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Global solar radiation (GSR) is a critical variable for designing photovoltaic cells, solar furnaces, solar collectors, and other passive
solar applications. In Nepal, the high initial cost and subsequent maintenance cost required for the instrument to measure GSR
have restricted its applicability all over the country.)e current study compares six different temperature-based empirical models,
artificial neural network (ANN), and other five different machine learning (ML) models for estimating daily GSR utilizing readily
available meteorological data at Biratnagar Airport. Amongst the temperature-based models, the model developed by Fan et al.
performs better than the rest with an R2 of 0.7498 and RMSE of 2.0162MJm− 2d− 1. Feed-forward multilayer perceptron (MLP) is
utilized to model daily GSR utilizing extraterrestrial solar radiation, sunshine duration, maximum and minimum ambient
temperature, precipitation, and relative humidity as inputs. ANN3 performs better than other ANN models with an R2 of 0.8446
and RMSE of 1.4595MJm− 2d− 1. Likewise, stepwise linear regression performs better than other ML models with an R2 of 0.8870
and RMSE of 1.5143MJm− 2d− 1. )us, the model developed by Fan et al. is recommended to estimate daily GSR in the region
where only ambient temperature data are available. Similarly, a more robust ANN3 and stepwise linear regression models are
recommended to estimate daily GSR in the region where data about sunshine duration, maximum and minimum ambient
temperature, precipitation, and relative humidity are available.

1. Introduction

Some of the critical global issues currently encountered by
human civilization include global warming and environ-
mental pollution particularly instigated by the excessive use
of fossil fuels like petroleum products and natural gas and
traditional fuels like timber and firewood [1]. Nepal, being a
developing nation where 60% of the entire population is
involved in agriculture, has a disproportionate dependence
on traditional fuels [2]. However, clean and perpetual solar
energy is gaining more and more attention from the gov-
ernment as well as the private sector in recent years. Global
solar radiation (GSR) data serve to be one of the critical
variables in applications relating to hydrology, meteorology,
agriculture, and renewable energy. )e GSR is important in
the renewable energy sector to predict the capacity and

efficiency of devices based on solar energy applications like
photovoltaic cells, solar furnaces, and solar collectors.
However, unlike routine meteorological parameters, the
data pertaining to daily GSR are not readily available in
many locations all over the world [3]. )is is particularly
relevant for developing countries like Nepal. Lack of mea-
sured GSR data has led to the development of several
methods to estimate GSR, namely, a neural network [4, 5],
empirical models [6, 7], stochastic algorithm [8], and sat-
ellite-based methods [9]. Despite the current development in
new methods and technologies, the empirical method uti-
lizing meteorological data is preferred because of the cost
and technical constraint imposed on new methods and
technologies [3, 6, 7, 10].

According to the Department of Hydrology and Mete-
orology (DHM), only 284 meteorological stations are
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currently in operation in Nepal. Out of these, only 64
meteorological stations are equipped with pyranometer to
measure daily GSR, while only 34 meteorological stations
have the necessary infrastructure to measure daily sunshine
duration [11]. )e data of daily GSR are not readily available
for most of its locations. )us, various meteorological pa-
rameters can be used instead for the estimation of daily GSR.

As of 2019, more than 294 empirical models are available
for the estimation of GSR employing readily available me-
teorological data [7]. Some of the major categories of em-
pirical models include sunshine-based models [12],
temperature-based models [13], cloudiness-based models
[14], and complex models. Angstrom pioneered the esti-
mation of GSR employing a linear empirical model which
was later modified by Prescott [15]. Simplicity of the
Angstrom–Prescott (A-P) model and strong correlation of
sunshine duration with GSR are the reasons for its extensive
application all over the world [12, 16, 17]. After the de-
velopment of the A-P model, one or more meteorological
parameters have been incorporated in the original model to
improve the estimation [15]. Sunshine-based models per-
form more efficiently than models based on other meteo-
rological parameters since the sunshine duration is strongly
correlated with the GSR [18–20]. However, the high initial
investment and high maintenance cost of the instrument are
constraints to the widespread application of sunshine-based
models. )erefore, developing empirical models that utilize
readily available meteorological parameters such as ambient
air temperature, relative humidity, and precipitation are
widely preferred.

)e ambient temperature range is the most readily
available meteorological parameter. One of the simplest
temperature-based models consisting of mean monthly
maximum and minimum temperature as inputs was pro-
posed by Hargreaves and Samani [21]. After the introduc-
tion of the H-S model, several modifications have been
developed by incorporating other meteorological parame-
ters to improve the model performance. Hassan et al.
modified the H-S model by introducing precipitation term
that performed better than two of the most effective sun-
shine-based models from the literature [13]. Jahani et al.
recently developed two new accurate polynomial models
that outperformed several temperature-based models from
the literature [3]. Although all of the temperature-based
models were derived empirically, the variation in ambient
temperature was assumed to be largely dependent on the
solar radiation arriving on the Earth’s surface [22].

Although empirical models are widely analyzed and
evaluated, the performance of these models is found to vary
according to the geographical location and local climate [6].
Lately, several machine learning (ML) models are employed
to estimate GSR at several locations [4, 5]. )e capability of
generalizing and optimizing time and capacity to resolve
problems that are difficult to be represented by an explicit
algorithm are some of the biggest advantages of ML models
[23, 24]. )e main ML models currently in practice include
artificial neural network (ANN), support vector machine
(SVM), genetic programming (GP), random forests (RF),
and adaptive neural-fuzzy inference system (ANFIS). Some

of the predominantly applied ANN models include radial
basis function network (RBFN) and multilayer perceptron
(MLP). Behrang et al. [4] concluded that MLP was more
accurate than the RBFN for the estimation of GSR in Iran.
Belaid and Mellit [25] applied SVM with different input
combinations and concluded that it required a fewer number
of input parameters to provide better accuracy than ANN.

)e current study presents a comparison between the
temperature-based empirical models and ML models. )e
most common type of feed-forward network, i.e., MLP, is
employed in the current study to estimate the GSR at Bir-
atnagar Airport, located in the Eastern Terai Belt of Nepal.
Hence, the objectives of the study include the following:

(1) )e performance analysis of six different tempera-
ture-based empirical models to estimate daily GSR

(2) )e application of ANN and other ML models to
estimate daily GSR

(3) )e comparative analysis of the aforementioned
models to recommend the best model for the esti-
mation of GSR

2. Materials and Methods

2.1. Study Location andData. Nepal is situated between 26.2°
N and 30.54° N latitude in the temperate zone. Nepal ex-
periences 300 days of annual sunshine with an annual average
solar radiation of 5 kWh/m2/day [26]. Fourteen-month daily
data of various meteorological parameters for Biratnagar
Airport (26.4840° N latitude, 87.2662° E longitude, and 236m
altitude) were obtained from DHM. )e average annual
temperature in Biratnagar is 24.3°C with an average annual
rainfall of 1898mm [27].

CMP6 pyranometer is employed to measure the daily
GSR on a horizontal surface. )e pyranometer consists of
a blackened thermopile that absorbs the solar radiation
which is converted into heat. Voltage output is generated
by the thermopile which is then calibrated to indicate the
GSR. A data logger is utilized to record the measured
daily GSR. Campbell–Stokes sunshine recorder is
employed for the measurement of sunshine duration.
Mercury-filled and alcohol-filled meteorological ther-
mometers are used to measure wet-bulb and dry-bulb
temperature for normal ambient and low ambient tem-
perature, respectively. Similarly, data for relative hu-
midity is computed using the dry-bulb and wet-bulb
temperature.

2.2. Temperature-Based Empirical Models. Several models
have correlated ambient air temperature with GSR empir-
ically. Two of the most widely employed empirical model for
the estimation of GSR using ambient air temperature data
only are the Hargreaves and Samani (HS) model and Bristow
and Campbell (BC) model. )us, the above two models
along with other four recently developed highly accurate
models are selected in the present study.

Hargreaves and Samani [21] proposed a simple model
employing a mean monthly maximum temperature and
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mean monthly minimum temperature as inputs for the
estimation of daily GSR:

Rs

Ra

� c1(ΔT)
0.5

, (1)

where ΔT � Tmax − Tmin and c1 is the empirical constant.
Chen and Li [28] developed and analyzed the perfor-

mance of more than 20 different temperature-based empirical
models. Two of the top-performing temperature-based
models incorporating ambient temperature range and mean
monthly maximum temperature and mean monthly mini-
mum temperature as inputs are taken for the current study.
One model incorporates an additional constant term to the
original H-S model with an exponent of “1” (abbreviated as
Chen and Li (model 1)):

Rs

Ra

� a + c1ΔT, (2)

where a and c1 are the empirical constants.
Another model is a multiple regression model that takes

mean monthly maximum and minimum temperature as
inputs (abbreviated as Chen and Li (model 2)):

Rs

Ra

� a + c1Tmax + c2Tmin + c3Tmax × Tmin, (3)

where a, c1, c2, and c3 are the empirical constants.
Bristow and Campbell [29] developed a model consid-

ering that the GSR is exponentially related to the ambient
temperature range:

Rs

Ra

� c1 1 − exp c2(ΔT)
c3( 􏼁􏼂 􏼃, (4)

where c1, c2, and c3 are the empirical constants.
Jahani et al. [3] proposed a model considering a poly-

nomial correlation of GSR with ambient temperature range:
Rs

Ra

� a + c1ΔT + c2(ΔT)
2

+ c3(ΔT)
3
, (5)

where a, c1, c2, and c3 are the empirical constants.
Fan et al. [6] modified the Jahani model by using a

different exponent in the ambient temperature range term
and incorporating additional average temperature term to
improve the model performance:

Rs � a + c1(ΔT)
0.25

+ c2(ΔT)
0.5

+ c3ΔT􏼐 􏼑Ra + c4Ta, (6)

where Ta � (Tmax + Tmin)/2, and a, c1, c2, c3, and c4 are the
empirical constants.Extraterrestrial GSR is computed using
the following equation [30]:

Ra �
24
π

Hsc 1 + 0.033 cos
360n

365
􏼒 􏼓 cos ϕ cos δ sinω + ω

π
180

sinϕ sin δ􏼒 􏼓. (7)

)e angle of declination is determined by using the
following equation [31]:

δ � 23.45 sin
360
365

(284 + n)􏼒 􏼓. (8)

)e day length is calculated as follows:

N �
2
15
cos− 1

(−tanϕ tan δ). (9)

)e sunset hour angle is calculated as follows:

ω � cos− 1
(−tanϕ tan δ). (10)

2.3.MachineLearningModels. Multilayer perceptron (MLP)
model is employed in the current study among several other
ANN topologies available in the literature. MLP is partic-
ularly useful in modeling to resolve a complex problem.
Figure 1 illustrates the structure of MLP that consists of an
input layer, a hidden layer, and an output layer. Input signals
are multiplied by a set of weights as they are sent to the
output layer through the hidden layer.

Typical MLP with a hidden layer can be modeled as
follows [32]:

yi � 􏽘
6

j�1
wi,jxj + θ, (11)

where θ is the bias in the hidden layer. A nonlinear activation
function (typically a sigmoid) is employed for the calculation
of output of neurons given by [33]

f(x) � sigmoid(x) �
1

(1 + exp(−x))
. (12)

Support vector machine (SVM) is a powerful supervised
learning technique with excellent generalization ability be-
cause of which it is extensively utilized for solving problems
regarding pattern recognition, classification, regression, and
prediction [34]. SVM function can be used with various
kernel functions to implement its regression learner. )e
application of the Gaussian kernel is popular with SVM
classification and regression. Very complex boundaries and
relations can be established with the help of Gaussian-based
SVM.MediumGaussian and fine Gaussian are defined based
on the slenderness of the Gaussian function being used. Fine
Gaussian uses very thin Gaussian function with very low
standard deviation. As a result of these thinly separated
boundaries, fine Gaussian is susceptible to overfitting. Linear
regression learner performs a multivariate linear regression
on a set of input data. On the other hand, stepwise linear
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regression utilizes only highly correlated variables for linear
regression removing redundant weakly correlated variables.

2.4.Model Training and Testing. )e fourteen-month data is
divided into two datasets, initial 85% of the data is utilized
for the development of ML models or the calibration of
empirical models and the rest 15% is employed for the model
assessment. )e present study employs extraterrestrial solar
radiation (Ra), sunshine duration, maximum ambient
temperature (Tmax), minimum ambient temperature (Tmin),
precipitation, and relative humidity as inputs for the de-
velopment of ML models.

)e performance of the neural network is analyzed by
differing the number of neurons in the hidden layer and
recording the respective statistical indicators. Neural Net
Fitting [35], an implicit application in MATLAB, is
employed to design and train the neural network. )e most
well-known feed-forward network, i.e., MLP, is employed in
the current study to model the GSR. Levenberg–Marquardt
backpropagation algorithm is utilized to train the network.
Training terminates when generalization stops improving, as
demonstrated by an increase in the mean square error and
the corresponding decrease in R2. Regression Learner [36],
an implicit application in MATLAB, is employed to analyze
and evaluate the performance of linear regression, stepwise
linear regression, medium Gaussian SVM, matern 5/2
Gaussian process regression (GPR), and exponential GPR.

2.5. Statistical Indicatives. Four statistical indicators,
namely, coefficient of determination (R2), adjustedR2, mean
square error (MSE), and root mean square error (RMSE) are
utilized to evaluate the performance of various models. )e
performance of the model is evaluated using the following
equations:

RMSE �

�������������

1
m

􏽘

m

i�1
Yi − Xi( 􏼁

2

􏽶
􏽴

,

MSE �
1
m

􏽘

m

i�1
Yi − Xi( 􏼁

2
,

R
2

�
􏽘

m

i�1 Xi − X( 􏼁 Yi − Y( 􏼁􏽨 􏽩
2

􏽘
m

i�1 Xi − X( 􏼁
2
􏽘

m

i�1 Yi − Y( 􏼁
2,

R
2
adj � 1 −

1 − R
2

􏼐 􏼑(n − 1)

n − k − 1
,

(13)

where Xi and Yi represent the measured and predicted
values, while Xi and Yi represent the average measured and
average estimated values, n is the number of data points, and
k is the number of independent regressors.

RMSE value provides an indication of the short-term
performance of the model. Lower RMSE value corresponds
to better performance. R2 indicates the variance of the
dependent variable that is explained by independent
variables.

3. Results and Discussion

3.1. Calibration of Temperature-Based Empirical Models.
Figure 2 illustrates the correlation between the measured
value and the estimated value of daily GSR for the calibration
dataset. )e estimated value of GSR is reasonably correlated
with the measured value of GSR for all models. From the
statistical indicators (Table 1), the model developed by Fan
et al. is better correlated among other temperature-based

Extraterrestrial solar radiation

Input layer Hidden layer

Output neuron

GSR

Sunshine duration

Maximum ambient temperature

Minimum ambient temperature

Precipitation

Relative humidity

Figure 1: )e structure of MLP. Six sets of input data are initially fed in an input layer and the desired output is obtained from the output
layer through the hidden layer. )e number of neurons in the hidden layer is varied, and the corresponding statistical indicators are
recorded.
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models with an R2 of 0.6435 and corresponding R2
adj of

0.6373. Concerning RMSE, again model developed by Fan
et al. performs better than other temperature-based models
with an RMSE of 2.5810MJm− 2d− 1. Chen and Li (model 2)
ranks second among temperature-based models with R2,
R2
adj, and RMSE of 0.6248, 0.6200, and 2.7336MJm− 2d− 1,

respectively. )e model developed by Fan et al. is reasonable
to apply in the region where only data pertaining to ambient
temperature range are available.

)e least-square method is employed to fit the empirical
coefficients for temperature-based models. Empirical coef-
ficients obtained for all temperature-based models are in-
corporated in Table 2.

3.2. Training andValidation of ANNModels. Figures 3 and 4
illustrate the correlation between daily GSR estimated by
ANN and measured daily GSR for 6 and 10 neurons in the

hidden layer, respectively. Table 3 provides a summary of the
statistical indicators for ANN models. For the training set,
the model with 10 neurons in the hidden layer (abbreviated
as ANN5) performs better than other ANN models with an
R2 of 0.8485 and RMSE of 1.4967MJm− 2d− 1. Likewise,
ANN3 ranks second among other ANN models in the
training set with an R2 of 0.8341 and RMSE of
1.6823MJm− 2d− 1. A comparison of statistical indicators
shows that R2 and RMSE sometimes follow a different trend.
Similar to the training set, R2 and RMSE sometimes follow a
different trend in the validation set. Although ANN5 is the
best model in terms of R2, it exhibits a comparatively higher
RMSE of 1.8221MJm− 2d− 1. In the model development,
ANN models account for greater variance in the training
data in comparison with the temperature-based empirical
model.

3.3. Training and Validation of Other ML Models.
Figure 5 illustrates the correlation between daily GSR es-
timated by various ML models and measured daily GSR. In
order to prevent the overfitting of the model, 5-fold cross-
validation is performed during the model development. )e
statistical indicators for these models are incorporated in
Table 4.

Medium Gaussian SVM performs better than other
models with an R2 of 0.79 and RMSE of 1.867MJm− 2d− 1.
Similarly, GPR matern 5/2 ranks second with an R2 of 0.79
and RMSE of 1.870MJm− 2d− 1. )e performance of GPR
exponential degrades extensively with cross-validation
which might be attributed to the overfitting of the dataset.
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Figure 2: Scatter plots of measured daily GSR (MJm− 2d− 1) versus estimated daily GSR (MJm− 2d− 1) using empirical models. )e model
proposed by Fan et al. shows a strong correlation between measured and estimated value. (a) Hargreaves and Samani (HS). (b) Chen and Li
(model 1). (c) Bristow and Campbell (BC). (d) Jahani et al. (e) Chen and Li (model 2). (f ) Fan et al.

Table 1: Statistical indicators for temperature-based empirical
models.

Models R2 R2
adj

RMSE
(MJm− 2d− 1)

Hargreaves and Samani
(HS) 0.5291 0.5291 3.0148

Chen and Li (model 1) 0.5716 0.5697 2.8166
Bristow and Campbell (BC) 0.5764 0.5728 2.7949
Jahani et al. 0.5931 0.5878 2.7455
Chen and Li (model 2) 0.6248 0.6200 2.7336
Fan et al. 0.6435 0.6373 2.5810
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Table 2: Calibrated empirical coefficients for temperature-based models.

Models a c1 c2 c3 c4

Hargreaves and Samani (HS) — 0.1274 — — —
Chen and Li (model 1) 0.1048 0.0281 — — —
Bristow and Campbell (BC) — −9.24E – 4 4.5390 0.1241 —
Jahani et al. −0.0943 0.0741 −0.0029 4.945E− 5 —
Chen and Li (model 2) −0.4274 0.0481 −0.0116 −6.398E− 4 —
Fan et al. −2.0060 2.5160 −0.9118 0.0577 0.2966
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Figure 3: Correlations between GSR estimated (MJm− 2d− 1) by ANN and measured GSR (MJm− 2d− 1). )e number of hidden neurons� 6.
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On the contrary, the cross-validation has little or no effect on
the performance of the linear regression and stepwise linear
regression model. In the model development, most of these
ML models perform extremely well in comparison with

temperature-based empirical models. On the contrary, the
ANN5 model accounts for greater variance in the training
data in comparison with that in ML models.

3.4. Performance Comparison of Empirical and ML Models.
Model assessment is carried out on the 15% unseen data
after the model development. RMSE and R2 of empirical and
ML models on the test data are illustrated in Figures 6 and 7,
respectively. All of the temperature-based empirical models
perform reasonably well on the test data. Amongst the
empirical models, the model developed by Fan et al. out-
performs other models with an R2 of 0.7498 and RMSE of
2.0162MJm− 2d− 1. A comparison of statistical indicators
shows that R2 and RMSE sometimes follow a different trend.

Table 3: Statistical indicators for ANN models.

Number of hidden neurons
RMSE (MJm− 2d− 1) R2

Training Validation Training Validation
3 (ANN1) 2.0001 1.8547 0.7610 0.7240
4 (ANN2) 1.8221 1.8028 0.7903 0.7911
6 (ANN3) 1.6823 2.1954 0.8341 0.7397
8 (ANN4) 2.1564 1.6000 0.8000 0.8479
10 (ANN5) 1.4967 1.8221 0.8485 0.8507
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Figure 5: Scatter plots of measured daily GSR (MJm− 2d− 1) versus estimated daily GSR (MJm− 2d− 1) using different MLmodels with 5-fold
cross-validation. Medium Gaussian SVM shows a strong correlation between estimated and measured value. (a) Linear regression. (b)
Stepwise linear regression. (c) Medium Gaussian SVM. (d) GPR matern 5/2. (e) GPR exponential.

Table 4: Statistical indicators for ML models.

Models
Cross-validation: 5-folds

RMSE (MJm− 2d− 1) R2

Linear regression 2.010 0.76
Stepwise linear regression 1.940 0.77
Medium Gaussian SVM 1.867 0.79
GPR matern 5/2 1.870 0.79
GPR exponential 1.891 0.79
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HSmodel ranks second among empirical models in terms of
RMSE while exhibiting an R2 of 0.7323. Similarly, the model
proposed by Jahani et al. also performs reasonably well with
an R2 of 0.7356 and RMSE of 2.3896MJm− 2d− 1.

)e performance of ANN on the test data is not con-
sistent with the performance during the model development.
Amongst the ANN models, ANN3 performs better than
other models with an R2 of 0.8446 and RMSE of
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Figure 6: RMSE of empirical and ML models on test data.
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Figure 7: R2 of empirical and ML models on test data.
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1.4595MJm− 2d− 1. ANN1 ranks second with an R2 of 0.8134
and RMSE of 1.4663MJm− 2d− 1. )e performance of ANN4
andANN5 degrades substantially in themodel assessment in
comparison with the model development. )e overfitting of
the training data during model development is the primary
reason for the degradation of the performance.

Similar to the ANN models, the performance of other
ML models on the test data is also not consistent with the
performance during the model development. A com-
parison of statistical indicators shows that R2 and RMSE
sometimes follow a different trend. Concerning R2,
stepwise linear regression performs better than other ML
models with an R2 of 0.8870 and RMSE of
1.5143MJm− 2d− 1. Likewise, concerning RMSE, linear
regression learner performs better than other ML models
with R2 of 0.8102 and RMSE of 1.4765MJm− 2d− 1. )e
performance of medium Gaussian SVM, GPR matern 5/2,
and GPR exponential degrades substantially in the model
assessment in comparison with the model development.
)e overfitting of the training data during model de-
velopment is the primary reason for the degradation of
the performance.

4. Conclusion

)e present study analyzes and evaluates six different
temperature-based empirical models, ANN, and other
five different ML models to estimate daily GSR at Bir-
atnagar Airport. Initially, six different temperature-based
empirical models with ambient temperature range and
daily average temperature as inputs are calibrated. In the
model assessment, the model developed by Fan et al.
performs better in comparison with other temperature-
based models with anR2 of 0.7498 and RMSE of
2.0162MJm− 2d− 1. )e performance of ANN with a higher
number of neurons in the hidden layer degrades sub-
stantially in the model assessment because a large number
of neurons tend to overfit the dataset. In the model as-
sessment, ANN3 performs better than other ANNmodels
with an R2 of 0.8446 and RMSE of 1.4595MJm− 2d− 1.
Similarly, ANN1 ranks second with an R2 of 0.8134 and
RMSE of 1.4663MJm− 2d− 1. Five different ML models
available in the MATLAB Regression Learner are ana-
lyzed and evaluated to determine the best performing ML
model. )e performance of medium Gaussian SVM, GPR
matern 5/2, and GPR exponential degrades substantially
in the model assessment because of the overfitting of the
training data during the model development. Concerning
R2, stepwise linear regression performs better than other
ML models with an R2 of 0.8870 and RMSE of
1.5143MJm− 2d− 1. Likewise, concerning RMSE, linear
regression learner performs better than other ML models
with an R2 of 0.8102 and RMSE of 1.4765MJm− 2d− 1.

Considering the generalization capability of tem-
perature-based empirical models, the model proposed by
Fan et al. is recommended to estimate daily GSR in the
region where only data pertaining to ambient tempera-
ture are available. For the regions where data about
sunshine duration, maximum and minimum ambient

temperature, precipitation, and relative humidity are
available, a more robust ANN3 and the stepwise linear
regression model are recommended to estimate daily
GSR.

Nomenclature

GSR: Global solar radiation
MLP: Multilayer perceptron
SVM: Support vector machine
ANN: Artificial neural network
DHM: Department of Hydrology and Meteorology
ANFIS: Adaptive neurofuzzy inference system
GP: Genetic programming
RF: Random forest
RBFN: Radial basis function network
GPR: Gaussian process regression
Rs: Measured global solar radiation
Ra: Extraterrestrial solar radiation
Hsc: Solar constant (1367W/m2)

n: Day of the year
N: Day length
ϕ: Latitude (rad)

δ: Solar declination angle (rad)

ω: Sunshine hour angle
Tmax: Maximum ambient temperature
Tmin: Minimum ambient temperature
ΔT: Ambient temperature range
Ta: Average daily temperature.
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Supplementary Materials

Supplementary 1: raw data of daily global solar radiation,
sunshine duration, maximum and minimum ambient
temperature, relative humidity, and rainfall of Biratnagar
Airport, Morang, Nepal, used for the study are included in
the supplementary information file. Supplementary 2:
Solar Radiation file contains average solar radiation data
measured per second for a particular day. So, dailyGSR �
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averageGSRdatameasuredpersecond × sunshineduration
× 3600. Supplementary 3: Sunshine Duration file contains
daily sunshine duration data in hr. Supplementary 4: Tmax
and Tmin file contains daily maximum and minimum
ambient temperature data in 0C. Supplementary 5: Rainfall
file contains daily rainfall data in millimeters (mm).
Supplementary 6: RH file contains data of relative hu-
midity computed a couple of times a day. (Supplementary
Materials)
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