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Spatial interpolation of meteorological parameters, closely related to the earth surface, plays important roles in climatological
study. However, most of traditional spatial interpolation methods ignore the geographic semantics of interpolation sample points
in practical application. /is paper attempts to propose an improved inverse-distance weighting interpolation algorithm
considering geographic semantics (S-IDW), which adds geographic semantic similarity to the traditional IDW formula and
adjusts weight coefficient. In the interpolation process, the geographic semantic differences between sample points and estimation
points are considered comprehensively. In this study, 3 groups of land surface temperature data from 2 different areas were
selected for experiments, and several commonly used spatial interpolation methods were compared. Experimental results in-
dicated that S-IDW outperformed IDW and several existing spatial interpolation methods, but there were also some abnormal
value and interpolation outliers. /is method provides a new insight toward the estimation accuracy, data missing, and error
correction of spatial attributes related to meteorological parameters.

1. Introduction

Spatial interpolation of meteorological parameters is to
obtain relatively accurate descriptions of spatial attributes
related to climatological dynamics and weather patterns by
using some reasonably located samples [1]. Traditionally,
sampling observation is the best way to obtain the regional
mean conditions in order to ensure equal sampling op-
portunities for each location in the region. However, the
observation sampling points are sparse and of random
distribution in practical application [1]. For example, the
location of the sample points is systematic and changes
smoothly. Furthermore, most meteorological models are
obtained by sampling from observation stations at present.
Spatial interpolation method is widely used to transform
discrete observation data into continuous surface so as to
better measure the spatial distribution pattern of data

elements [2]. Currently, familiar spatial interpolation
methods, such as IDW, Kriging, Spline, and trend surface
method, have been widely used in different fields. Most of
them have some limitations in application, such as distance
weighting method with some problems, which affects cal-
culation results due to distance, being not suitable for a large
range [3]. Kriging method can adopt different variogram
forms and parameters for different sampling data points,
with certain flexibility. However, it loses the high efficiency
of the original inverse-distance weighting method by first
determining the variogram form and fitting the parameters
of variogram. Kriging variograms require artificial selection,
and there exists the problem that computation increases
sharply when there are too many combinations of vario-
grams [4]. Spline method is not suitable for sparse and finite
sampling points and is often used for high-density sample
point interpolation [5]. /e trend surface method relies
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more on the existing spatial distribution trend of interpo-
lation elements [6]. Consequently, many authors have
carried on the continuous exploration and improvement to
the spatial interpolation method [7]. For instance, the
complexity of terrain and elevation factor were introduced
by some researchers into the inverse-distance weighting
[8, 9], and Li et al. brought the harmonic weighting coef-
ficient of azimuth into the distance weighting interpolation
[2]. /e natural neighborhood relationship was led into the
distance weighting interpolation [10], and some authors
introduced the fuzzy trigonometric function into the dis-
tance weighting interpolation [3]. Others took into account
the spatiotemporal variation characteristics of geographical
factors and introduced time-series data to remove some
numerical fluctuations in time, such as spatiotemporal
weighting Kriging and spatiotemporal inverse-distance
weighting interpolation [9]. /e succession of methods
proposed by the above-mentioned authors had achieved
remarkable academic impact and showed high spatial au-
tocorrelation, but most of them were based on numerical
interpolation methods, without considering geographic
semantics.

Inspired by the gradient theory in the field of image
processing, the gradient is the first-order differential of gray
value, reflecting the change rate between adjacent pixels in
the direction ofX and Y [11].Where the gradient change rate
of image is larger in the region, the types of land cover tend
to change, such as the boundary between land and water in
the image. Existing research based on remote sensing image
inversion, such as land surface temperature (LST), vegeta-
tion index, and moisture index, is to some extent a model to
describe the relationship between remote sensing signals or
remote sensing data and surface applications [12]. For ex-
ample, the temperature nearby residential buildings is quite
different from forest land or water body./e air temperature
of some exposed land surfaces, like build roofs and pave-
ment, is hotter than that of the shades of forests. /erefore,
geographic semantics are indispensable to exploring geo-
spatial description of surface remote sensing pixel infor-
mation. Currently, some authors have put forward semantic
Kriging method, which has achieved excellent research re-
sults, but there are still some problems such as the com-
plexity of calculating the variogram imported by the
semantic similarity [13–15]. In addition, the prediction of
multivariable meteorological factors by embedding geo-
graphic semantics into Bayesian networks weakens the in-
fluence of parameter uncertainty but lacks the knowledge of
meteorological modeling [16]. Although the aforementioned
spatial interpolation methods show performance in different
applications, there still exists scope of improvements by
introducing geographic semantics into spatial interpolation
process. Furthermore, information semantics are growing in
the field of spatial statistics and environmental modeling
[17, 18].

/is paper attempts to introduce the geographic se-
mantics into inverse weighting spatial interpolation by
embedding hierarchical geographic semantics into spatial
interpolation model and using semantic similarity to mea-
sure factor weight./e following analyses were carried out in

this study: (1) the S-IDW methods used in this study are
explained in the next section; (2) the findings are discussed
in the Experimental Results and Comparison section; (3)
finally, our conclusions and subsequent research are drawn
in the Conclusions section.

2. Methodology

/e S-IDW integrates the geographic semantic knowledge
into the inverse-distance weighting interpolation method.
Considering the effect of distance on interpolation results,
the influence of land-use type on land surface temperature
interpolation is added. /e S-IDW reconsiders the inter-
polation weight, increases the weight of the same land-use
type, and reduces the weight of different land-use types on
the basis of distance, constructing the S-IDW method [19].

In the S-IDW, the first step is to calculate the semantic
similarity of geographic entities. /e formula is as follows:
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In equations (1)–(4), T is the estimated value of the ith
point to be interpolated;Ti is the measured value of the ith
discrete point; di is the distance between the ith discrete
point and the ith point to be interpolated; xi is the latitude of
the point to be interpolated; x is latitude of discrete points; yi

is the longitude of the point to be interpolated; y is the
longitude of the discrete point; m is the number of measured
sample points participating in the interpolation; n is the
power exponent, which controls the degree to which the
weight coefficient decreases with the increase of the distance
between the point to be interpolated and the sample point.
When n is larger, the closer sample point is endowed with
higher weight; when n is smaller, the weight is more evenly
distributed to all sample points. When n � 1, it is called
inverse-distance weighting method, which is a common and
simple spatial interpolation method. When n � 2, it is called
inverse-distance squared method, which is often used in
practical application. In this study, n � 2 is taken.

κj is the semantic similarity between the jth point to be
interpolated and the ith discrete point, and the value range is
0< κ1 ≤ 1. Semantic similarity refers to the degree to which
two concepts can replace each other in the same context
without changing the semantic structure of the text [19]. /e
larger the change of semantic structure, the smaller the
similarity; the smaller the change of semantic structure, the
greater the similarity. In this study, a comprehensive se-
mantic similarity algorithm for geographic ontology is
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adopted. On the basis of analyzing the influencing factors of
semantic distance similarity, the weighted sum method is
used to calculate semantic distance similarity, concept at-
tribute similarity, and information similarity. /e calcula-
tion formula is as follows [20]:

κj � λ1 ∗ κ
dist
j + λ2 ∗ κ

att
j + λ3 ∗ κ

ic
j , (5)

κdistj �
μ

Dist(a, b) + μ
, (6)

κattj �
count[att(a)∩ att(b)]

count[att(a)∪ att(b)]
, (7)

κicj �
2∗ ic[LCA(a, b)] + χ
ic(a) + ic(b) + χ

, (8)

ic(a) � −logp(a). (9)

/e semantic similarity is calculated by referring to the
hierarchical structure of geographical entities in Table 1 and
Figure 1. In formulas (5)–(8), dist(a, b) is the semantic
distance, which refers to the shortest path between any two
concept nodes a and b in the ontology hierarchy, and η is the
regulating factor. In this paper, η� 8. κattj represents the
similarity of concept attributes between concept nodes a and
b. /e function att is the set of entity attributes, and count is
the number of attributes. In addition, χ > 0, χ is a real
number, and its value is controlled at [0, 2max (IC (a, b))],
where χ � 1./e information quantity ic(a) is defined as the
−log function of the occurrence probability of concept a. In
equation (5), when the land-use types of the jth point to be
interpolated and the jth discrete point are equivalent,κj � 1;
when the land-use types of the jth point to be interpolated
and the jth discrete point are not equivalent, 0< κj < 1.

In equation (5), λ1 � 0.1, λ2 � 0.8, and λ3 � 0.1; λ1, λ2,
and λ3 are the adjustment coefficients of semantic distance
similarity, concept attribute similarity, and information
similarity, respectively; λ1 + λ2 + λ3 � 1. a and b are geo-
graphical entities. For the convenience of calculation, GB/
T21010-2017 classification of land use in China and its
meaning are used to extract geographical entities. /e se-
mantic attributes of geographical entities are shown in
Table 1, and the ontological hierarchical network structure
of land-use status classification is shown in Figure 1. Based
on equation (5), the semantic similarity for some geo-
graphical entities of land-use type ontology is calculated as
shown in Table 2.

3. Experimental Results and Comparison

3.1. ExperimentalDesign andErrorMetric. /e experimental
study has been carried out using land surface temperature
(LST) data from Landsat 8 OLI-TIRS satellite. Due to the
complex and changeable surface environment, LST shows
different characteristics in different surface environments. In
order to explore the spatial interpolation accuracy in dif-
ferent areas and different land surface temperatures, LST at
diverse time intervals were selected in the 2 study areas, and

3 distinct LST conditions of high temperature, low tem-
perature, and normal temperature were used to carry out
experiments. /e interpolation accuracy of traditional nu-
merical interpolation methods is often closely related to the
density and sparsity of the discrete points. In this paper, the
discrete points and the points to be valued are selected
randomly and distributed evenly. 15 points to be valued and
60 discrete points were randomly selected in the experiment.
Assuming that the LST values of the 15 points are missing or
abnormal, we use 60 discrete points of known LST values to
interpolate the 15 points in order to compensate for and
correct the missing or abnormal values. /e popular ap-
proaches for spatial interpolation include Kriging, IDW,
Natural, Spline, and S-IDW. On this basis, we compared and
analyzed the results of 5 interpolation methods with the
original LST values of 15 points to be valued. As shown in
Figure 2, the experimental flow chart of semantic inverse-
distance weighting interpolation is shown.

In the experiment, the accuracy of the estimated value is
evaluated by means of root mean squared of errors (RMSE)
[21], mean absolute error (MAE), mean absolute percentage
error (MAPE) [16], and the ratio of variance of the estimated
values to variance of the observed values (RVAR) [22, 23].
/e formal definition of each indicator is given as follows:
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In formulas (10)–(13), n is the total number of measured
values; Ti is the measured value of the ith discrete point; T is
the estimated value of the ith point to be interpolated; Ms

Ti
is

the average value of measured value at discrete point; Ms
T is

the average value of the estimated value of the point to be
evaluated; var(TS) is the variance of the estimated value of
the point to be interpolated; var(Ts

i ) is the variance of
measured value at discrete point. /e best fitting between
measured value and estimated value under ideal conditions
can be obtained as follows: RMSE≈0, MAE≈0,MAPE≈0, and
RVAR≈1.

3.2. Analysis and Discussion of the Interpolation Results in
Study Area-1. In order to verify the interpolation effect of
S-IDW under three temperature environments, the imaging
dates of the remote sensing images in study area-1 are
January 11, 2018, April 17, 2018, and August 9, 2013. /e
corresponding image clouds are 0.54%, 0.05%, and 4.76%,
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respectively. Under these conditions, LST inversion is car-
ried out and the inversion data are extracted and processed.
/e distribution of 60 discrete points and 15 points to be
valued in study area-1 is shown in Figure 3.

Interpolation data results and interpolation accuracy of five
methods under low-temperature conditions in study area-1 can
be seen in Tables 3–5. As shown in Table 3, the interpolation
results of S-IDW for 8 of the 15 points to be valued are closer to
the land surface temperature than those of the other 4 inter-
polation methods. Generally, through the mathematical sta-
tistics analysis and Pearson correlation analysis of the five
interpolation methods, it is indicated that the MAE, MAPE,
and RMSE of S-IDW are closer to the best fitting values be-
tween measured and estimated values under ideal conditions
than the other 4 interpolation methods. As far as RVAR is
concerned, Natural and Spline are better than S-IDW, but
S-IDW is better than Kriging and IDW. In terms of Pearson
correlation, the results of S-IDW, Kriging, IDW, and Natural
interpolation are significantly correlated with LST at 0.01 level
(two-tailed), of which the correlation coefficient r between
S-IDW interpolation results and LST is 0.959, with the
strongest correlation, and the significant correlation coefficient
r between Spline interpolation results and LSTwas 0.616 at 0.05
level (two-tailed), with the weakest correlation.

Interpolation data results and accuracy of five methods
under normal temperature conditions in study area-1 can be
seen in Tables 6–8. As shown in Table 6, the interpolation
results of S-IDW for 8 of the 15 points to be estimated are
closer to the land surface temperature than those of the other
4 interpolation methods. Generally, through the mathe-
matical statistics analysis and Pearson correlation analysis of
the 5 interpolation methods, it is found that the MAE,

MAPE, and RMSE of S-IDW are closer to the best fitting
values between measured and estimated values under ideal
conditions than the other 4 interpolation methods. In terms
of MAPE, Natural is better than S-IDW, but S-IDW is better
than Kriging, IDW, and Spline. In terms of RVAR, Spline is
better than S-IDW, but S-IDW is better than Kriging. In
terms of Pearson correlation, the results of S-IDW, Kriging,
IDW, Natural, and Spline are significantly correlated with
LST at 0.01 level (two-tailed), of which the correlation co-
efficient r between S-IDW interpolation results and LST is
0.930, with the strongest correlation.

/e interpolation data results and accuracy of five
methods under high-temperature conditions in study area-1
can be seen in Tables 9–11. As shown in Table 9, the in-
terpolation results of the S-IDW for 4 of the 15 points to be
valued are closer to the land surface temperature than those
of the other 4 interpolation methods. Generally, through the
mathematical statistics analysis and Person correlation
analysis of the 5 interpolation methods, it is indicated that
the MAE and RMSE of S-IDW are closer to the best fitting
values between measured and estimated values under ideal
conditions than the other 4 interpolation methods. As far as
MAPE is concerned, 1.252% of S-IDW is higher than 0.781%
of IDW and 0.057% of Spline but lower than 1.818% of
Kriging and 1.253% of Natural. In terms of RVAR, 0.983 of
Natural is better than 0.827 of S-IDW, but S-IDW is better
than Kriging and Natural. In terms of Person correlation, the
interpolation results of S-IDW, Kriging, IDW, Natural, and
Spline are significantly correlated with LSTat 0.01 level (two-
tailed), of which the correlation coefficient r between S-IDW
and LST was 0.914, stronger than 0.843 of IDW, 0.794 of
Kriging, 0.791 of Natural, and 0.669 of Spline.

Table 1: Part attributes of geographical entity in land-use type ontology.

Geographic entities Parent
class Parent use Specific uses Cover

(or location)
Operational
characteristics

01 Farmland Land Agricultural
production Planting crops Crops

02 Garden plot Land Agricultural
production

Planting and collecting fruit, leaf,
and root crops

Perennial woody
plants and herbs Intensive management

03 Woodland Land Agricultural
production

Growing trees, bamboos, shrubs,
and coastal mangroves Woody plants Production management,

ecological management

04 Grassland Land Agricultural
production Growing herbs Herbs

05 Commercial land Land Building
construction

Constructing business and service
industry Houses, buildings

06 Industrial mining
warehouse land Land Building

construction
Constructing industrial production

and material storage sites Houses, buildings

07 Residential land Land Building
construction Constructing living places Houses, buildings

08 Public management
and service land Land Building

construction
Constructing public management

and public service places Houses, buildings

09 Special land Land Building
construction Building construction Houses, buildings

10 Transport land Land Building
construction

Constructing ground routes and
stations for transport State-owned

11 Waters and water
conservancy facility
land

Land Hydraulic structures of land waters,
shallows, ditches, and marshes

12 Other lands Land
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3.3. Analysis and Discussion of Interpolation Results in
Study Area-2. In order to verify the interpolation effect of
S-IDW under three temperature environments, the imaging
dates of the remote sensing images in study area-1 are
February 11, 2017, April 19, 2018, and July 10, 2013. /e
corresponding image clouds are 0.54%, 0.05%, and 4.76%,

respectively. Under these conditions, LST inversion is car-
ried out and the inversion data are extracted and processed.
/e distribution of 60 discrete points and 15 points to be
valued in study area-2 is shown in Figure 4.

Interpolation data results and accuracy of 5 methods
under low temperature conditions in study area-2 can be

Table 2: Semantic similarity for geographic entity of land-use type ontology.

Geographic entities 01
Farmland

02 Garden
plot

03
Woodland

04
Grassland

07 Residential
land

10 Transport
land

11 Waters and water
conservancy facility land

01 Farmland 1 0.4198 0.4218 0.4198 0.2576 0.2628 0.2632
02 Garden plot 0.4198 1 0.4229 0.4207 0.2585 0.264 0.2645
03 Woodland 0.4218 0.4229 1 0.4229 0.2597 0.2667 0.2665
04 Grassland 0.4198 0.4207 0.4229 1 0.2585 0.264 0.2645
07 Residential land 0.2576 0.2585 0.2597 0.2585 1 0.4212 0.2616
10 Transport land 0.2628 0.264 0.2667 0.264 0.4212 1 0.2685
11 Waters and water
conservancy facility land 0.2632 0.2645 0.2665 0.2645 0.2616 0.2685 1

Landscape

Special land

Commercial place

Land for industrial and mining storage

Residential land

Other lands

Water area and water conservancy facilitiesPublic management and public service land

Land for transportation

Woodland

Grassland

Garden land

Cultivated land Urban residential land

Rural homestead

Industrial land

Mining land

Salt land

Storage land

Land for military facilities

Land for embassies and consulates

Land for supervision and education

Religious land

Land for funeral and interment

Land for facilities in scenic spots

Retail commercial land

Land for wholesale market

Restaurant land

Hotel land

Commercial and financial land

Entertainment land

Other places for business use

Idle place

Facility agricultural land

Ridge of field

Saline alkali soil

Sand

Bare land

Bare rock gravel

River surface
Lake surface

Reservoir surface

Pond water surface

Coastal beach

Inland beach

Ditch

Swamp land

Land for hydraulic construction

Paddy field

Irrigated land

Dry land

Orchard

Tea garden
Rubber plantation

Other gardens

Natural grassland

Swamp pasture

Artificial grassland

Other grasslands

Arbor woodland

Bamboo woodland

Mangrove forest

Forest swamp

Shrub land
Shrub swamp

Other woodlands

Railway land

Land for rail transit

Highway land

Land for roads in towns and villages
Land for transportation service station

Rural road
Airport land

Land for port and wharf

Land for organs and organizations

Land for press and publication

Educational land
Land for scientific research

Medical and health land

Land for social welfare
Land for cultural facilities

Sports land

Land for public facilities
Park and green space

Land for pipeline transportation

Glaciers and permanent snow

Figure 1: Part network hierarchy of land-use classification ontology.
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seen in Tables 12–14. As shown in Table 12, the interpolation
results of S-IDW for 9 of the 15 points to be valued are closer
to the land surface temperature than those of the other 4
interpolation methods. /e interpolation result of S-IDW at
point 11 to be valued is 9.052°C, which deviates from the LST
value more than the interpolation results of other 4 inter-
polation methods. Generally, through the mathematical
statistics analysis and Pearson correlation analysis of the 5
interpolation methods, it is known that the MAE, MAPE,
RVAR, and RMSE of S-IDW are closer to the best fitting
values between measured and estimated values under ideal
conditions than those of the other 4 interpolation methods.
In terms of Pearson correlation, the results of S-IDW,
Kriging, IDW, Natural, and Spline are significantly corre-
lated with LST at 0.01 level (two-tailed), of which the cor-
relation coefficient r between S-IDW interpolation results
and LST is 0.890.

/e interpolation data results and accuracy of 5 methods
under normal temperature conditions in study area-2 can be

seen in Tables 15–17. As shown in Table 15, the interpolation
results of S-IDW for 6 of the 15 points to be valued are closer
to the land surface temperature than those of the other 4
interpolation methods. /e LST value of point 11 to be
valued is 25.245°C, and the S-IDW interpolation result of
this point to be valued is 30.266°C, which deviates from the
LST value more than the interpolation results of the other 4
interpolation methods. Generally, through the mathematical
statistics analysis and Pearson correlation analysis of the 5
interpolation methods, it is known that the MAE and RMSE
of S-IDW are closer to the best fitting values between
measured and estimated values under ideal conditions than
those of the other 4 interpolation methods. In terms of
MAPE, 1.856% of S-IDW is higher than 1.723% of Natural
but lower than Kriging, IDW, and Spline. As far as RVAR is
concerned, 1.051 of Natural and 0.844 of IDW are closer to
the best fitting values between measured values and esti-
mated values under ideal conditions than 0.806 of S-IDW. In
terms of Pearson correlation, the results of S-IDW and

Data preparation

Remote sensing data
preprocessing 

Inversion of surface
temperature 

Semantic similarity
calculation 

Inversion accuracy
verification 

Temperature value extraction

Inverse-distance weighting
principle 

Semantic inverse-distance 
weighting method

Interpolation experiments under low-, normal, and high-temperature 
conditions in study area-1 and study area-2

S-IDW SplineNaturalKrigingIDW

Interpolation
results 

Pearson correlation analysis Statistical analysis about
RMSE, MAE, MAP, and RVAR

Conclusion

Constructing geographic
ontology

Figure 2: Experimental flow chart of semantic inverse-distance weighting interpolation.
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Figure 3: Distribution map of discrete points and pending valuation points in study area-1.

Table 3: Comparison of interpolation results of 5 kinds of interpolation methods on Jan. 11, 2018.

Study area-1 Forecast date: January
11, 2018

Forecasting methods
(unit of temperature: °C)

Point to be valued Land-use types Lat Lon LST S-IDW IDW Kriging Natural Spline
1 Farmland 1 31.743 115.91 1.428 1.76 1.552 1.572 1.577 1.356
2 Farmland 2 31.688 115.974 3.624 2.569 2.641 2.695 2.604 2.234
3 Farmland 3 31.682 115.876 2.394 1.924 1.909 2.305 2.294 2.028
4 Farmland 4 31.671 115.924 2.429 2.43 2.852 2.97 2.741 2.003
5 Woodland 1 31.745 115.947 2.186 1.840 1.729 1.544 1.507 1.306
6 Woodland 2 31.741 115.792 1.163 1.116 0.914 0.933 0.897 0.953
7 Woodland 3 31.731 115.848 1.226 1.533 1.483 1.323 1.296 0.573
8 Woodland 4 31.685 115.722 1.282 1.231 0.962 0.714 0.359 0.405
9 Residential land 1 31.77 115.931 1.703 1.168 1.143 1.095 1.049 0.774
10 Residential land 2 31.724 115.942 1.631 2.083 2.075 2.067 2.07 1.807
11 Residential land 3 31.702 115.803 2.113 2.108 1.515 1.365 1.475 0.299
12 Transport land 1 31.669 115.951 2.364 2.348 2.26 2.348 2.095 1.923
13 Transport land 2 31.59 115.917 2.324 2.366 2.232 1.555 5.592 5.458
14 Waters and water conservancy facility land 1 31.625 115.86 5.125 5.431 4.373 4.054 3.927 -0.376
15 Waters and water conservancy facility land 2 31.623 115.999 7.96 6.284 5.524 5.617 5.753 7.651
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Table 5: Correlation analysis of interpolation results of 5 kinds of interpolation methods on Jan. 11, 2018.

Study area-1 LST S-IDW IDW Kriging Natural Spline

LST
Pearson correlation 1 0.959∗∗ 0.954∗∗ 0.944∗∗ 0.763∗∗ 0.616∗

Significance (two-tailed) 0.000 0.000 0.000 0.001 0.015
N 15 15 15 15 15 15

∗∗Significant correlation at 0.01 level (two-tailed). ∗Significant correlation at 0.05 level (two-tailed).

Table 6: Comparison of interpolation results of 5 kinds of interpolation methods on Apr. 17, 2018.

Study area-1 Forecast date: January
11, 2018

Forecasting methods
(unit of temperature: °C)

Point to be valued Land-use types Lat Lon LST S-IDW IDW Kriging Natural Spline
1 Farmland 1 31.743 115.91 28.266 26.247 27.014 26.981 25.915 28.132
2 Farmland 2 31.688 115.974 24.056 25.687 26.022 25.977 26.251 27.399
3 Farmland 3 31.682 115.876 27.657 26.708 27.342 24.66 26.983 28.251
4 Farmland 4 31.671 115.924 25.586 25.069 24.758 24.761 24.903 27.626
5 Woodland 1 31.745 115.947 27.254 27.542 28.959 28.502 28.852 28.134
6 Woodland 2 31.741 115.792 24.079 24.049 24.341 23.972 24.74 24.979
7 Woodland 3 31.731 115.848 22.263 23.859 24.202 24.382 23.472 23.559
8 Woodland 4 31.685 115.722 21.083 22.450 22.473 22.447 23.386 19.394
9 Residential land 1 31.77 115.931 30.309 29.533 29.472 28.717 29.137 28.786
10 Residential land 2 31.724 115.942 28.418 28.909 28.882 28.341 29.631 30.642
11 Residential land 3 31.702 115.803 26.475 24.428 23.534 23.277 23.506 26.003
12 Transport land 1 31.669 115.951 26.794 26.034 26.471 25.365 26.551 26.961
13 Transport land 2 31.59 115.917 26.191 24.145 23.216 23.356 21.925 22.816
14 Waters andwater conservancy facility land 1 31.625 115.86 20.925 21.042 21.693 21.937 21.731 24.497
15 Waters andwater conservancy facility land 2 31.623 115.999 17.673 19.391 20.451 20.954 18.998 17.321

Table 7: Comparison of interpolation accuracy of 5 kinds of interpolation methods on Apr. 17, 2018.

Study area Forecasting methods Forecast time Apr. 17, 2018
RMSE MAE MAPE (%) RVAR

Study area-1

S-IDW 1.295 1.090 0.514 0.640
IDW 1.668 1.383 3.329 0.651

Kriging 1.959 1.686 0.901 0.497
Natural 1.886 1.578 0.278 0.763
Spline 1.891 1.504 1.981 1.127

Table 8: Correlation analysis of interpolation results of 5 kinds of interpolation methods on Apr. 17, 2018.

Study area-1 LST S-IDW IDW Kriging Natural Spline

LST
Person correlation 1 0.930∗∗ 0.867∗∗ 0.817∗∗ 0.824∗∗ 0.859∗∗

Significance (two-tailed) 0.000 0.000 0.000 0.000 0.000
N 15 15 15 15 15 15

∗∗Significant correlation at 0.01 level (two-tailed).

Table 4: Comparison of interpolation accuracy of 5 kinds of interpolation methods on Jan. 11, 2018.

Study area Forecasting methods Forecast date January 11, 2018
RMSE MAE MAPE (%) RVAR

Study area-1

S-IDW 0.581 0.376 7.091 0.674
IDW 0.784 0.552 14.859 0.492

Kriging 0.830 0.615 17.447 0.512
Natural 1.173 0.813 9.544 0.788
Spline 1.804 1.145 27.103 1.326
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Natural interpolation are significantly correlated with LSTat
0.05 level (two-tailed), of which the correlation coefficient r
between S-IDW interpolation results and LST is 0.620, with
the strongest correlation.

/e interpolation data results and accuracy of the 5
methods under high-temperature conditions in study area-2
can be seen in Tables 18–20. As shown in Table 18, the in-
terpolation results of S-IDW for 5 of the 15 points to be valued
are closer to the land surface temperature than those of the
other 4 interpolation methods. /e LST value of point 2 to be
valued is 37.981°C and the interpolation result of S-IDW at
point 2 is 35.398°C, which deviates from the LST value more
than Spline interpolation but is better than Kriging, IDW, and
Natural interpolation, similar to that of point 10. Generally,

through the mathematical statistics analysis and Pearson
correlation analysis of the 5 interpolation methods, it is found
that the MAE, MAPE, and RMSE of S-IDW are closer to the
best fitting values between measured and estimated values
under ideal conditions than those of the other 4 interpolation
methods. As far as RVAR is concerned, 0.870 of Kriging and
0.813 of Natural are closer to the best fitting values between
measured values and estimated values under ideal conditions
than 0.695 of S-IDW. In terms of Pearson correlation, the
results of S-IDW, Kriging, IDW, Natural, and Spline inter-
polation are significantly correlated with LSTat 0.01 level (two-
tailed), of which the correlation coefficient r between S-IDW
interpolation results and LST is 0.906, with the strongest
correlation.

Table 9: Comparison of interpolation results of 5 kinds of interpolation methods on Aug. 9, 2013.

Study area-1 Forecast date: Aug. 9,
2013

Forecasting methods
(unit of temperature: °C)

Point to be valued Land-use types Lat Lon LST S-IDW IDW Kriging Natural Spline
1 Farmland 1 31.743 115.910 44.086 44.572 45.299 44.968 43.377 41.169
2 Farmland 2 31.688 115.974 45.801 44.902 45.305 45.549 45.355 45.859
3 Farmland 3 31.682 115.876 44.473 45.434 45.592 42.255 45.385 46.336
4 Farmland 4 31.671 115.924 45.277 44.080 43.174 43.515 42.791 45.183
5 Woodland 1 31.745 115.947 44.369 45.916 47.383 46.870 47.569 48.472
6 Woodland 2 31.741 115.792 43.869 41.352 41.862 41.053 42.568 43.502
7 Woodland 3 31.731 115.848 39.674 41.126 40.758 41.101 40.362 40.240
8 Woodland 4 31.685 115.722 39.962 39.635 39.509 39.795 39.722 36.678
9 Residential land 1 31.770 115.931 49.092 48.774 48.794 47.180 48.849 49.691
10 Residential land 2 31.724 115.942 48.106 47.027 47.066 46.580 47.482 48.167
11 Residential land 3 31.702 115.803 44.395 42.426 41.770 41.326 42.269 43.038

12 Transport land 1 31.669 115.951 46.802 45.416 46.645 44.797 46.878 47.756
13 Transport land 2 31.590 115.917 45.973 42.301 41.063 40.912 38.718 39.513
14 Waters and water conservancy facility land 1 31.625 115.860 37.502 37.878 38.794 39.143 39.568 45.812
15 Waters and water conservancy facility land 2 31.623 115.999 36.887 37.213 38.130 39.294 37.152 35.224

Table 10: Comparison of interpolation accuracy of 5 kinds of interpolation methods on Aug. 9, 2013.

Study area Forecasting methods Forecast time Aug. 9, 2013
RMSE MAE MAPE (%) RVAR

Study area-1

S-IDW 1.531 1.234 1.252 0.827
IDW 1.955 1.537 0.781 0.870

Kriging 2.290 1.977 1.818 0.605
Natural 2.340 1.509 1.253 0.983
Spline 3.233 2.177 0.057 1.450

Table 11: Correlation analysis of interpolation results of 5 kinds of interpolation methods on Aug. 9, 2013.

Study area-1 LST S-IDW IDW Kriging Natural Spline

LST
Pearson correlation 1 0.914∗∗ 0.843∗∗ 0.794∗∗ 0.791∗∗ 0.669∗∗

Significance (two-tailed) 0.000 0.000 0.000 0.000 0.006
N 15 15 15 15 15 15

∗∗Significant correlation at 0.01 level (two-tailed).
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Figure 4: Distribution map of discrete points and pending valuation points in study area-2.

Table 12: Comparison of interpolation results of 5 kinds of interpolation methods on Feb. 11, 2017.

Study area-2 Forecast date: Feb. 11,
2017

Forecasting methods
(unit of temperature °C)

Point to be valued Land-use types Lat Lon LST S-IDW IDW Kriging Natural Spline
1 Farmland 1 29.835 118.266 7.900 8.205 8.517 9.019 8.971 9.778
2 Farmland 2 29.697 118.228 6.902 8.867 8.106 8.125 8.254 8.812
3 Woodland 1 29.914 118.139 1.939 1.316 1.192 −0.869 −0.065 −1.176
4 Woodland 2 29.900 118.330 6.939 7.658 8.842 8.670 8.651 8.373
5 Woodland 3 29.894 118.524 7.147 7.798 8.637 8.982 9.025 10.682
6 Woodland 4 29.842 118.524 6.948 6.234 7.139 6.788 6.390 7.234
7 Woodland 5 29.750 118.525 3.188 2.662 2.873 1.054 2.014 0.001
8 Woodland 6 29.698 118.108 9.340 7.255 8.854 8.921 8.679 9.470
9 Woodland 7 29.677 118.353 5.960 5.508 7.421 5.451 4.136 2.635
10 Residential land 1 29.832 118.337 8.289 8.814 8.903 8.842 8.876 9.143
11 Residential land 2 29.756 118.264 7.201 9.052 8.589 8.172 8.283 8.133
12 Transport land 1 29.758 118.091 7.087 7.776 7.798 9.194 8.698 9.734
13 Transport land 2 29.727 118.204 8.000 8.102 8.697 8.538 8.509 9.173
14 Waters and water conservancy facility land 1 29.903 118.241 7.431 6.969 6.593 6.785 7.002 7.174
15 Waters and water conservancy facility land 2 29.816 118.425 7.803 7.933 8.714 8.676 8.636 8.850

Table 13: Comparison of interpolation accuracy of 5 kinds of interpolation methods on Feb. 11, 2017.

Study area Forecasting methods Forecast time Feb. 11, 2017
RMSE MAE MAPE (%) RVAR

Study area-2

S-IDW 1.00 0.786 2.033 1.389
IDW 1.019 0.905 8.621 1.473

Kriging 1.395 1.175 4.187 2.576
Natural 1.267 1.152 3.904 2.205
Spline 2.064 1.714 5.820 3.73
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Table 14: Correlation analysis of interpolation results of 5 kinds of interpolation methods on Feb. 11, 2017.

Study area-2 LST S-IDW IDW Kriging Natural Spline

LST
Pearson correlation 1 0.890∗∗ 0.934∗∗ 0.942∗∗ 0.925∗∗ 0.909∗∗

Significance (two-tailed) 0.000 0.000 0.000 0.000 0.000
N 15 15 15 15 15 15

∗∗Significant correlation at 0.01 level (two-tailed).

Table 15: Comparison of interpolation results of 5 kinds of interpolation methods on Apr. 19, 2018.

Study area-2 Forecast date: Apr. 19,
2018

Forecasting methods
(unit of temperature: °C)

Point to be valued Land-use types Lat Lon LST S-IDW IDW Kriging Natural Spline
1 Farmland 1 29.835 118.266 28.319 29.329 30.205 28.295 31.402 33.163
2 Farmland 2 29.697 118.228 27.913 28.669 27.289 27.577 27.147 26.398
3 Woodland 1 29.914 118.139 26.573 25.333 25.081 25.916 24.636 24.906
4 Woodland 2 29.900 118.330 26.710 28.893 29.930 30.326 29.204 28.371
5 Woodland 3 29.894 118.524 27.722 28.717 29.123 28.665 29.350 32.286
6 Woodland 4 29.842 118.524 26.715 27.145 27.100 27.199 27.442 30.523
7 Woodland 5 29.750 118.525 26.039 25.032 24.704 26.027 24.679 25.179
8 Woodland 6 29.698 118.108 29.600 27.468 27.927 28.226 27.658 30.677
9 Woodland 7 29.677 118.353 26.205 27.298 29.026 28.417 26.651 18.758
10 Residential land 1 29.832 118.337 32.115 30.855 30.579 30.712 30.154 30.312
11 Residential land 2 29.756 118.264 25.245 30.204 29.724 29.506 29.511 28.246
12 Transport land 1 29.758 118.091 28.044 28.270 27.958 26.828 29.346 35.263
13 Transport land 2 29.727 118.204 28.170 28.289 28.016 28.063 28.075 30.576
14 Waters and water conservancy facility land 1 29.903 118.241 23.053 24.556 25.234 27.370 25.125 24.395
15 Waters and water conservancy facility land 2 29.816 118.425 26.727 26.616 27.856 28.520 25.823 24.521

Table 16: Comparison of interpolation accuracy of 5 kinds of interpolation methods on Apr. 19, 2018.

Study area Forecasting methods Forecast time Apr. 19, 2018
RMSE MAE MAPE (%) RVAR

Study area-2

S-IDW 1.719 1.268 1.839 0.805
IDW 1.995 1.627 2.591 0.844

Kriging 2.081 1.512 3.054 0.461
Natural 1.965 1.666 1.723 1.051
Spline 3.659 3.018 3.525 4.369

Table 17: Correlation analysis of interpolation results of 5 kinds of interpolation methods on Apr. 19, 2018.

Study area-2 LST S-IDW IDW Kriging Natural Spline

LST
Pearson correlation 1 0.617∗ 0.514 0.382 0.541∗ 0.513

Significance (two-tailed) 0.014 0.050 0.159 0.037 0.051
N 15 15 15 15 15 15

∗Significant correlation at 0.05 level (two-tailed).

Table 18: Comparison of interpolation results of 5 kinds of interpolation methods on Jul. 10, 2013.

Study area-2 Forecast date: Jul. 10,
2013

Forecasting methods
(unit of temperature: °C)

Point to be valued Land-use types Lat Lon LST S-IDW IDW Kriging Natural Spline
1 Farmland 1 29.835 118.266 35.071 36.730 38.018 38.408 40.071 43.826
2 Farmland 2 29.697 118.228 37.981 35.398 34.928 34.230 34.662 35.745
3 Woodland 1 29.914 118.139 30.012 29.221 28.643 27.689 27.914 28.126
4 Woodland 2 29.900 118.330 34.162 35.963 37.472 36.833 36.132 34.809
5 Woodland 3 29.894 118.524 35.395 36.822 37.653 37.505 38.331 40.496
6 Woodland 4 29.842 118.524 36.442 35.110 35.729 35.586 35.827 39.280
7 Woodland 5 29.750 118.525 31.775 32.236 32.297 31.740 32.968 32.647
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4. Conclusions

In this paper, S-IDW considering geographic semantics is
proposed, which is a novel spatial interpolation algorithm of
meteorological parameters. /e geographical semantic
similarity and weight between known observation points
and estimated points are considered comprehensively,
which makes the interpolation result of IDW more
reasonable. We selected 2 research areas with abundant
land-use types to analyze the interpolation under dif-
ferent temperature conditions and used 4 different sta-
tistical methods to evaluate the interpolation accuracy. At
the same time, the interpolation results of 5 interpolation
methods were analyzed and compared by Pearson cor-
relation analysis. /e experimental results show that the
accuracy of S-IDW is generally higher than the inverse-
distance weighting method, Kriging, natural neighbor
interpolation, and spline function interpolation, but
there are also some abnormal value and interpolation
outliers. Comparing the interpolation results of five
methods, it is found that the interpolation results of
S-IDW are closer to the measured value of LST than those
of four other interpolation methods. /e MAE, MAPE,
RVAR, and RMSE of S-IDW are closer to the best fitting
value between the measured and estimated values under
ideal conditions than those of the other 4 interpolation

methods, and the correlation between the interpolation
results of S-IDW and LST is also the strongest. Under the
above experimental conditions, the interpolation results
of S-IDW are more accurate and stable.

Note that we check the sample points involved in the
calculation and find that the semantic interpolation is a little
less effective than the traditional numerical interpolation
when there are many surface types of the same kind. When
there are more homogeneous interpolation points, there is
similarity to numerical interpolation. Other interpolation
methods have obvious advantages in numerical interpola-
tion. For example, Kriging interpolation method has a wide
range of applicability, which can better reflect a variety of
terrain changes. Spline interpolation method is suitable for
gradually changing surfaces, such as temperature, elevation,
groundwater level height, or pollution level. IDW interpo-
lation is suitable for the data with large density and uniform
distribution. In our experiment, when the type of interpo-
lation point is single, the advantage of semantic interpola-
tion is not obvious, even less than numerical interpolation.
Meanwhile, when there are more types, the semantic in-
terpolation method is obviously better.

However, there are still defects in our study, which need
to be improved in further researches. First, for the future
development framework of semantic interpolation, we hope
to consider the continuity of time to make up for some

Table 18: Continued.

Study area-2 Forecast date: Jul. 10,
2013

Forecasting methods
(unit of temperature: °C)

Point to be valued Land-use types Lat Lon LST S-IDW IDW Kriging Natural Spline
8 Woodland 6 29.698 118.108 33.573 34.817 34.728 35.205 35.340 32.472
9 Woodland 7 29.677 118.353 34.980 36.399 39.335 39.142 35.644 29.332
10 Residential land 1 29.832 118.337 41.655 39.583 39.386 39.255 39.308 39.936
11 Residential land 2 29.756 118.264 40.206 39.690 38.307 38.235 37.247 33.101
12 Transport land 1 29.758 118.091 36.348 35.363 34.768 36.077 36.815 40.110
13 Transport land 2 29.727 118.204 37.221 35.640 35.083 35.242 35.438 38.313
14 Waters and water conservancy facility land 1 29.903 118.241 28.349 29.977 30.234 30.705 30.449 30.414
15 Waters and water conservancy facility land 2 29.816 118.425 35.644 35.757 37.428 36.487 35.722 34.758

Table 19: Comparison of interpolation accuracy of 5 kinds of interpolation methods on Jul. 10, 2013.

Study area Forecasting methods Forecast time Jul. 10, 2013
RMSE MAE MAPE (%) RVAR

Study area-2

S-IDW 1.451 1.307 0.021 0.695
IDW 2.303 2.083 0.982 0.835

Kriging 2.345 2.047 0.667 0.870
Natural 2.315 1.953 0.577 0.813
Spline 3.894 3.048 0.861 1.753

Table 20: Correlation analysis of interpolation results of 5 kinds of interpolation methods on Jul. 10, 2013.

Study area-2 LST S-IDW IDW Kriging Natural Spline

LST
Pearson correlation 1 0.906∗∗ 0.755∗∗ 0.746∗∗ 0.747∗∗ 0.541∗

Significance (two-tailed) 0.000 0.001 0.001 0.001 0.037
N 15 15 15 15 15 15

∗∗Significant correlation at 0.01 level (two-tailed).
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missing data and combine the time factor [9, 16] with se-
mantic interpolation method to study spatiotemporal se-
mantic interpolation. In addition, we also attempt to
integrate the density, direction, elevation, and other influ-
encing factors [6–10] of interpolation points into semantic
interpolation and develop multifactor semantic interpola-
tion methods. Moreover, in order to handle the complexity
and uncertainty of predicting spatial attributes in most real-
world problems, deep learning and artificial intelligence
technology [16, 24] including logical and statistical learning
algorithms can be considered as future extension of the work
in the age of Big Data.
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