equivalent to γ̃0 and γ̃1.

One obtains that m(f∗, T(f), D̃1) = m(γ̃1 + 2π, κ) = Q−, and

A = A
(
f∗, Tf, D̃1

)
e(i/ε)(S(f

∗,Tf,D̃1)−2πQ−ζ0) = A−(E, ε) · e(i/ε)2πQ−ζ0 ,
(
Tf
)
(x, ζ) = f(x, ζ + 2π).

(5.35)

5.4.3. The Proof of (3.15)

Let g ∈ G. Let V (g) be a complex neighborhood of g sufficiently small so that it contains only
two branch points of κ, namely, the ends of g. Let γg be a curve in V (g) \ g; the tunneling
action is defined as S(g) = i

∮
γg
κ dζ. From [5], we recall the following lemma.

Lemma 5.3 (see [5]). Let E ∈ J. If γg is positively oriented, then

S
(
g
)
= ±2

∫

g±i0
Imκdζ. (5.36)

Here, in the left-hand side, one integrates in the increasing direction on the real axis.

Below we give details only for A+; the same way could be used to obtain the result for
A− and B − ±.

We recall that the definition of the amplitude of an arc γ is given in (5.7) and the
coefficient A+ is defined in (5.31). This definition implies that A(f∗, T(f), D̃0) is independent
of ε, continuous inE, and does not vanish; so we get that for V0 a small constant neighborhood
of E0 ∈ J, ∃ C1, C2 > 0 such that

C1 <
∣∣∣A
(
f∗, T

(
f
)
, D̃0

)∣∣∣ < C2. (5.37)

Let γ = γ(f∗, T(f), D̃0) be the arc going near the real line and going around the branch points
between ζ0 and ζ0 + 2π (the beginning and the end of γ) along infinitesimally small circles.
One has

∣∣∣∣exp
(
i

ε
S
(
f∗, T

(
f
)
, D̃0

))∣∣∣∣ =

∣∣∣∣∣
exp

(

−1
ε

∫

γ

Imκgdζ

)∣∣∣∣∣
= exp

⎛

⎝−1
ε

∑

g∈G

∫

g

Imκgdζ

⎞

⎠. (5.38)
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Imκg < 0, inside each of the intervals of integration. Using (5.36), the expression −2
∫
g Imκdζ

is equal to S(g), the tunneling action, because S(g) is taken positive. Then we get

∣
∣
∣
∣exp

(
i

ε
S
((
f∗, T

(
f
)
, D̃0

)))∣∣
∣
∣ =
∏

g∈G

(
t
(
g
))−1

. (5.39)

This ends the proof of (3.15) for A+.
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