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Heavy rainfall events, typically associated with tropical cyclones (TCs), provoke intense flooding, consequently causing severe
losses to life and property. *erefore, the amount and distribution of rain associated with TCs must be forecasted precisely within
a reasonable time to guarantee the protection of lives and goods. In this study, the skill of the Numerical Tool for Hurricane
Forecast (NTHF) for determining rainfall pattern, average rainfall, rainfall volume, and extreme amounts of rain observed during
TCs is evaluated against Tropical Rainfall Measuring Mission (TRMM) data. A sample comprising nine systems formed in the
North Atlantic basin from 2016 to 2018 is used, where the analysis begins 24 h before landfall. Several statistical indices
characterising the abilities of the NTHF and climatology and persistence model for rainfalls (R-CLIPER) for forecasting rain as
measured by the TRMM are calculated at 24, 48, and 72 h forecasts for each TC and averaged. *e model under consideration
presents better forecasting skills than the R-CLIPER for all the attributes evaluated and demonstrates similar performances
compared with models reported in the literature. *e proposed model predicts the average rainfall well and presents a good
description of the rain pattern. However, its forecast of extreme rain is only applicable for 24 h.

1. Introduction

Tropical cyclones (TCs) are among the most devastating
atmospheric phenomena, as they result in strong surface
winds, tornadoes, storm surges, and heavy rainfall events.
Heavy rainfall events are distributed over wide areas and can
cause flash flooding, thereby resulting in human and eco-
nomic losses. It has been reported that approximately 60% of
human deaths caused by hurricanes in the USA were related
to flash flooding [1, 2]. In Cuba, Hurricane Flora (1963)
caused approximately 2000 casualties due to heavy persistent
rains [3]. *ese facts highlight the importance of an accurate
forecast of the distribution and amount of rain during the
interaction of a TC with land.

*e rain pattern of a TC depends on different factors,
namely, its internal dynamics, the synoptic situation around
the cyclone, and its translational speed, which provoke
azimuthal asymmetries [4]. It has been reported that vertical
wind shear creates asymmetries in the inner-core field
rainfall distribution pattern [5, 6]. *e interaction of the
storm with the Earth surface, as well as the available hu-
midity, and intensity of the cyclone significantly affect the
distribution and amount of rain [7]. For instance, a close
relationship between precipitation distribution and ther-
modynamical symmetry has been discovered in the evolu-
tion of Hurricane Edouard [8]. In recent years, these factors
have been incorporated in numerical models to perform a
quantitative forecast of the track, intensity, and precipitation
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of TCs.*e incorporation of a better physical representation
of processes associated with hurricanes, as well as different
parameterization schemes, allows a higher precision of the
forecast of these elements with better spatial and time
resolutions [9, 10]. However, most previous studies have
focused on forecasting the intensity and track of cyclones;
fewer studies have focused on precipitation forecast. For
example, DeMaria and Tuleya [11] evaluated the precipi-
tation forecast of model Geophysical Fluid Dynamics
Laboratory (GFDL) in the North Atlantic basin (NATL) for
cyclones affecting mainland USA. Marks and DeMaria [12]
developed an equivalent of the climatology and persistence
model for rainfalls (R-CLIPER), where the intensity of the
climatological precipitation is accumulated in the storm’s
track. *is model is widely used as a benchmark to evaluate
other precipitation forecast techniques.

Marchok et al. [7] reviewed and applied different vali-
dation schemes of the most frequently used forecast models
regarding their ability to predict different aspects of rainfall,
i.e., its distribution in time and space, its mean rainfall, and
extreme rains observed in TCs. *e validation was per-
formed with all the TCs land-falling in the USA from 1998 to
2004. A similar study for the North Indian Ocean was
performed as well [13], where the precision of precipitation
forecast of several global models used in the area was
evaluated through comparison with TRMM-3B42 data. *e
sample was composed of nine TCs that formed in the North
Indian Ocean from 2010 to 2013. *ose researchers dis-
covered that, although the performances of some models
were similar to the observations, no single model predicted
all the observed features equally well. Nevertheless, the
TRMM data must be used cautiously owing to the dem-
onstrated underestimation of heavy rainfalls in mountain-
ous regions [14] and other drawbacks, which will be
discussed in the following.

In Cuba, two operational systems are used for precipi-
tation forecast. In 2015, Sierra et al. [15] proposed a con-
figuration derived from the Weather Research and
Forecasting model (WRF-ARW), known as Sistema de
Pronóstico Inmediato. *e main objective of the configu-
ration was to perform a short-term prediction. *ey dis-
covered the largest precipitation forecast errors from July to
November, coinciding with the hurricane season in the
NATL; therefore, they concluded that none of the tested
configurations correctly forecasted the rainfall associated
with TCs. *e other operational system, named Sistema de
Pronóstico Numérico Océano Atmósfera, combines the
WRF-ARW with two sea wave models (WW3 and SWAN)
and an oceanic circulation model (ROMS) [16, 17]. *e
authors found the best forecast ability for rainfall thresholds
above 5mm/day during the months of April, May, and June,
out of the cyclone season. Currently, an evaluated opera-
tional model demonstrating good rain forecasts for TCs does
not exist.

*e Department of Meteorology of the Higher Institute
of Applied Technologies and Sciences, University of Havana
developed an operational model that can be used to forecast
precipitation. It is known as the Numerical Tool for Hur-
ricane Forecast (NTHF) [18], which incorporates the option

of a GFDL vortex tracker. It is a program that loads model
forecasts in the GRIB/NetCDF format, objectively analyses
data to provide an estimate of the vortex centre position
(latitude and longitude) and tracks the storm for the du-
ration of the forecast. It includes parameterization schemes
to describe the physics related to the development and in-
tensification of hurricanes.

Furthermore, it uses the atmospheric component of the
HWRF3.9 model, which is specifically designed to be used
for forecasting TCs [19, 20]. It has been demonstrated that
this system can forecast the track of TCs, particularly
Category 4 and 5 hurricanes in the Saffir–Simpson scale [18].
Regarding intensity, the system has forecasting abilities of
cyclonic systems from depressions to Category 3 hurricanes,
with discrete results for Category 4 and 5 hurricanes. Al-
though the model can forecast rainfall [20], it has not been
evaluated for Cuba and the Inter-American Oceans.*e aim
of this study is to evaluate the abilities of the NTHF system
for forecasting rainfall associated with TCs, as reported by
the TRMM. *e system demonstrated excellent predictions
of the average rainfall and a good description of the rain
pattern; however, its forecast of extreme rain was only
applicable for 24 h.

2. Observational and Modelled Data

2.1. HWRF and R-CLIPER Models. *e NTHF has been
implemented and is operational at the Department of
Meteorology of the Higher Institute of Technologies and
Applied Sciences of the University of Havana. Its aim is to
forecast the evolution of TCs formed in the NATL, par-
ticularly in intercontinental seas. *e model uses the HWRF
as a dynamic core for the solution of a system of primitive
equations. *e computational algorithms guarantee the
initialisation of the model during operational runs with
official information from the National Hurricane Centre
(NHC) and the forecast outputs of the Global Forecasting
System (GFS). Furthermore, it contains algorithms for
postprocessing the results. *e forecasts extend for 120 h
durations, consistent with the time period of official NHC
forecasts. Figure 1 shows the NTHF block diagram [18].

*e configuration of the model for this study was based
on the recommendations reported in [21, 22] for the op-
erational runs of the HWRF in the National Centre for
Environmental Prediction (NCEP). Experiments were per-
formed with bidirectional interactive nested domains of
27–9 km resolution. *e external domain was located in the
centre of the storm, whereas the internal domain tracked the
centre of the storm during the integration of the model using
a movable grid. Figure 2(a) shows the nested domains.

All performed simulations were initialised at 0000 UTC
with the outputs of the GFS at a 0.5° resolution, as obtained
from https://nomads.ncdc.noaa.gov/data/gfs4. *ey were
performed for a forecast period of 72 h. *e boundary
conditions were updated every 6 h, and the temporary in-
tegration step was 69 s for the 27 km domain; meanwhile, the
temporary integration of the internal domain was 1/3 of the
external domain temporary step. Table 1 shows the fun-
damental aspects of the configuration used.
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*is configuration has certain limitations associated with
the noncoupling of the ocean model. *erefore, the model
uses a static sea surface temperature, rendering it impossible
to account for changes in temperature during the model
integration, thereby affecting the calculated intensity [23].
Another shortcoming of the system is that it does not use
vortex relocation, thereby affecting some evaluation

parameters, as discussed below. For a description of the
parameterizations used and a discussion of the shortcomings
of the configuration, see [18].

Despite the limitations mentioned above, the NTHF is
an alternative to the NOAA HWRF system [22]. It can be
implemented in centres without high computational re-
sources for operational use in TC forecasts in the NATL
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Figure 2: Study area and study cases. (a) Movable nested domains used in the implementation.*e inner domain D2moves with the storm.
(b) Cyclones used for evaluation. Circles represent the predicted track, whereas stars represent real trajectories. Most of the selected cyclones
developed in the Caribbean Sea and the Gulf of Mexico.

Table 1: Configuration used in the model.

Vertical resolution 32 vertical levels
Parameterizations of longwave radiation Rapid radiative transfer model for general circulation models (RRTMG)
Parameterization of shortwave radiation Rapid radiative transfer model for general circulation models (RRTMG)
Cumulus parameterization Scale-aware simplified Arakawa–Schubert
Microphysics parameterization Ferrier–Aligo scheme
Parameterization of the planetary boundary layer HWRF planetary boundary layer
Surface-layer parameterization HWRF surface-layer scheme
Land model Noah land surface model
Vortex tracker GFDL vortex tracker
Vortex relocation No
Coupling with the ocean model No

GFS NHC

HWRF

Postprocessing

Python

MetPy AlarconPy

Figure 1: NTHF block diagram. MetPy and AlarconPy are Python packages for the treatment and management of meteorological data.
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basin. In addition, the implementation of the NTHF as an
operating system in the NATL allows the meteorological
offices of countries in Central America and the Caribbean to
develop graphic products, such as monitoring cones as well
as intensity and monitoring forecasts, by incorporating the
results of all numerical forecasting models from https://ftp.
nhc.noaa.gov/atcf/com/. Furthermore, NTHF would be-
come a powerful tool for the scientific research of hurricanes
in these countries, as an alternative to the NOAA HWRF
system, because the implementation of the HWRF model
requires high computational resources.

As a baseline, the R-CLIPER [12] model was imple-
mented at the Department ofMeteorology.*e precipitation
field was calculated using the best-track and maximum
speed 72 h forecasts, for the latitudes and longitudes of the
TRMM data mesh. Calculations were performed with a
spatial resolution of 27 km and at 6 h time intervals.

2.2. TRMMDataUsed in Evaluation. *e study area was the
NATL basin. It was selected because it constitutes a region
with intense cyclonic activity.*e cyclonic systems are likely
to affect the Caribbean Islands as well as Central and North
Americas. In addition, the study area is susceptible to de-
veloping maximum intensities owing to high sea surface
temperatures in areas of the Caribbean Sea, the West At-
lantic, and the Gulf of Mexico, thereby increasing the
likelihood of heavy rainfall events, large accumulations, and
consequently loss of human lives and economic damages.

To evaluate the NTHF configuration, nine TCs were
selected (see Table 2). All of them were formed in the NATL,
and most of them in the Intra-American Seas. *e selection
criterion was based on selecting TCs that arrived on land
during the 2016, 2017, and 2018 study periods. In addition,
the runs were initialised 24 h before landfall at 0000 UTC to
provide forecasts with the highest accuracies of the accu-
mulated rainfall in that time interval. Cyclones with different
characteristics and intensities were included, i.e., tropical
storms and hurricanes with various categories, to verify the
general performance of the operational configuration.
Figure 2(b) shows the trajectories predicted by the NTHF
and the best track for all study cases.

Owing to the development of satellite observation sys-
tems, the estimation of precipitation has been widely applied
in weather and climate research, in particular for the study of
rain in TCs over oceans and arriving on land. Although rain
gauge data measurements are available, they are often not
sufficiently dense or do not have an appropriate spatial
distribution in important regions, mainly on land and near
coastal areas. In addition, weather radars provide good
spatial and temporal resolutions, but the area included is
limited. *erefore, satellite precipitation estimates are
suitable for studying rainfall characteristics, especially over
oceans and coasts, where surface observations are limited
[24].

*e efficacy of using TRMM data in describing the
characteristics of systems that reach the land has been
evaluated in several studies [25–27]. *ese studies indicated
that TRMM-3B42 data can reasonably represent the

distribution of rainfall compared with rain gauge data and
radar observations. However, it has been reported that
TRMM-3B42 data underestimate moderate and heavy
rainfalls but overestimate light precipitation [27]. Mean-
while, TRMM data collected at daily to monthly intervals are
often underestimated for mountainous regions in tropical
and middle latitude mountain systems [28, 29]. Hence, it is
advisable to consider the corrections introduced in [14].
Furthermore, TRMM-3B42 has a lower detection probability
and lower false-alarm rates than other products in both
warm and cold seasons for North America [30]. TRMM data
are available on a grid with a spatial resolution 0.25° × 0.25°.
*ey are the result of the combination of TRMM and other
satellite estimates, as theMultisatellite Precipitation Analysis
(TMPA). It is a trihour product that provides information
from 50°N to 50°S, available at http://www.pmm.nasa.gov/
data-access/downloads/trmm.shtml/.

3. Methodology

To evaluate the performance of each model in predicting
observational data, a set of statigraphs from Brown et al. was
used [31]. Rain field data simulated by models NTHF and
R-CLIPER were statistically compared with the satellite
observations of the TRMM.*ree important elements in the
forecast of TC precipitation were considered: ability to
match rainfall patterns around the centre (pattern match-
ing), ability to match average and distribution of rainfall
volume (mean rainfall distribution), and ability to reproduce
the largest rain values that are typically related with TCs
(extreme rain prediction).*e R-CLIPER model was used as
a reference and comparison for all study cases.

For the interpolation of the NTHF precipitation fields to
the latitudes and longitudes of the TRMM, the nearest
neighbourmethod was used [32], in which a 600 km grid was
selected with respect to grid’s centre to avoid the inclusion of
rain fields associated with another type of synoptic systems
[7, 13]. A radius measuring 5° (∼555 km) around the centre
has already been tested by Englehart and Douglas [33], who
demonstrated that the distance between the centre of a TC
and the outer edge of its cloud shield was between 500 and
600 km for 90% of the cases. Moreover, Larson et al. [34]
conducted sensitivity tests using radii varying between 2.5°
and 7.5°; they discovered that radii larger than 5° excluded

Table 2: Study cases.

Name Category
0000 UTC Study period Max. category

Earl Tropical storm 3–6 August 2016 1
Hermine Tropical storm 1–4 September 2016 1
Matthew Hurricane 4–7 October 2016 5
Otto Tropical storm 23–26 November 2016 3
Harvey Hurricane 25–28 August 2017 4
Irma Hurricane 8–11 September 2017 5
Nate Tropical storm 6–9 October 2017 1
Florence Hurricane 14–17 September 2018 4
Michael Hurricane 8–11 September 2018 5
*e second column gives the intensity at the beginning of the observation
period.
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most TC rainfall. Zhan et al. [35] used a radius of 500 km,
which accounted for rainfall located from the inner core to
adjacent rainbands. On the contrary, Rios Gaona et al. [36]
used a radius of 1000 km to determine rainfall associated
with a large number of TCs (166) for two years in different
basins. However, in the presentation of the rain data, the
graphs were always limited to a radius of approximately
600 km, showing rainfall intensities ≤1mm/h at a radius of
600 km in all cases. Hence, it may be concluded that the
inclusion of data for larger radii did not significantly im-
prove the quality of the results.

Once rain fields have been calculated, they were used to
calculate a group of statigraphs, which are described in the
next paragraph. Using the statigraphs, the forecast skill
indices of both models were obtained and compared to
assess the performance of the NTHF. Next, we define the
statigraphs and their associated indices, where xi represents
an observed datum, yi the corresponding forecast value, and
n the sample size.

3.1. Rain Pattern Matching. To determine the ability of the
system in predicting rainfall distribution, two statigraphs
were used. First, the correlation pattern was measured as the
Pearson correlation coefficient between the simulated and
observed values in all grid points. Next, the Equitable *reat
Score (ETS), which is the percent of local rainfall correctly
predicted by the system, was calculated. *ese two stati-
graphs are dependent on the geographical location of the
rain and hence sensitive to the track error. *e points were
selected up to 600 km away from the centre of the real track
for the NTHF, R-CLIPER, and TRMM. *e Pearson cor-
relation coefficient is an index that measures the degree of
linear correlation between two related variables. *e closer
the correlation coefficient of two variables to 1, the more
similar is the behaviour between both variables. For a
sample, it can be calculated as follows:

rp �
􏽐

n
i�1 xi − x( 􏼁 yi − y( 􏼁

������������

􏽐
n
i�1 xi − x( 􏼁

2
􏽱 ������������

􏽐
n
i�1 yi − y( 􏼁

2
􏽱 . (1)

x � (􏽐
n
i�1 xi/n) and y � (􏽐

n
i�1 yi/n) are the average

values of the observed values and forecasts, respectively.
*e second statigraph is related to the correct forecast of

rainfall above a specified threshold in different grid points.
In this case, the variable is dichotomous; therefore, it is
convenient to construct a contingency table. To determine
the accuracy of the forecast, the results are categorized into
four groups:

(i) H: the number of times the system forecasts a
precipitation event above a specified threshold, and
it occurs (known as hits)

(ii) M: the number of times the event was not forecast
but it occurred (missing)

(iii) FA: the number of times the event was forecast but
did not occur (false alarms)

(iv) CR: the number of times the event was not forecast,
and it did not occur (correct rejection)

*e contingency table (Table 3) shows a comparison of
the NTHF predictions and TRMM observations; YES means
an event (predicted or observed) above a specified threshold,
whereas NO means a nonoccurrence.

*e ETS, also known as the Gilbert skill score, is cal-
culated based upon the contingency table. It represents the
fraction of all observed and predicted events that were
correctly diagnosed and considers the possibility of a correct
forecast that occurs by chance. It presents the difficulty that
does not distinguish the sources of error. *e index is
calculated as follows:

ETS �
H − Hrandom

H + M + FA − Hrandom
, (2)

where Hrandom is an evaluation of the number of positive
forecasts that occurred by chance, which can be calculated as

Hrandom �
Nobs(Yes) ∗Nfsc(Yes)

N
, (3)

where Nobs(Yes) �H+M is the total number of rain occur-
rences, Nfsc(Yes) �H+ FA is the total number of rain fore-
casts, and N is the total number of events. *e closer the
score is to 1, the better is the skill.

3.2. Mean Rainfall and Rain Flux Distribution. *e average
rainfall and rain volume distributions are good indicators to
evaluate the intensity of rain (heavy, moderate, and light)
and the limitations of a model in predicting it. In our
analysis for the NTHF and R-CLIPER, all grid points within
600 km from the centre of the forecast track (relative track)
were considered, while for the TRMM the 600 km radius was
centred in the real track.

*e radial distributions, volume, root mean square
error (RMSE), mean absolute error (MAE), and bias were
determined for both models. Subsequently, the proba-
bility distribution functions (PDFs) and cumulative dis-
tribution functions (CDFs) were constructed. *e 50th
percentile of the CDF is important to determine the
central value of the distribution such that the behaviour of
the remaining rainfall thresholds that are greater than the
median can be ascertained. In addition, a more detailed
frequency distribution analysis of the rain behaviour was
performed based on bands of 100 km to an outer radius of
600 km. *e definitions of the magnitudes involved are
presented below.

*e MAE is a measure of the deviation of forecast values
from observed values. It is calculated as follows:

MAE �
􏽐

n
i�1 xi − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

n
. (4)

*e closer the MAE values are to zero, the more accurate
is the forecast.

Advances in Meteorology 5



*e root mean square error (RMSE) enables the mag-
nitude of the deviation of the forecast values from the ob-
served values to be quantified. It is calculated as follows:

RMSE �

������������

􏽐
n
i�1 xi − yi( 􏼁

2

n

􏽳

. (5)

When the RMSE� 0, the forecast is perfect. *e RMSE is
a measure of accuracy in the forecast.

Bias provides the difference between the estimated and
observed values, considering the sign of the deviations as
follows:

BIAS �
􏽐

n
i�1 xi − yi( 􏼁

n
. (6)

A simulation is good when the BIAS values are close to
zero. Unlike the MAE, whose magnitude is always non-
negative, the BIAS can assume both positive and negative
values, thereby allowing one to determine if an under- or
overestimation had occurred in the forecast.

3.3. Extreme Rain Prediction. It is important to assess if the
system can reproduce extreme rain events. In this case, the
95th percentile of the cumulative frequency distribution was
analysed. To calculate it, the relative track was used for the
NTHF and R-CLIPER, whereas the TRMM was centred in
the actual track. In addition, the samemethod was applied to
the 0–100 km and 300–400 km bands.

3.4. Skill Indices. *e skill indices in the quantitative pre-
cipitation forecast (QPF) proposed by Marchok et al. [7] are
used to determine the ability of the model. *e closer the
index to 1 (or 100%), the better the performance of the
model.

3.4.1. Pattern Matching. *is index corresponds to the
ability of the model in reproducing rain patterns. It is ob-
tained by averaging the average ETS determined for all
precipitation thresholds and the average correlation
coefficient:

PM �
rp + ETS

2
. (7)

3.4.2. Average Rainfall and Its Distribution. *is corre-
sponds to the ability of themodel in representing the average
rainfall and its distribution. It can be calculated using the
average of the mean rainfall error index (MREI) and the
median value index in the cumulative frequency distribution
(CDF−MVI).

*e MREI index is expressed as

MREI �
1
n

􏽘

n

i�1
1 −

Rfi − Roi􏼐 􏼑

Rmax

⎛⎝ ⎞⎠, (8)

where n is the number of radial intervals; Rfi and Roi are the
predicted and observed rain averages for the i radial interval,
respectively. *ese were determined for 20 intervals from 30
to 600 km around the centre of the storm by averaging the
rain at each grid point located in each interval. Rmax is the
maximum observed rain in some bands corresponding to
the system.

*e CDF−MVI is expressed as

CDF − MVI � 1 − Rf50% − Ro50%

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓, (9)

where Rf50% and Ro50% are the rain thresholds corresponding
to the 50% percentile in the CDF for the model and ob-
servations, respectively. In this formulation, the index is high
(low) when the average differences between the rain
thresholds are small (large). If the difference exceeds 1 inch
(25.4mm), the index value is zero.

3.4.3. Extreme Rain Amount. *e maximum value index
(CDF−MI) represents the ability of the model in forecasting
extreme rain observed in TCs. It is calculated as follows:

CDF − MI � 1 − CDF95% − 95( 􏼁
2
, (10)

where CDF 95% is the percentile in the CDF of the model,
corresponding to the precipitation threshold in the 95%
percentile for the CDF of the observations.

Table 4 shows a summary of the indices and the de-
pendence with the track error. A library (QPF-verif1.0)
Python 3.7 based on Anaconda3 packages [37] was imple-
mented for processing the TRMM data and the outputs of
the NTHF system and R-CLIPER model, as well as for the
representation of the results.

4. Results and Discussion

4.1. Errors in Track Prediction for Study Cases. It is man-
datory to evaluate the accuracy of the track forecast for TCs
because it is a key parameter that affects the results of the
precipitation forecast, both in the interest region and in
concrete locations. For verification, the HURDAT2 database
was used. *is dataset contains six-hour text information
regarding the location, maximum winds, minimum central
pressure, and size of all known tropical and subtropical
cyclones [38]. It is available at https://www.nhc.noaa.gov/
data/#hurdat. Figure 3 shows the errors in track forecast for
the study cases, the average error for the sample, and the
average error of the NHC for all the TCs studied.

As shown, the average track forecast error for the nine
study cases was similar to that of the NHC until approxi-
mately 42 h. *e difference increased considerably from 48
to 72 h, exceeding 100 km at the end of the forecast period.
Most of the hurricanes considered have similar time evo-
lution of the forecast error in the first 42 h.*is enables us to

Table 3: Contingency table (NTHF-TRMM).

TRMM
YES NO

NTHF YES H (YY) FA (YN)
NO M (NY) CR (NN)
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associate the errors in the precipitation forecast for these
time periods with the track error.

4.2. Comparison of Model Forecast and TRMM Output.
In Figure 4, a comparison of the accumulated precipitation
forecasted using the NTHF (Figure 4(a)) for Hurricane Irma
and the accumulated values obtained from the TRMM
(Figure 4(b)) in the first six forecast hours is shown. Both
results were obtained at 1800 UTC, September 8, 2017, and
the accumulated precipitation in a duration of 6 h was
considered. *ese values are the approximate data used to
determine the statigraphs and indices for evaluating the
forecast quality. For instance, to determine the BIAS (see
(6)), the value of the difference between the corresponding
grid points of the two maps is calculated and averaged.
Figure 4(c) shows the distribution of the difference based on
the considered area. *e stars represent the centre of the
storm according to the best track (black star) and the track
predicted by the NTHF (red star). In Figure S1 of the
Supplementary Materials, the accumulated precipitation
forecasted by R-CLIPER for the same hurricane, date, and
time is shown. By adding the precipitation values for con-
secutive time intervals, the accumulated values for longer

forecast periods can be calculated. Next, we discuss the
average of the values accumulated from the sample.

4.3. Rain Pattern Matching

4.3.1. Pattern Correlation (PC). In Figure 5, the correlation
coefficients (calculated using (1)) between the rain distri-
bution predicted by the NTHF and R-CLIPER with the
values provided by the TRMM are shown. *e results
spanned from 6 to 72 h of forecast, with a 6 h interval. It is
clear that the NTHF achieved correlation coefficients ex-
ceeding 0.6 for all forecast intervals. *e PC increased with
time, reaching its maximum values from 18 to 48 h, and then
decreased. *e initial increment appeared to be provoked by
the self-adjustment of the fields, whereas the final decrement
was governed by the increment in the track forecast error
(see Figure 3). Regarding the R-CLIPER, its r≥ 0.5; however,
in the time interval from 48 to 60 h of the forecast time, its
r≥ 0.6, which is equal to that of the NTHF. *is is likely due
to the weakening of the cyclones after a landfall, which
improves the R-CLIPER forecasting capabilities based on a
mean representation. Both forecasts improved with time and
exhibited a final decrement. In general, NTHF performed
better than R-CLIPER.

4.3.2. ETS. In Figure 6, the ETS values calculated for several
rainfall thresholds at 24, 48, and 72 h of forecast are shown.
*is index gives a measure of the frequency of correctly
predicted events. *e reported value excluded a number of
cases for which a correct forecast was performed by chance
(according to (2)). It can be concluded that the NTHF always
presented better ETSs than the R-CLIPER. *e best pre-
dictions were obtained for thresholds ranging from 6.4 to
51mm, for which the ETS was approximately 0.4. For heavy
rainfall events, the ETS decreased, indicating the difficulty in
forecasting large rainfall volumes for both models. In par-
ticular, the R-CLIPER provides an average description of the
climatological precipitation, and it was unsuitable for the
description of heavy rainfall. In both systems, the ETS was
low for lighter rain.

4.4. Mean Rainfall and Rain Flux Distribution

4.4.1. Radial Distribution. *e mean radial profiles for 24 h
forecasts of the TRMM, NTHF, and R-CLIPER are shown in
Figure 7(a). In Figure 7(b), the bias, defined as the difference
between the predictions and the measurements, is repre-
sented. *e radii considered were in the interval
30 km≤R≤ 600 km. In Figures S2 and S3 of the

Table 4: Indices calculated to evaluate predictive skills of the system.

Index Depends on track error Pattern Mean/volume Maximum value
Large-scale ETS Yes x
Pattern correlation Yes x
Mean rainfall error index Yes x
Track-relative CDF median value No x
Track-relative CDF percentage in 95th percentile No x
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Figure 3: Errors in track forecast. *ick light blue continuous line
represents average track error for all TCs investigated in this study.
*ick dark blue continuous line represents average track error for
the same TCs studied by the NHC, and discontinuous lines rep-
resent track forecast error for each TC considered herein.
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Supplementary Materials, the values for 48 and 72 h fore-
casts are shown. Both models showed the same decrement in
the predicted rainfall with the distance from the centre of the
storm.*e predictions of the R-CLIPER underestimated the
rainfall distribution in all the profiles, in which the larger
bias (20–50mm) was close to the core of the storm. *e bias
was almost zero in the periphery (500–600 km) of the cy-
clone. *ese results were identical for all forecast times.

Up to 24 h, the NTHF overestimated the observed
rainfall by 10mm from the centre of the storm up to a radius
of 320 km, with a negligible bias at larger radius. *is is
attributable to the use of the Ferrier–Aligo parameterization
scheme. Wang and Phillips [39] demonstrated that this

scheme generated less stratiform clouds and less anvil
clouds out of the eye wall owing to the lower heating ratio
in this zone. In particular, it provoked the maximum
rainfall in the region from the centre to the eye wall.
Additionally, the use of convective parameterization with
a low horizontal resolution (∼27 km) further activated the
convection in the region close to the centre. All these
factors were reflected in the modelling of rain accumu-
lates, surpassing the values detected by the TRMM. Ko
et al. [40] modelled the precipitation provoked by Hur-
ricane Harvey and obtained an overestimation of the
rainfall (predicted by the HWRF) when compared with
gauge data up to a radius of 120 km.
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Figure 4: Comparison between NTHF prediction and TRMM. (a) Accumulated precipitation in first six hours, predicted by NTHF for
Hurricane Irma at 1800 UTC, September 8, 2017. (b) Accumulated precipitation obtained from TRMM for the same hurricane, date, and
time. (c) Difference between both graphics, providing bias values from the grid points. Stars represent the centre of the storm as the best
track (black star) and NTHF forecast (red star).
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At 48 h, the NTHF system underestimated the precipi-
tation from 0 to 130 km, whereas it overestimated it for all
the other radii, although the amount was less than 10mm.
For 72 h, an underestimation (less than 20mm) in the
central zone of the cyclone was detected, whereas a be-
haviour similar to that of the TRMMwas observed for larger
distances from the centre.

4.4.2. Rain Flux. *e forecast of the total volume of water
deposited by rain associated with a cyclone in a specified
region is important because this volume is related with the
possibility of flooding. Rain flux is often used as an indicator

to compare between models that use different grid areas. It is
defined as the product of rainfall in a specified grid point and
the area represented by the grid point (∼27·27 km2 in this
study). It can be expressed in units of mm·km2, or in km3.
Furthermore, it is proportional to the rainfall amount,
thereby enabling one to use the volume of water deposited by
rain (the rain volume) instead of the number of times a
specific threshold has been exceeded [7].

Figure 8(a) shows the total rain flux estimated by the
TRMM and calculated by the NTHF and R-CLIPER as a
function of forecast time up to 72 h. *e bias, determined as
the difference between the forecast and TRMM measure-
ment, is shown in Figure 8(b). Both figures reveal the quality
of the NTHF forecast of total rain volume, underestimating
no more than 5 km3 (≈4.4mm) in the first 42 h and over-
estimating a maximum value of 10 km3 (≈8.8mm) in the
final hours of the forecast.

4.4.3. Mean Rainfall Statigraphs. To further characterise the
mean rainfall (shown in Figure 7), we calculated the BIAS,
MAE, and RMSE (as shown in (4)–(6), respectively) for
every grid point. Figure 9 shows the BIAS of both models
compared with TRMM. It is clear that the NTHF always had
a smaller BIAS than the R-CLIPER, underestimating the
mean rainfall until 42 hours of the forecast. *e BIAS in this
time interval was smaller than 3mm. Beyond 42 h, an
overestimation occurred, with maximum values less than
9mm. *e R-CLIPER always underestimated the rainfall,
with a maximum BIAS of 25mm.

To evaluate the average disagreement between the
forecast and the rainfall measured by the TRMM, the MAE
was calculated (see (4)). Figure 10 shows the time evolution
of the MAE for the NTHF and R-CLIPER. It is clear that the
NTHF (to a forecast time of 60 h) had a smaller MAE than
the R-CLIPER, i.e., less than 20mm up to 30 h. For the
forecast time beyond 60 h, both systems performed almost
equally. Comparing Figures 9 and 10, it can be concluded
that the R-CLIPER underestimated the mean rainfall in
almost every grid point, whereas the NTHF underestimated
it in some grid points and overestimated it in others, thereby
yielding a bias that was much smaller than that of the
R-CLIPER; however, the MAE was almost equal for both
systems.

Another measure of the forecast quality is the RMSE (see
(5)). Figure S4 of the Supplementary Materials shows a
graph with the time dependence of RMSE for both systems.
For time intervals below 48 h, the NTHF performed better.
For ulterior forecast times, this statigraph indicated a better
performance of the R-CLIPER. Figures 10 and S4 provide
similar results and indicated similar dependence.

4.4.4. PDF and CDF. *e PDF provides the frequency of
rainfall occurrence pertaining to different rain thresholds. It
was calculated for the observations and the two forecast
systems. Figure 11(a) shows the PDF for the first 24 h of
forecast. Using this data, the CDF, which provides the
percentile at which a specified rain threshold is reached, can
be calculated.
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Figure 5: Pattern correlation coefficients. Time evolution of cor-
relation coefficient between observations of TRMM and forecasts
performed by NTHF (red bars) and R-CLIPER (green bars) is
shown. Both forecasts improved with time and exhibited a final
decrement. In general, NTHF performed better than R-CLIPER.
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In particular, the 50th percentile provides a threshold
above which 50% of the rain occurs. It is typically assumed
that the low-to-moderate rainfall zone appears below this
percentile. If the observations indicate a specified 50th
percentile threshold and the system forecasts a larger than
50th percentile, it indicates that the system is forecasting less
rain in the low-to-moderate amount. Figure 11(b) shows the
CDF for the first 24 h of forecast.

As shown in Figure 11(a), the maximum of the observed
frequencies is in the thresholds between 10 and 31.6mm,
consistent with the NTHF prediction. *e R-CLIPER shows
a maximum in the frequencies between 3.2 and 10mm. *is
is reflected in the values of the 50th percentile determined
from Figure 11(b) (TRMM, 12.6mm; NTHF, 6.3mm; and
R-CLIPER, 3.2mm). *ese values imply that the NTHF
overestimated the light rain, whereas the R-CLIPER over-
estimated those values.

When forecast was performed in a 48 h interval (see
Figure S5 in the Supplementary Materials), the same be-
haviour was observed, except that the difference for the
R-CLIPER was greater. *e maximum frequencies for the
TRMM, NTHF, and R-CLIPER were in the intervals
31.6–100mm, 10–31.6mm, and 3.2–10mm, respectively.
Meanwhile, their median values were 15.8, 10, and 5mm,

respectively. For 72 h (see Figure S6 in the Supplementary
Materials), the maximum frequencies for the TRMM,
NTHF, and R-CLIPER were in the intervals 31.6–100mm,
10–31.6mm, and 3.2–10mm, respectively. Meanwhile, the
median cumulative frequencies were 20.0, 15.8, and 5.0mm,
respectively, consistent with the tendency shown above.

4.4.5. PDF and CDF of Rain in Bands. When the frequency
distribution was segmented in bands around the centre of
the forecast and observed track, the rainfall distribution was
seen withmore details, and the effect of the track error on the
analysis of the precipitation forecast can be decreased. *e
total rainfall was segmented into circular bands of 100 km
radius. Among those bands, the innermost one (0 to 100 km,
including the eyewall) presents the heavier precipitation,
whereas the outer bands include stratiform zones and
rainbands [7]. In Figures S7–S9 of the Supplementary
Materials, the PDF and CDF for the band between 0 and
100 km for 24, 48, and 72 h are shown. *e PDF and CDF of
the band between 300 and 400 km are represented in
Figures S10–S12 of the Supplementary Materials for the
same forecast time, respectively. For the innermost band, the
forecast and observations for light rain (rainfall threshold
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Figure 7: Mean rainfall radial distribution at 24 h. (a) Values determined from TRMM and calculated by NTHF and R-CLIPER. (b) Bias
between system predictions and TRMM measurements.
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below 10mm) agreed well with each other. For values above
31.6mm, the NTHF presented better agreement with the
observations, where it only overestimated heavy precipitation
and underestimated light rainfall. *e R-CLIPER performed
well in this band, although it underestimated the large rainfall.
In the 300–400 km band, the NTHF correctly described the
rainfall distribution for all forecast times and for most of the
thresholds. *e R-CLIPER indicated a significant bias in the
interval from 1 to 10mm, overestimating the small amounts
and underestimating the remaining thresholds.

Figure 12 summarises the thresholds, showing the
maximum frequency for the different bands at 24
(Figure 12(a)), 48 (Figure 12(b)), and 72 h (Figure 12(c)).
*e NTHF overestimated the heavy rain in the central part
of the storm (0–100 km band). In the 24 h forecast, it
underestimated the rain in the 100–200 km zone and
overestimated the rain in the outer zones of the cyclone. In
the 48 and 72 h forecast by the NTHF, the rainfall threshold
in the outer zone was overestimated and the mid radii was
underestimated. Meanwhile, the R-CLIPER underestimated
the observed maximum frequency thresholds.

4.5. Extreme Rain Prediction. To evaluate the efficacy of a
system in describing the extreme rain amount, the threshold
for which the observed precipitation has a 95% cumulative
frequency (95th percentile) in the CDF must be determined.
Subsequently, from the CDF predicted by the system, the
percentile corresponding to a rain amount equal to the 95%
value of the observations is to be extracted. If the percentage
is smaller than 95%, it means that the system overestimates
the extreme rain amounts. On the contrary, if the percentage
is larger than 95%, the system underestimates the amount of
extreme rain.

From the CDF of the 0–100 km band, which contains
the zone with larger precipitations, the NTHF behaved
similarly to that observed for 24 h; however, for 48 and
72 h, it overestimated the part of the precipitation cor-
responding to large accumulates. *e R-CLIPER could not
forecast large rain amounts because the threshold cor-
responding to 95% of the observed cumulative frequencies
corresponded to 100% of the cumulative frequency cal-
culated by the system, implying that it cannot predict
extreme rain events.
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Figure 8: Total rain volume at different times. (a) Values determined from TRMM and calculated by NTHF and R-CLIPER. (b) Bias
between system predictions and TRMM measurements.
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4.6. Evaluation of Forecast Skills. Using the data presented
above, the ability indices associated with the NTHF and
R-CLIPER were calculated. Using the obtained values, we
assessed the capabilities of the NTHF as an operative tool in
the forecast of rainfall provoked by TCs in the NATL,
particularly in the Caribbean Sea and the Gulf of Mexico.

4.6.1. Pattern Matching. *e NTHF system can represent
large-scale rain patterns effectively (when compared with the
R-CLIPER).*e values of this ability index were between 0.4
and 0.5.*ese values are related with the high average values
of the correlation coefficient (∼0.6), and the average values of
the ETS was approximately 0.3. *ese values were similar to

those obtained in [7] for three dynamical models. *e values
for the R-CLIPER were between 0.2 and 0.4, which were
determined by the low values of the ETS (∼0.15). *is poor
performance may be associated with the asymmetry in the
rain distribution of the cyclones considered in the sample.
*ese asymmetries can be predicted by the numerical model
because the parameterizations used (involving microphysics
and convection processes) yielded a close agreement be-
tween the model and reality. Regarding the climatological
model, the assessment of the rain amounts was based on the
symmetric distribution of rain, which deviate significantly
from reality. For the larger radii, although the R-CLIPER
estimates were closer to the TRMM output, the ETS was
extremely low, resulting in a low ability for predicting the
local rain distribution.

*e values of pattern matching depended significantly
on the track forecast error. In [18], it was demonstrated that
the NTHF can forecast the cyclone track in the first 48 h,
similar to the error reported by the NHC in its official
forecast until 2016. *erefore, the ETS of the NTHF and
GFDL were similar (see [7]). For the 72 h forecast, the value
was of 0.48, which was similar to the evaluation of GFDL by
Marchok et al. [7], i.e., 0.46. *e inclusion of vortex relo-
cation in the numerical system will improve this ability.

4.6.2. Average Rainfall and Its Distribution. *e NTHF
performed better than the R-CLIPER in forecasting the
mean rain. *is is due to its superior performance in the two
indices that compose the mean rain skill index. Its MREI
value was ∼0.9, larger than that of the R-CLIPER (∼0.7).
Furthermore, its CDF − MVI, related with the central value
in the rainfall distribution, was ∼0.7, whereas that for the
R-CLIPER was only 0.5. *ese results indicate that, al-
though the R-CLIPER represented the average radial dis-
tribution of rain effectively, it presented limitations in
systems with uneven radial distributions of rain in different
directions, which are associated with the occurrence of
bands with intense rain and zones of almost no rain,
particularly at radii below 400 km. *ese asymmetries
caused the R-CLIPER to predict unrealistic large areas with
extremely light rainfall, whereas the dynamical models
reproduced the asymmetries. For instance, the values ob-
tained by the NTHF (0.8-0.9) highlight the correct rep-
resentation of rainfall for this system, even for cyclones
with conditions that generate large asymmetries due to
interactions with frontal bands, a complex topography,
and/or wind shear.*e obtained values compared well with
the value (0.74) calculated in [7] for GFDL. *e above-
mentioned factor also resulted in the higher ETS for the
NTHF compared with the R-CLIPER.

*e predicted quality of rain volume in the observation
zone (radius 600 km around the track centre) was similar to
that obtained by Marchok et al. [7] for 72 h using the GFDL
model. *e bias of 10 km3 in this study was close to the value
of 9.4 km3 obtained in [7]. It is noteworthy that for models
GFS (5.2 km3) and NAM (0.9 km3), the bias was smaller,
which coincided with the results of Brennan et al. [41]. In
this study, TCs from 2005 to 2007 were investigated; it was
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Figure 9: Time evolution of bias for mean rainfall. Bias, calculated
as the difference between the mean rainfall predicted by NTHF (red
line) and R-CLIPER (green line) and TRMM measurements, as a
function of forecast hour.
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Figure 10: *e time evolution of the mean absolute error of both
systems. It is possible to note the better performance of NTHF (red
line) compared with R-CLIPER (green line).
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discovered that the NAM presented a small bias but indi-
cated limitations in predicting extreme amounts of rain.
Furthermore, it was discovered that the GFS and the Eu-
ropean model ECMWF (European Centre for Medium-
Range Weather Forecasts) performed well.

*e values of the MAE and BIAS for the mean rainfall
were similar to those of Tuleya et al. [42]. An average BIAS of
8.3mm and an MAE of 23mm at 72 h of forecast were
obtained using the GFDL for 25 TCs. *e R-CLIPER (see
Figure 8(b)) underestimated the total volume, reaching a
maximum BIAS of 32 km3 at 72 h. *e reasons for the di-
vergence are explained above. *e differences in the dis-
tribution for the NTHF (overestimating the frequency in the
smaller thresholds) is a limitation inherited from the HWRF
model, a deficiency associated with the cumulus parame-
terization. Additionally, it is clear that the NTHF over-
estimated the maximum in the 0–100 km band (around the
eyewall) compared with the observations. *e R-CLIPER
underestimated the frequencies in all bands, in which larger
differences were discovered in radii up to 400 km owing to
the large asymmetries observed. For radii above 400 km,
where the rain distribution was more uniform, the

differences were smaller. It is clear from Figure 12 that the
maximum threshold decreased with the radius, and a radial
profile exhibiting the behaviour obtained by Lonfat et al. [6]
was obtained.

It is important to control these results comparing the
TRMM observations with gauge and radar data; this is
because it has been reported [14, 27] that rainfall satellite
estimates (particularly TRMM) presented biases when
compared with gauge data. *e final assessment of the
NTHF bias involves these comparisons.

4.6.3. Extreme Rain Amount. By comparing the threshold
value of the 95th percentile in the observation with the
percentile corresponding to this value for the forecast and by
calculating the maximum value index, it can be concluded
that the NTHF can accurately predict (MVI∼1.0) extreme
rain for a 24 h forecast. For 48 and 72 h forecasts (see
Figures S8 and S9, Supplementary Materials), the values of
extreme rain calculated by the model were approximately
9–11% in the CDF, which is a large overestimation, mainly in
the 1–100 km band. *is is attributable to the increase in the
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Figure 11: Frequency distribution of rain flux in first 24 h of forecast. (a) Probability distribution function of observed (blue line) frequency
of rainfall above a specified threshold, as well as that of NTHF (red line) and R-CLIPER (green line). (b) Cumulative distribution function of
observed and predicted data, calculated from frequency distribution data.
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track forecast error for the sample used in this study (see
Figure 3) and also the representation of microphysics
models in the resolution used [7]. *ese results were similar
to those in [43], which reported an overestimation of ap-
proximately 8% rainfall in the vicinity of the storm core. For
these time intervals, the system did not perform well. In the
future, the innermost domain (9 km) of the NTHF will be
evaluated to achieve a better representation of rain gener-
ating processes, associated particularly with extreme rains.

5. Conclusions

*e NTHF system was evaluated to be used in the QPF
associated with TCs. It demonstrated the best performance
up to a 24 h forecast. Its performance was of the same quality
as that of other numerical systems reported in the literature.

Compared with the TRMM, the system underestimated the
rain volume up to 42 h and overestimated it in the subse-
quent hours. At 24 h, the MAE and RMSE were 16 and
27mm, respectively, both of which increased with time. *e
indices of the QPF were approximately 0.48 for determining
the rain pattern and 0.80–0.90 for the mean rain and rain
flux distribution at all the forecast hours, similar to the
results of a previous study. Regarding the prediction of
extreme rain, it only performed well for 24 h. In future
studies, we plan to perform data assimilation to improve the
precision in the beginning of the observation period. Fur-
thermore, we plan to perform a hot start in the system
initialisation. Additionally, we will include vortex relocation
in the model to obtain the rain values, assuming that the
simulated field coincides with the real field. Comparisons
with real gauge and radar data will be performed to evaluate
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Figure 12: Rainfall thresholds at which maximum frequency appeared for different bands.*is figure summarises the results for the TRMM
(blue), NTHF (red), and R-CLIPER (green) for (a) 24 h, (b) 48 h, and (c) 72 h forecasts.
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the local performance of the system. Finally, we will perform
comparisons with other precipitation reanalysis databases,
such as NARR, CFSR, and ERA5 for a greater generalisation
of the results.

Data Availability
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data/#hurdat.
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