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'e accuracy and consistency of streamflow prediction play a significant role in several applications involving the management of
hydrological resources, such as power generation, water supply, and flood mitigation. However, the nonlinear dynamics of the
climatic factors jeopardize the development of efficient prediction models. 'erefore, to enhance the reliability and accuracy of
streamflow prediction, this paper developed a three-stage hybrid model, namely, IVL (ICEEMDAN-VMD-LSTM), which in-
tegrated improved complete ensemble empirical mode decomposition with additive noise (ICEEMDAN), variational mode
decomposition (VMD), and long short-term memory (LSTM) neural network. Monthly data series of streamflow, temperature,
and precipitation in the Swat RiverWatershed, Pakistan, from January 1971 to December 2015 was used as a case study. Firstly, the
correlation analysis and the two-stage decomposition approach were employed to select suitable inputs for the proposed model.
ICEEMDANwas employed as a first decomposition stage, to decompose the three data series into intrinsic mode functions (IMFs)
and a residual component. In the second decomposition stage, the component of high frequency (IMF1) was decomposed by
VMD, as the second decomposition. Afterward, all the components obtained through the correction analysis and the two-stage
decomposition approach were predicted by using the LSTM network. Finally, the predicted results of all components were
aggregated, to formulate an ensemble prediction for the original monthly streamflow series. 'e predicted results showed that the
performance of the proposed model was superior to the other developed models, in respect of several evaluation benchmarks,
demonstrating the applicability of the proposed IVL model for monthly streamflow prediction.

1. Introduction

'e accuracy of the streamflow prediction technique is
crucial for efficient management and planning of hydro-
resources. However, the involvement of nonlinear processes,
such as evaporation, topography, anthropic activities, and
rainfall, poses a challenge for efficient streamflow prediction
[1]. Streamflow prediction can be categorized into short-
term prediction (e.g., daily or hourly), medium-term pre-
diction (e.g., seasonal, monthly, and weekly), and long-term
prediction (e.g., annual) [2].

Process-driven models (PDMs) and data-driven models
(DDMs) represent the two general categories of streamflow

prediction models. PDMs consider the physical processes of
the water cycle [3], whereas the DDMs are based on artificial
intelligence (AI) methods and avoid considering the physical
mechanisms of the watershed. In other words, these AI-
based models are more user-friendly compared to the PDMs
[4]. 'e development of PDMs is very complex, and these
models are prone to several factors. 'ese factors include the
effects of watershed’s underlying conditions on the accuracy
and integrity of data, the intricacy of rainfall-streamflow
process, the spatial-temporal variation of climatological
data, and the limited knowledge of streamflow patterns in
the watersheds. Majority of these models necessitates a large
quantity of data for training and testing, which makes these
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models computationally complex. Resultantly, the re-
searchers have attempted to develop substitute approaches
to predict streamflow with reasonable accuracy and com-
parative ease. 'e DDMs can be regarded as a black-box and
try to establish relations between the input and output
variables with limited information on the underlying hy-
drological process [5]. DDMs have a simpler architecture
than the PDMs since they require fewer data. 'ese models
can circumvent the influence of uncertainties on model
performance, which is experienced due to complex hy-
drological processes and also offer good prediction results
[6]. 'e DDMs are becoming popular with the advent and
advancement of AI. 'ese models are more suitable for
streamflow forecasting than the PDMs, particularly when
limited knowledge of the hydrological process is available
[7]. 'e DDMs can be viewed as a promising solution to
resolve the challenges of uncertainty and sensitivity inherent
with the PDMs [8, 9].

Machine learning models (MLMs) are extensively
employed to study the nonlinear dynamics of the hydro-
logical variables [10–12]. Neural networks [13], support
vector machines (SVM) [14], and random forests are the
most popular MLMs for prediction [15]. MLMs are feasible
for predication of streamflow, temperature, and precipita-
tion variables on a large scale [16, 17]. Recent studies have
demonstrated the superior performance of deep learning
(DL) approaches for streamflow prediction [18–21]. LSTM
network can be employed tomodel streamflow-precipitation
variables due to its ability of learning long-term inputs and
outputs dependencies [22]. 'erefore, LSTM has been
successfully applied in numerous streamflow-precipitation
studies [23, 24].

MLMs coupled with decomposition techniques are
employed, to enhance the performance of standalone
models, and for more accurate prediction [25, 26]. 'e
decomposition techniques have been effectively applied to
decompose the streamflow time series and to improve the
performance of MLMs [27]. ICEEMDAN is the latest ver-
sion of complete ensemble empirical mode decomposition
with additive noise (CEEMDAN) and decomposes the signal
into the subcomponents having less noise [28]. VMD is
another advanced decomposition technique having out-
standing frequency search performance and sampling
properties [29].

'e selection of input variables in the machine learning
(ML) based DDMs (ML-DDMs) for streamflow prediction is
of vital importance. Different combinations of inputs are
applied to predict the target values of the streamflow. 'e
streamflow prediction can be performed, by considering the
observed streamflow time series as an input, to predict the
target streamflow [30, 31]. 'e streamflow, precipitation,
and temperature variables can also be applied as an input to
predict the target streamflow [32, 33].

'is paper developed five standalone MLMs, including a
radial basis function neural network (RBF), support vector
regression (SVR), random forest regression (RFR), gated
recurrent unit neural network (GRU), and LSTM to de-
termine the model with the best prediction performance.
'e monthly streamflow, temperature, and precipitation

series were selected as the input variables for models de-
velopment.'e different statistical metrics were employed to
assess the performance of the models in the training and
testing periods. 'e performance of the LSTM network was
superior to the standalone counterparts. 'e standalone
LSTM network was selected, and its prediction performance
was enhanced further by the development of two-stage
hybrid models (ICEEMDAN-LSTM and VMD-LSTM). 'e
two-stage hybrid models revealed better results than the
standalone LSTM network. 'e two-stage hybrid models for
the streamflow prediction can be extended to the three-stage
hybrid models to improve the performance of the two-stage
hybrid models [34]. 'erefore, considering the superior
decomposition properties of ICEEMDAN and VMD tech-
niques and the better prediction capability of LSTM than the
other MLMs, this paper proposed a three-stage hybrid
model IVL for streamflow prediction. Experimental results
proved that the proposed model was superior to the two-
stage hybrid and standalone models in terms of several
performance measures. Specifically, the main objectives of
this study were the following:

(1) 'e development of a three-stage hybrid model
coupling a two-stage decomposition approach with a
DL model

(2) 'e applicability of the proposed model for the
streamflow prediction by considering streamflow,
temperature, and precipitation as input variables

(3) Verification of the performance of the proposed
model with two-stage and standalone models by
comparing results

'e remainder of this paper is arranged as follows.
Section 2 introduces the decomposition and DL approaches,
the statistical metrics for performance evaluation, meth-
odology, and the study area. Section 3 presents all the results
along with the discussion of the results, and Section 4
summarizes the conclusions of this study.

2. Materials and Methods

2.1. Improved Complete Ensemble Empirical Mode Decom-
position with Additive Noise. ICEEMDAN was proposed to
resolve the issues of the spurious modes and the frequency
aliasing as faced by the other EMD based techniques [28]. By
adding white noise, ICEEMDAN realizes the frequency
continuity among adjacent scales, which results in the
weakening of frequency aliasing effect [35]. 'e calculation
methodology of ICEEMDAN is given as follows:

(i) Add white noise of specific amount to the original
signal x, as

x
i

� x + β0E1 w
i

􏼐 􏼑, (1)

where i is the added noise number, xi denotes the
signal to be decomposed,ωi represents the white
noise, and E1(w(i)) depicts the first EMD compo-
nent of the white noise.

(ii) Afterward, the first residue (R1) can be obtained as
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R1 � M x
i

􏼐 􏼑, (2)

where M(.) represents the local mean of envelope
that fulfills the sifting threshold of IMF.

(iii) 'e first IMF can be obtained by utilizing EMD after
the decomposition of N signals as

IMF1 � x − R1. (3)

(iv) 'e following steps can be applied to calculate the
second residue and mode:

R2 � M R1 + β1E2 w
i

􏼐 􏼑􏼐 􏼑, (4)

IMF2 � R1 − R2. (5)

(v) Calculate kth residue and mode:

Rk � M Rk−1 + βk−1Ek w
i

􏼐 􏼑􏼐 􏼑, (6)

IMFk � Rk−1 − Rk. (7)

(vi) Repeat (4) for the next k stages.

2.2. Variational Mode Decomposition. 'is study utilized
VMD to construct a two-stage hybrid model and to verify its
applicability for streamflow perdition. 'e benefit of the
VMD technique is the absence of residual noise during the
decomposition process. Equations (8)–(11) describe the
main steps of the VMD technique [29]. As a constrained
optimization issue, optimization functions to lessen the
spectral bandwidth sum of all modes are given as

f(t) � min
uk{ }, ωk{ }

􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓 ∗ uk(t)􏼔 􏼕e

− jωkt

�������

�������

2

2

⎧⎨

⎩

⎫⎬

⎭

· subject to􏽘
k

uk,

(8)

where uk􏼈 􏼉: u1, u2, . . . , uk􏼈 􏼉 and ωk􏼈 􏼉: ω1,ω2, . . . ,ωk􏼈 􏼉 de-
note modes set and centre frequencies, respectively. 'e
Lagrangian multipliers and the term of quadratic penalty are
introduced to convert the above optimization issue into the
following unconstrained problem:

L uk􏼈 􏼉, ωk􏼈 􏼉, λ( 􏼁 � α 􏽘
k

zt δt +
j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

− jωkt

�������

�������

2

2
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⎩

⎫⎬

⎭

+ f(t) − 􏽘
k

u(t)

���������

���������

2

2

+〈λ(t), f(t)

− 􏽘
k

uk(t)〉.
(9)

'e alternative directionmethod of multipliers is feasible
to solve (2). 'e two stages of (2) can be demonstrated as
follows:

(i) uk minimization:

􏽢u
n+1
k �

􏽢f(ω) − 􏽘
i≠k􏽢ui(ω) +(􏽢λ(ω)/2)

1 + 2α ω − ωk( 􏼁
2 . (10)

(ii) ωk minimization:

ωn+1
k �

􏽚
∞

0
ω 􏽢uk(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dω

􏽚
∞

0
􏽢uk(ω)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
dω

, (11)

where n denotes the number of iterations and
􏽢un+1

k , 􏽢λ(ω), 􏽢f(ω), 􏽢ui(ω)show the Fourier transform of
un+1

k , λ(ω), f(ω), ui(ω), respectively. 'e detailed decom-
position process of VMD technique can be found in [29].

Compared to the ICEEMDAN technique, VMD is an
adaptive signal decomposition technique and avoids the
presence of residual modes. 'ese advanced features of
VMD make the decomposition process of VMD superior to
the other decomposition techniques. 'e present study
carried out an additional decomposition of the IMF1
component by the hybrid combination of VMD with
ICEEMDAN for further resolution of the low patterns of
frequency. 'is enables the DL model to perform the
streamflow prediction more accurately with fine-scale de-
composition components.

2.3. Long Short-Term Memory Neural Network. LSTM is an
advanced version of the recurrent neural network (RNN)
specially designed to address the issues of vanishing and
exploding gradients as being inherent by RNNs [36]. LSTM
can preserve long-term dependencies through its unique
architecture, gates, and the cell state [23]. 'e LSTM net-
work takes input Xt at time step t and hidden states ht−1 and
updates its hidden states as follows [37]:

Input gate it � σ PiXt + Qiht−1 + bi( 􏼁, (12)

Forget gateft � σ PfXt + Qfht−1 + bf􏼐 􏼑, (13)

Cell input 􏽥Ct � tan h PcXt + Qcht−1 + bc( 􏼁, (14)

Cell state Ct � ft ∗Ct−1 + it−1 ∗ 􏽥Ct, (15)

Output gate ot � σ PoXt + Qoht−1 + bo( 􏼁, (16)

Hidden state ht � ot ∗ tan h Ct−1( 􏼁, (17)

where Ps and Qs denote the network weights, bs are bias
vectors, σ is the sigmoidal function, and tan h shows the
hyperbolic tangent function [37].
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2.4. Statistical Metrics. Statistical metrics were employed to
evaluate the performance of the proposed and other predictive
models. 'e commonly used statistical metrics in the field of
hydrology include mean absolute error (MAE), root mean
square error (RMSE), Nash-Sutcliffe coefficient of efficiency
(NSCE), and mean absolute percentage error (MAPE). 'e
following equations were used to define these metrics:

MAE �
1
n

􏽘

n

i�1
Obi − Pri

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (18)

RMSE �

���������������

1
n

􏽘

n

i�1
Obi − Pri( 􏼁

2

􏽶
􏽴

, (19)

MAPE �
1
n

􏽘

n

i�1

Obi − Pri

Obi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100, (20)

NSCE � 1 −
􏽘

n

i�1 Obi − Pri( 􏼁
2

􏽘
n

i�1 Obi − Obi􏼐 􏼑
2. (21)

In (18)–(21), Obi and Pri depict the observed and pre-
dicted values of streamflow, respectively, while n represents
the number of data points.

2.5. ICEEMDAN-VMD-LSTM-Based Hybrid Modelling.
'is paper proposed a hybrid model IVL based on ICE-
EMDAN, VMD, and LSTM network to predict monthly
streamflow. 'e systematic sequence of the proposed model
is explained as follows:

Step 1: To select suitable input variables for the IVL
model, the correlation analysis and the ICEEMDAN
approach were applied to the streamflow, temperature,
and precipitation time series.
Step 2. 'e highest frequency component obtained
because of ICEEMDAN was further decomposed by
VMD into subcomponents.
Step 3. 'e components obtained as a result of the
ICEEMDAN-VMD technique and the correlation
analysis were applied to the LSTMnetwork to construct
the prediction model.
Step 4. 'e predicted results of Step 3 were recon-
structed to finalize the prediction.
Step 5. 'e performance of the proposed model was
evaluated by applying several evaluation benchmarks,
including the two-stage hybrid models, standalone
models, and statistical metrics. 'e hybrid models
included VMD-LSTM and ICEEMDAN-LSTM
models, whereas the RBF, SVR, RFR, GRU, and LSTM
models were established as standalone models. Figure 1
explains the flowchart of the proposed methodology.

2.6. Dataset and Study Area. 'e monthly streamflow,
temperature, and precipitation data were selected in this
study to predict one-month ahead streamflow at Chakdara

station in the Swat River Watershed. 'e monthly data from
January 1971 to December 2015 were taken, which corre-
sponds to a sample size of 540 values, for each of streamflow,
temperature, and precipitation datasets. 'e datasets were
divided into the training dataset (70% of the total data) and
the testing dataset (30% of the total data). 'e detailed
description of the selection of the input variables for dif-
ferent models is provided in Table 1. Figure 2 provides
pairwise relation between streamflow, temperature, and
precipitation through a pairplot.

'e data were collected from the Water and Power
Development Authority (WAPDA), Pakistan, and Pakistan
Meteorological Department (PMD). 'e Swat River Wa-
tershed is situated in the Khyber Pakhtunkhwa Province,
Pakistan. Figure 3 illustrates the location of the Swat River
Watershed in Pakistan. 'e perianal Swat River commences
from the mountains of Swat Kohistan with the convergence
of Utar and Ushu tributes. After streaming through the
Kalam valley and the Swat area, the Swat River flows through
the Malakand district and ends up into the Kabul River. 'e
Swat RiverWatershed is mostly hilly, with heights stretching
from 360m to 4,500m. 'e glaciers lie above 4,000m, and
vegetation is visible between 1,800m and 3,400m [38].
Precipitation occurs mostly in winter and summer. 'e high
precipitation in the summer monsoon season sometimes
results in flooding events. Swat River is vital for the economy
of the Swat valley. It irrigates the districts of Swat, Malakand,
and Peshawar and fulfills the needs of springs and water
wells. 'e Swat River provides a natural habitat of flora and
fauna in the region and attracts thousands of tourists. 'e
hydropower stations on the Swat River provide electricity to
the national grid of Pakistan.

3. Results and Discussion

3.1. Decomposition Analysis. Firstly, the ICEEMDAN was
applied to decompose the three (streamflow, temperature,
and precipitation) data series into several components, as
demonstrated in Figure 4. ICEEMDAN decomposed the
streamflow and temperature signals into seven IMFs (IMF1-
IMF7) and a residual (Residual) component, whereas nine
IMFs (IMF1-IMF9) and a residual (Residual) component
were obtained due to the decomposition of the precipitation
series through ICEEMDAN. 'e decomposed components
(IMFs and Residual) provide the information of the high to
low frequency components present within the three input
data series.

'e first decomposed component (IMF1) of the three
data series obtained through the ICEEMDAN pre-
processing technique was further decomposed by VMD
due to high oscillatory fluctuations.'e number of intrinsic
modes’ determination is an important step, in the VMD
process, and represents an acceptable data series, for an
accurate approximation model [39]. Different methods
were employed for the mode determination of VMD, in-
cluding the correlation analysis [40], the centre frequency
method [41], and the EMD process [42]. 'is study applied
the correlation analysis to the decomposed components,
obtained through the decomposition of observed
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Table 1: Selection of the input variables for different models.

Models Input variables Target variable
RBF

Qt−1, Qt−11, Qt−12, QTt−1, QTt−10, QTt−11, QTt−12, QPt−3, QPt−4, Qt, Tt, Pt

One-month ahead
streamflow

SVR
RFR
GRU
LSTM

ICEEMDAN-LSTM
Qt−1, Qt−11, Qt−12, QTt−1, QTt−10, QTt−11, QTt−12, QPt−3, QPt−4,

Q (IMF1–IMF7, Residual), T (IMF1–IMF7, Residual), and P (IMF1–IMF9,
Residual)

VMD-LSTM Qt−1, Qt−11, Qt−12, QTt−1, QTt−10, QTt−11, QTt−12, QPt−3, QPt−4,
Q (VF1–VF7, Residual), T (VF1–VF7, Residual), and P (VF1–VF9, Residual)

IVL (ICEEMDAN-VMD-
LSTM)

Qt−1, Qt−11, Qt−12, QTt−1, QTt−10, QTt−11, QTt−12, QPt−3, QPt−4,
Q (IMF2–IMF7, Residual), T (IMF2–IMF7, Residual), P (IMF2–IMF9, Residual),

QIMF1 (QF1–QF8), TIMF1 (TF1–TF8), and PIMF1 (PF1–PF10)

Observed time series

Streamflow Temperature Precipitation

ICEEMDAN (decomposition)Correlation analysis

LSTM prediction

Predicted
streamflow

Predicted
temperature

Predicted
precipitation

Mode1

Mode1

Mode2

Mode2 Mode3

ModeN

ModeN…

…

…

…

LSTM prediction

LSTM prediction

Predicted
Mode2

Predicted
Mode3

Predicted
ModeN

Predicted
Mode1

Predicted
Mode2

Predicted
ModeN

Prediction results

Summation of prediction values

VMD (decomposition)

Figure 1: A flowchart explaining the IVL model.
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Figure 4: Decomposition of time series by ICEEMDAN. (a) Streamflow. (b) Temperature. (c) Precipitation.
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streamflow, temperature, and precipitation series by the
ICEEMDAN technique for mode determination, as pre-
sented in Figure 5.

Figure 5 shows that the numbers of modes for the de-
composition of the IMF1 component by VMDwere found as
eight, eight, and ten, respectively, for streamflow, temper-
ature, and precipitation series. 'e decomposition of the
IMF1 component of streamflow, temperature, and precip-
itation, is depicted in Figure 6.

Figures 6(a), 6(b), and 6(c) depict the decomposition of
the IMF1 component of streamflow, temperature, and
precipitation series by VMD into QF1–QF8 (eight modes),
TF1–TF8 (eight modes), and PF1–PF10 (ten modes),
respectively.

3.2. SelectionofModels InputVariables. 'is study employed
both the decomposition techniques and the correlation
analysis to select suitable input variables for the development
of all DL models. 'e ACF and CCF values of the three time
series were calculated with a 95% confidence level to extract
relevant input variables for model development. 'e ACF
and PACF analysis for the streamflow time series are de-
scribed in Figures 7(a) and 7(b), respectively. It is evident
from Figure 7(a) that a significant correlation exists at 1st,
11th, and 12th lag; therefore, these three lag values were
selected as one of the inputs.

Figure 8(a) illustrates that a significant CCF between
streamflow and temperature series is present at 1st, 10th, 11th,
and 12th lag. 'erefore, these four values were also chosen
for model inputs.'e 3rd and 4th lag values of the streamflow
and precipitation series were chosen as the input due to
significant correlation, as shown in Figure 8(b).

Table 1 demonstrates the selection of input variables for
the development of different models to predict the target
variable of one-month ahead streamflow. For the standalone
RBF, SVR, RFR, GRU, and LSTMmodels, the input variables
were the observed time series of streamflow (Qt), temper-
ature (Tt), and precipitation (Pt) and the components
obtained through the correlation analysis of these three data
series (Qt−1, Qt−11, Qt−12, QTt−1, QTt−10, QTt−11, QTt−12,

QPt−3, QPt−4). For the two-stage hybrid ICEEMDAN-LSTM
model, the inputs variables were obtained, by employing
both the correlation analysis (Qt−1, Qt−11, Qt−12,

QTt−1, QTt−10, QTt−11, QTt−12, QPt−3, QPt−4) and the ICE-
EMDAN technique (Q (IMF1–IMF7, Residual), T
(IMF1–IMF7, Residual), and P (IMF1–IMF9, Residual)) to
the observed time series of streamflow, temperature, and
precipitation. 'e two-stage hybrid VMD-LSTM model
employed the correlation analysis (Qt−1, Qt−11, Qt−12,

QTt−1, QTt−10, Q Tt−11, QTt−12, QPt−3, QPt−4) and the VMD
technique (Q (VF1–VF7, Residual), T (VF1–VF7, Residual),
and P (VF1–VF9, Residual)) to the observed time series of
streamflow, temperature, and precipitation. 'e three-
stage hybrid IVL model employed the correlation analy-
sis (Qt−1,Qt−11,Qt−12,QTt−1,QTt−10,QTt−11,QTt−12,QPt−3,

QPt−4), ICEEMDAN, and VMD techniques (Q
(IMF2–IMF7, Residual), T (IMF2–IMF7, Residual),
P (IMF2–IMF9, Residual), QIMF1 (QF1–QF8), TIMF1

(TF1–TF8), and PIMF1 (PF1–PF10)) to the observed time
series of streamflow, temperature, and precipitation.

3.3. Models Structure and Parameter Selection. All the ana-
lyses were performed using MATLAB R2015a software
under the environment of Intel (R) Core i7-10510U CPU @
3.70GHz, 16G RAM, by utilizing a Windows 10, 64-bit
operating system. Moreover, Python 3.6 programming
language was used in PyCharm integrated development
environment, based on NumPy and Pandas packages, to
implement all MLMs. 'e modules, including the Scikit-
learn and the Keras employing Google TensorFlow backend,
were also employed to develop MLMs.

For the ICEEMDAN technique, the value of standard
deviation was set as 0.2, the realizations were 500, and the
maximum sifting iterations were set as 5000. For the VMD
technique, the moderate bandwidth constraint was taken as
2000, and effectively shutoff Lagrangian multiplier was
considered. 'e uniform distributed initialization of the
centre frequencies of all modes was used. Moreover, no DC
part was imposed during the decomposition process, while
the tolerance parameter was taken as 1E-7. More details for
parameter selection of ICEEMDAN and VMD can be found
in [28, 29]. 'e network consists of two hidden layers with
128, 64, or 32 nodes in each layer, and a dropout value of 0.2
was used to avoid overfitting. Adam was selected as an
optimizer for all the models, and 1000 epochs were used for
training the models.

Due to the difference in the dimension of streamflow,
temperature, and precipitation datasets, normalization of
the whole data is necessary to achieve the best performance
of the models. 'e normalization was performed through
the sklearn preprocessing module by employing the Min-
MaxScaler function to transform the data between zero and
one. 'e formula for normalization is

Xnorm �
X − Xmin

Xmax − Xmin
. (22)

3.4. Prediction Outcomes. To verify the performance of the
IVL model, the predicted results of the IVL model were
compared with VMD-LSTM, ICEEMDAN-LSTM, LSTM,
GRU, RFR, SVR, and RBF models, during the training and
testing periods. Tables 2 and 3 illustrate the results of sta-
tistical metrics for the performance evaluation of models in
the training and testing periods. 'e performance of the
hybrid models was far better in comparison to the stand-
aloneMLMs, where no decomposition of input variables was
involved. Moreover, better results of LSTM with the lower
error values of the statistical metrics than the other MLMs
also established the viability of the LSTM network to predict
streamflow, during the training and testing periods.

It is evident from Table 2 that the integrated IVL model
yielded better accuracy and lowest error compared to the
two-stage hybrid and standalone models. Conversely, the
RBF model revealed the worst effectiveness and efficiency as
compared with the standalone, two-stage, and three-stage
hybrid models. During the training period, the IVL model
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Correlation map of streamflow components by ICEEMDAN
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Correlation map of temperature components by ICEEMDAN
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Correlation map of precipitation components by ICEEMDAN
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Figure 5: Maps presenting the correlation between the observed time series and the decomposed components obtained after ICEEMDAN.
(a) Streamflow. (b) Temperature. (c) Precipitation.
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Figure 6: Decomposition of IMF1 component of ICEEMDAN by VMD. (a) Streamflow. (b) Temperature. (c) Precipitation.
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showed 4.496m3/s, 8.419m3/s, 16.169m3/s 18.381m3/s,
21.609m3/s, 23.665m3/s, and 32.437m3/s reduction in MAE
than the VMD-LSTM, ICEEMDAN-LSTM, LSTM, GRU,
RFR, SVR, and RBF models, respectively. Moreover, the IVL
model was able to reduce RMSE by 4.925m3/s, 9.609m3/s,
22.538m3/s, 25.260m3/s, 31.035m3/s, 34.929m3/s, and
44.951m3/s compared to the VMD-LSTM, ICEEMDAN-
LSTM, LSTM, GRU, RFR, SVR, and RBF models, re-
spectively, during the training period. 'e results of MAPE

during the training period for the IVL model also showed a
lesser value of 2.049%, 4.655%, 8.665%, 10.699%, 12.426%,
13.020%, and 21.068% compared to the VMD-LSTM,
ICEEMDAN-LSTM, LSTM, GRU, RFR, SVR, and RBF
models, respectively. 'e NSCE results for the IVL model
were closer to 1 compared to all other models. Further-
more, the NSCE results of the other seven models were
greater than 0.8, which shows the suitability of all the
developed models for streamflow prediction.

Table 2: Comparison of models using statistical metrics during the training period.

Model MAE (m3/s) RMSE (m3/s) NSCE MAPE (%)
RBF 39.520 57.504 0.841 28.533
SVR 30.748 47.482 0.892 20.485
RFR 28.692 43.588 0.909 19.891
GRU 25.464 37.813 0.931 18.164
LSTM 23.252 35.091 0.941 16.130
ICEEMDAN-LSTM 15.502 22.162 0.976 12.120
VMD-LSTM 11.579 17.478 0.985 9.514
IVL (ICEEMDAN-VMD-LSTM) 7.083 12.553 0.992 7.465
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Figure 7: Correlation analysis for streamflow. (a) Autocorrelation function. (b) Partial autocorrelation function.
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Figure 8: Cross-correlation function. (a) Streamflow and temperature. (b) Streamflow and precipitation.
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Table 3 also illustrates the superior results of the IVL
model compared to VMD-LSTM, ICEEMDAN-LSTM,
LSTM, GRU, RFR, SVR, and RBF models in terms of MAE,
RMSE, and MAPE during the testing period. It is also ob-
servable that two-stage hybrid models also acted to reduce
the errors with higher efficiency than the standalone models
during the testing periods. Furthermore, the VMD-LSTM
model showed better results than the ICEEMDAN-LSTM
model during the testing periods.

'e streamflow prediction results for all models in the
training and testing periods are shown in Figures 9 and 10. It
is evident from the figures that the standalone models were
inferior to the hybrid models in effectively capturing the
extreme values of streamflow. 'e three-stage hybrid IVL
model was the most efficient in predicting the peak values
during the training and testing periods. 'e standalone
models were comparatively easy to develop; however, they
showed a lesser accuracy in predicting the streamflow
compared to the three hybrid models. 'e hybrid models
were complex to construct; however, the hybrid models
showed a better capability of predicting the intricate non-
linear relation between the input and the output parameters
with more accuracy. 'erefore, the hybrid models possess
the ability of meeting the necessities of medium- and long-
term streamflow prediction.

Figures 11 and 12 illustrate the scatter plots, whereas
Figures 13 and 14 represent the boxplots of all models, to
highlight the graphical comparison of models performance
during the training and testing periods. 'e scatter plots
provide the degree of dispersion and correlation between the
observed and predicted values.

From Figures 11 and 12, it is evident that the scatter
points of the hybrid models were nearer to the 1 :1 gradient
line compared with the standalone MLMs. 'is provided
evidence of better accuracy delivered by the hybrid models
than the individual MLMs. 'e IVL model showed the most
concentrated scatter points around the regression line, with
the lowest error and highest value of R2, while the RBFmodel
had the most dispersed scatter points around the regression
line.

Figures 13 and 14 illustrate that the location of the
median was more towards the bottom of the box for all
models during the training and testing periods and repre-
sented all the plots that skewed to the right.'e LSTMmodel
revealed a better distribution of predicted data than the RBF,
SVR, and GRU models during the training and testing
periods. However, the boxplots of the hybrid models were

better than the standalone LSTMmodel. During the training
period, the LSTM, ICEEMDAN-LSTM, VMD-LSTM, and
IVL models showed a median value of 124.643m3/s,
118.217m3/s, 112.802m3/s, 117.589m3/s, and 117.473m3/s,
respectively. Moreover, the interquartile ranges (the third
quartile minus the first quartile) of LSTM, ICEEMDAN-
LSTM, VMD-LSTM, and IVL models were 243.448m3/s,
225.473m3/s, 205.152m3/s, 219.747m3/s, and 219.211m3/s,
respectively, during the testing period. During the testing
period, the value of the median was 126.926m3/s,
124.432m3/s, 131.961m3/s, 121.232m3/s, and 120.625m3/s
for the LSTM, ICEEMDAN-LSTM, VMD-LSTM, and IVL
models. Furthermore, the LSTM, ICEEMDAN-LSTM,
VMD-LSTM, and IVL models showed interquartile ranges
of 233.089m3/s, 224.831m3/s, 220.608m3/s, 243.382m3/s,
and 242.812m3/s, respectively. It is evident from the boxplot
figures that the IVL model showed the best results, while the
results of the RBF model were the worst.

According to the results discussed so far, in Tables 2-3
and Figures 9–14, the IVL model undoubtedly demonstrated
the implementation of a superior model for streamflow
prediction, by considering the streamflow, temperature, and
precipitation variables. Moreover, the results also revealed
the feasibility of ICEEMDAN and VMD approaches to
improve the performance of the ML-DDMs. 'e three-stage
hybrid prediction model enhanced the performance of the
two-stage hybrid prediction models. 'e VMD-LSTM hy-
brid model presented better results than the ICEEMDAN-
LSTM hybrid model, which indicates the superiority of the
VMD technique over the ICEEMDAN technique. 'e
standalone DL models (LSTM and GRU) showed better
results than the standalone RFR, SVR, and RBF models,
which highlight the advantages of the DL models, over the
other MLMs, whereas the RFR ensemble model revealed
better results than the SVR and RBF models. 'e perfor-
mance of the SVR model was also better than the standalone
RFB model. Regardless of the different performances shown
by all the developed models, the results showed that all the
models are feasible for the streamflow prediction.

For brevity, the authors considered only the three-stage
hybrid model by integrating ICEEMDAN, VMD, and LSTM
network for streamflow prediction. However, practically all
the developed standalone models can be extended further to
the two-stage and three-stage hybrid models. It shows that
the ML-DDMs allow ease of extension and integration, to
form the hybrid prediction models. 'is fact highlights the
superiority of the ML-DDMs, over the PDMs. 'e IVL

Table 3: Comparison of models using statistical metrics during the testing period.

Model MAE (m3/s) RMSE (m3/s) NSCE MAPE (%)
RBF 41.577 64.280 0.829 34.749
SVR 39.010 61.075 0.846 33.035
RFR 36.069 54.871 0.876 31.021
GRU 33.800 50.485 0.895 29.453
LSTM 28.745 42.674 0.925 27.822
ICEEMDAN-LSTM 24.613 32.418 0.957 26.262
VMD-LSTM 20.569 27.642 0.968 24.113
IVL (ICEEMDAN-VMD-LSTM) 10.075 19.249 0.985 9.050
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model is also feasible to predict different factors in the field
of hydrology and meteorology, which signifies another
advantage of the ML-DDMs (black-box models), compared
to the PDMs (white-box models). 'e black-box models
require the input variables to predict the output variables,
whereas the in-depth consideration of the physical process is

necessary, for the white-box models.'e accurate prediction
is indispensable for the effective management of hydro-
resources and for timely mitigation of extreme events and
natural disasters. 'e proposed model can be applied to
develop an early warning system, for protection against the
flood damages, like the flood event of 2010, which occurred
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Figure 9: Observed and predicted streamflow using RBF, SVR, RFR, GRU, LSTM, ICEEMDAN-LSTM, VMD-LSTM, and IVL models
during the training period.
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Figure 11: Continued.
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Figure 11: Scatterplot of observed and predicted streamflow using RBF, SVR, RFR, GRU, LSTM, ICEEMDAN-LSTM, VMD-LSTM, and
IVL models for the training period.
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Figure 12: Continued.
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in the Swat River Watershed [38]. 'e IVL model is also
viable to predict any form of time series. 'e prediction of
wind speed, solar radiation, pollution emissions, and climate
change trends is also a feasible option by employing the
proposed model.

Despite the superb performance of the IVL model to
predict the monthly streamflow, this study offers some
limitations. 'is study considered streamflow prediction on
monthly basis; however, there is a need to investigate
streamflow prediction also on a daily, weekly, and annual
basis for efficient management of the watershed, reservoir
operation and planning, and water allocation and supply.

Furthermore, this study employed streamflow, temperature,
and precipitation variables for the streamflow prediction and
does not consider important streamflow components
(groundwater flow, surface, and subsurface components),
infiltration, evapotranspiration, and human-made aspects.
Nevertheless, the consideration of the above-mentioned
components is necessary for more accurate streamflow
prediction tasks. 'erefore, our future study will investigate
streamflow prediction for other watersheds in Pakistan by
considering different time scales, streamflow and associated
components, and efficient input variable selection
techniques.
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Figure 12: Scatterplot of observed and predicted streamflow using RBF, SVR, RFR, GRU, LSTM, ICEEMDAN-LSTM, VMD-LSTM, and
IVL models for the testing period.
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Figure 13: Boxplot of observed and predicted streamflow using RBF, SVR, RFR, GRU, LSTM, ICEEMDAN-LSTM, VMD-LSTM, and IVL
models for the training period.
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4. Conclusions

In this study, a two-stage hybrid decomposition model was
developed by integrating ICEEMDAN and VMD tech-
niques. Subsequently, the LSTM model was coupled in the
hybrid scheme, ultimately forming a three-stage hybrid
model IVL (ICEEMDAN-VMD-LSTM) to predict monthly
streamflow in the Swat RiverWatershed, Pakistan.'e input
variables for model development were selected from
monthly time series data of streamflow, temperature, and
precipitation, by employing correlation functions and the
decomposition techniques. 'e datasets were split into the
training (70% of the total dataset) and testing (30% of the
total dataset) periods. Statistical metrics, including MAE,
RMSE, NSCE, MAPE, and R2, were employed to evaluate the
performance of the established models.

'e decompositions of the streamflow, temperature, and
precipitation time series were performed using the ICE-
EMDAN technique, which resulted in the improved per-
formance of the standalone LSTMmodel. Consequently, the
ICEEMDAN-LSTM model showed 4.132m3/s and
10.256m3/s reductions in MAE and RMSE values, respec-
tively, compared to the standalone LSTM model for
streamflow prediction during the testing period. Moreover,
the error reductions in the case of the VMD-LSTM model
were 8.176m3/s and 15.032m3/s, based on the MAE and
RMSE values during the testing period compared to the
LSTM model. 'e VMD-LSTM model revealed 4.044m3/s
and 4.776m3/s lower values ofMAE and RMSE, respectively,
compared to the ICEEMDAN-LSTM.

Although the two-stage hybrid models provided im-
proved results compared to the LSTMmodel, the presence of
oscillatory fluctuations with high frequency within the IMFs
may cause a poor prediction of the time series. To avoid this
drawback, a secondary decomposition of IMF1 (generated
through ICEEMDAN) of the three time series was

performed by employing the VMD technique. 'e three-
stage hybrid IVL model showed 14.538m3/s and 13.169m3/s
reductions inMAE and RMSE, respectively, compared to the
ICEEMDAN-LSTM model, whereas the error reduction
values of the IVL model for MAE and RMSE were
10.494m3/s and 8.393m3/s, respectively, compared to the
VMD-LSTM model. 'e standalone LSTM model also
showed higher MSE and RMSE values of 18.670m3/s and
23.425m3/s, respectively, than the IVL model. However, the
performance of the standalone LSTMmodel was better than
the RBF, SVR, RFR, and GRU standalone models. Overall,
the IVL model showed the superior performance for
streamflow prediction among the developed models with an
MAE of 7.083m3/s and 10.075m3/s, RMSE of 12.553m3/s
and 19.249m3/s, NSCE of 0.992 and 0.985, MAPE of 7.465%
and 9.050%, and R2 of 0.993 and 0.985 during the training
and testing periods, respectively.

'e proposed model can be employed to support water
and environmental monitoring tasks; hence, this provides
stakeholders with efficient means to respond to warnings,
upcoming outbreaks, and happenings. It will eventually be
helpful to provide support towards the strategic planning,
operation, and the sustainable management of water
resources.
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study are included in this article. 'e data are also available
from the corresponding author upon request.

Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this paper.

600

500

400

300

200

100

0

St
re

am
flo

w
 (m

3 /s
)

Models performance comparison during the testing period

RBF SVR RFR GRU LSTM ICEEMDAN-LSTM VMD-LSTM IVL Observed

Figure 14: Boxplot of observed and predicted streamflow using RBF, SVR, RFR, GRU, LSTM, ICEEMDAN-LSTM, VMD-LSTM, and IVL
models for the testing period.

18 Advances in Meteorology



Acknowledgments

'e authors are thankful to the Water and Power Authority,
Pakistan, and Pakistan Meteorological Department, for
providing data for this study. 'is work was supported by
the National Natural Science Foundation of China (Grant
number 51607105) and Provincial Natural Science Foun-
dation of Hubei Province (Grant number 2016CFA097).

References

[1] X. Yuan, C. Chen, X. Lei, Y. Yuan, and R. Muhammad Adnan,
“Monthly runoff forecasting based on LSTM-ALO model,”
Stochastic Environmental Research and Risk Assessment,
vol. 32, no. 8, pp. 2199–2212, 2018.

[2] H. Chu, J. Wei, J. Li, Z. Qiao, and J. Cao, “Improved medium-
and long-term runoff forecasting using a multimodel ap-
proach in the yellow river headwaters region based on large-
scale and local-scale climate information,”Water, vol. 9, no. 8,
p. 608, 2017.

[3] D. P. Solomatine and A. Ostfeld, “Data-driven modelling:
some past experiences and new approaches,” Journal of
Hydroinformatics, vol. 10, no. 1, pp. 3–22, 2008.

[4] D. P. Solomatine, “Data-driven modelling: paradigm,
methods, experiences,” in Proceedings of the 5th International
Conference on Hydroinformatics, Cardiff, UK, July 2002.

[5] S. Londhe and S. Charhate, “Comparison of data-driven
modelling techniques for river flow forecasting,” Hydrological
Sciences Journal, vol. 55, no. 7, pp. 1163–1174, 2010.

[6] Y. Yu, H. Zhang, and V. Singh, “Forward prediction of runoff
data in data-scarce basins with an improved ensemble em-
pirical mode decomposition (EEMD) model,” Water, vol. 10,
no. 4, p. 388, 2018.

[7] H. Huang, Z. Liang, B. Li, D. Wang, Y. Hu, and Y. Li,
“Combination of multiple data-driven models for long-term
monthly runoff predictions based on Bayesian model aver-
aging,” Water Resources Management, vol. 33, no. 9,
pp. 3321–3338, 2019.

[8] B. Selle and N. Muttil, “Testing the structure of a hydrological
model using genetic programming,” Journal of Hydrology,
vol. 397, no. 1-2, pp. 1–9, 2011.

[9] S. Tripathi, V. Srinivas, and R. S. Nanjundiah, “Downscaling
of precipitation for climate change scenarios: a support vector
machine approach,” Journal of Hydrology, vol. 330, no. 3-4,
pp. 621–640, 2006.

[10] A. El-Shafie, H. M. Alsulami, H. Jahanbani, and A. Najah,
“Multi-lead ahead prediction model of reference evapo-
transpiration utilizing ANN with ensemble procedure,” Sto-
chastic Environmental Research and Risk Assessment, vol. 27,
no. 6, pp. 1423–1440, 2013.

[11] X. Lu, X. Wang, L. Zhang et al., “Improving forecasting ac-
curacy of river flow using gene expression programming
based on wavelet decomposition and de-noising,” Hydrology
Research, vol. 49, no. 3, pp. 711–723, 2018.

[12] S. Karimi, J. Shiri, O. Kisi, and T. Xu, “Forecasting daily
streamflow values: assessing heuristic models,” Hydrology
Research, vol. 49, no. 3, pp. 658–669, 2018.

[13] X. Yuan, L. Xie, andM. Abouelenien, “A regularized ensemble
framework of deep learning for cancer detection from multi-
class, imbalanced training data,” Pattern Recognition, vol. 77,
pp. 160–172, 2018.

[14] W. Fu, K.Wang, C. Zhang, and J. Tan, “A hybrid approach for
measuring the vibrational trend of hydroelectric unit with
enhanced multi-scale chaotic series analysis and optimized

least squares support vector machine,” Transactions of the
Institute of Measurement and Control, vol. 41, no. 15,
pp. 4436–4449, 2019.

[15] S. Zhu, X. Luo, X. Yuan, and Z. Xu, “An improved long short-
termmemory network for streamflow forecasting in the upper
Yangtze river,” Stochastic Environmental Research Risk As-
sessment, pp. 1–17, 2020.

[16] G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis,
“Comparison of stochastic and machine learning methods for
multi-step ahead forecasting of hydrological processes,”
Stochastic Environmental Research and Risk Assessment,
vol. 33, no. 2, pp. 481–514, 2019.

[17] G. Papacharalampous, H. Tyralis, and D. Koutsoyiannis,
“Univariate time series forecasting of temperature and pre-
cipitation with a focus on machine learning algorithms: a
multiple-case study from Greece,” Water Resources Man-
agement, vol. 32, no. 15, pp. 5207–5239, 2018.

[18] Z. M. Yaseen, S. O. Sulaiman, R. C. Deo, and K.-W. Chau, “An
enhanced extreme learning machine model for river flow
forecasting: state-of-the-art, practical applications in water
resource engineering area and future research direction,”
Journal of Hydrology, vol. 569, pp. 387–408, 2019.

[19] C. Shen, “A transdisciplinary review of deep learning research
and its relevance for water resources scientists,” Water Re-
sources Research, vol. 54, no. 11, pp. 8558–8593, 2018.

[20] C. Shen, E. Laloy, A. Elshorbagy et al., “HESS Opinions:
incubating deep-learning-powered hydrologic science ad-
vances as a community,” Hydrology Earth System Sciences,
vol. 22, no. 11, pp. 5639–5656, 2018.

[21] M. A. Zaytar and C. El Amrani, “Sequence to sequence
weather forecasting with long short-term memory recurrent
neural networks,” International Journal of Computer Appli-
cations, vol. 143, no. 11, pp. 7–11, 2016.

[22] F. Kratzert, D. Klotz, C. Brenner, K. Schulz, and
M. Herrnegger, “Rainfall-runoff modelling using long short-
term memory (LSTM) networks,” Hydrology and Earth Sys-
tem Sciences, vol. 22, no. 11, pp. 6005–6022, 2018.

[23] C. Hu, Q. Wu, H. Li, S. Jian, N. Li, and Z. Lou, “Deep learning
with a long short-term memory networks approach for
rainfall-runoff simulation,” Water, vol. 10, no. 11, p. 1543,
2018.

[24] X. Le, V. Ho, G. Lee, and S. Jung, “A deep neural network
application for forecasting the inflow into the Hoa Binh
reservoir in Vietnam,” in Proceedings of the 11th International
Symposium on Lowland Technology (ISLT 2018), Hanoi,
Vietnam, September 2018.

[25] X. He, J. Luo, P. Li, G. Zuo, and J. Xie, “A hybrid model based
on variational mode decomposition and gradient boosting
regression tree for monthly runoff forecasting,” Water Re-
sources Management, vol. 34, no. 2, pp. 865–884, 2020.

[26] Y. Xiang, L. Gou, L. He, S. Xia, and W. Wang, “A SVR-ANN
combined model based on ensemble EMD for rainfall pre-
diction,” Applied Soft Computing, vol. 73, pp. 874–883, 2018.

[27] E. Meng, S. Huang, Q. Huang, W. Fang, L. Wu, and L. Wang,
“A robust method for non-stationary streamflow prediction
based on improved EMD-SVMmodel,” Journal of Hydrology,
vol. 568, pp. 462–478, 2019.

[28] M. A. Colominas, G. Schlotthauer, and M. E. Torres, “Im-
proved complete ensemble EMD: a suitable tool for bio-
medical signal processing,” Biomedical Signal Processing and
Control, vol. 14, pp. 19–29, 2014.

[29] K. Dragomiretskiy and D. Zosso, “Variational mode de-
composition,” IEEE Transactions on Signal Processing, vol. 62,
no. 3, pp. 531–544, 2013.

Advances in Meteorology 19



[30] W.-C. Wang, K.-W. Chau, L. Qiu, and Y.-B. Chen, “Im-
proving forecasting accuracy of medium and long-term runoff
using artificial neural network based on EEMD decomposi-
tion,” Environmental Research, vol. 139, pp. 46–54, 2015.

[31] W.-J. Niu, Z.-K. Feng, M. Zeng et al., “Forecasting reservoir
monthly runoff via ensemble empirical mode decomposition
and extreme learning machine optimized by an improved
gravitational search algorithm,” Applied Soft Computing,
vol. 82, Article ID 105589, 2019.

[32] M. Tayyab, I. Ahmad, N. Sun, J. Zhou, and X. Dong, “Ap-
plication of integrated artificial neural networks based on
decomposition methods to predict streamflow at upper indus
basin, Pakistan,” Atmosphere, vol. 9, no. 12, p. 494, 2018.

[33] M. Hong, D. Wang, Y. Wang et al., “Mid-and long-term
runoff predictions by an improved phase-space reconstruc-
tion model,” Environmental Research, vol. 148, pp. 560–573,
2016.

[34] M. Sibtain, X. Li, G. Nabi, M. I. Azam, and H. Bashir,
“Development of a three-stage hybrid model by utilizing a
two-stage signal decomposition methodology and machine
learning approach to predict monthly runoff at Swat river
basin, Pakistan,” Discrete Dynamics in Nature Society,
vol. 2020, Article ID 7345676, 19 pages, 2020.

[35] A. K. Alimuradov, A. Y. Tychkov, A. V. Kuzmin,
P. P. Churakov, A. V. Ageykin, and G. V. Vishnevskaya,
“Improved CEEMDAN based speech signal analysis algo-
rithm for mental disorders diagnostic system,” International
Journal of Embedded and Real-Time Communication Systems,
vol. 10, no. 1, pp. 22–47, 2019.

[36] S. Hochreiter, “'e vanishing gradient problem during
learning recurrent neural nets and problem solutions,” In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 6, no. 2, pp. 107–116, 1998.

[37] X.-H. Le, H. V. Ho, G. Lee, and S. Jung, “Application of long
short-term memory (LSTM) neural network for flood fore-
casting,” Water, vol. 11, no. 7, p. 1387, 2019.

[38] I. Ahmad, D. Tang, T. Wang et al., “Precipitation trends over
time using Mann-Kendall and spearman’s rho tests in swat
river basin, Pakistan,” Advances in Meteorology, vol. 2015,
Article ID 431860, 15 pages, 2015.

[39] M. Niu, K. Gan, S. Sun, and F. Li, “Application of decom-
position-ensemble learning paradigm with phase space re-
construction for day-ahead PM 2.5 concentration
forecasting,” Journal of Environmental Management, vol. 196,
pp. 110–118, 2017.

[40] Z. Li, J. Chen, Y. Zi, and S. He, “A sensor-dependent vibration
data driven fault identification method via autonomous
variational mode decomposition for transmission system of
shipborne antenna,” Sensors and Actuators A: Physical,
vol. 279, pp. 376–389, 2018.

[41] X. Zheng, G. Zhou, J. Wang et al., “Variational mode de-
composition applied to offshore wind turbine rolling bearing
fault diagnosis,” in 2016 35th Chinese Control Conference
(CCC), IEEE, Chengdu, China, July 2016.

[42] E. Fijani, R. Barzegar, R. Deo, E. Tziritis, and K. Skordas,
“Design and implementation of a hybrid model based on two-
layer decomposition method coupled with extreme learning
machines to support real-time environmental monitoring of
water quality parameters,” Science of the Total Environment,
vol. 648, pp. 839–853, 2019.

20 Advances in Meteorology


