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Precipitation and temperature are among major climatic variables that are used to characterize extreme weather events, which can
have profound impacts on ecosystems and society. Accurate simulation of these variables at the local scale is essential to adapt
urban systems and policies to future climatic changes. However, accurate simulation of these climatic variables is difficult due to
possible interdependence and feedbacks among them. In this paper, the concept of copulas was used to model seasonal in-
terdependence between precipitation and temperature. Five copula functions were fitted to grid (approximately 10 km x 10 km)
climate data from 1960 to 2013 in southern Ontario, Canada. Theoretical and empirical copulas were then compared with each
other to select the most appropriate copula family for this region. Results showed that, of the tested copulas, none of them
consistently performed the best over the entire region during all seasons. However, Gumbel copula was the best performer during
the winter season, and Clayton performed best in the summer. More variability in terms of best copula was found in spring and fall
seasons. By examining the likelihoods of concurrent extreme temperature and precipitation periods including wet/cool in the
winter and dry/hot in the summer, we found that ignoring the joint distribution and confounding impacts of precipitation and
temperature lead to the underestimation of occurrence of probabilities for these two concurrent extreme modes. This under-
estimation can also lead to incorrect conclusions and flawed decisions in terms of the severity of these extreme events.

across the years [6]. Estrella and Menzel [7] found that
interdependence of climate variables may have a more severe

Extreme weather events can have serious physical and
economic impacts on urban and rural communities [1-3].
According to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change [4], warm tem-
perature extremes are expected to increase and cold
temperature extremes are projected to decline over the next
several decades [5]. Additionally, significant increases in
extreme precipitation events have been projected to occur in
many areas over the 21st century but with strong variability

influence on spatial climate change rather than the influence
of any single climate variable, for example, the combined
effects on both temperature and precipitation changes on
drought occurrence and severity over the Canadian Prairies
[8]. Other studies have also assessed the dependence be-
tween climate variables and extreme events. AghaKouchak
etal. [9] found that the impacts of drought and heat events in
the United States significantly increased when they occurred
concurrently. Little et al. [10] found that sea-level rise and
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changes in the frequency and intensity of tropical cyclones
will increase flooding risk in the future in the East Coast of
the United States.

Most climate change impact studies consider variations
in temperature and precipitation independently. However,
these two variables are physically dependent through several
mechanisms. For example, rainfall influences soil moisture,
which in turn may have an impact on the surface and low-
level air temperature through the effects of diabatic fluxes
and partition between sensible and latent heat fluxes or
lower/higher Bowen ratio [11, 12]. The interaction of ex-
treme temperature and precipitation may lead to high im-
pact weather events and associated natural disasters with
significant consequence on agriculture and other sectors of
the economy [13]. For example, a drought accompanying
heat wave can affect water availability for food production
[14, 15] as well as drinking water resources. In addition,
temperature-precipitation interdependence in models may
influence snow cover distribution and duration simulations
[16, 17], as well as flood occurrences and duration in spring
over many regions particularly in Canada [18]. As a result,
attention should be directed towards the combined effects of
temperature and precipitation changes and their con-
founding impacts. Recent analyses of the dependence be-
tween temperature and precipitation are becoming a focus of
meteorology and disaster prevention reduction research
[19, 20].

Many studies have shown that links between tempera-
ture and precipitation vary spatially and seasonally [21-24].
Johns et al. [25] used scatter diagrams of annual mean
precipitation and temperature anomalies to show a global
linear correlation which was simulated by most climate
models for the period of 1980-1990. Based on the HadGEM2
model, Caesar and Lowe [26] analyzed the correlation be-
tween average annual temperature and extreme precipita-
tion. They found a proportionally high correlation between
the two. Dai et al. [27] found a strong negative correlation
between precipitation, maximum temperature (Tmax), and
diurnal temperature range at short timescales during the
warm season globally. A negative correlation between
summer precipitation and temperature was found for most
of the continental United States, which indicates that warm
summers tend to be dryer and colder summers tend to be
wetter [24]. In Canada, the temperature-precipitation in-
terdependence tends to increase with latitude and is par-
ticularly strong in the Northwest Territories and relatively
weak in the Prairies [21], but these correlation patterns vary
between winter and summer months [28]. Southeastern
Ontario and Quebec show almost no dependence of pre-
cipitation upon temperature during the summer (e.g., July),
but there is a general negative correlation between monthly
mean anomalies of temperature and precipitation for groups
of months occurring over the period of May/June/July/
August/September [28]. In general, less/more precipitation
falls during warm summer/winters months. In the eastern
Rockies region, Isaac and Stuart [21] found that more
precipitation occurs when the temperature is generally
colder, regardless of season, as shown also in the study of
Trenbeth and Shea [28]. This can be due to regular low-
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pressure systems (i.e., presence of the Alberta Clippers)
moving from the west towards the Alberta area.

Most studies that analyze the dependence between
temperature and precipitation have assumed a linear rela-
tionship and a normal distribution of both variables (e.g.,
[21, 24, 28]). Therefore, the related results are likely to be
inaccurate if one or both variables fail to satisfy the normal
distribution condition, especially as precipitation is not
normally distributed as well as low-level air temperatures for
winter months due to nonlinear feedbacks induced by the
presence of snow on the ground. Additionally, the linear
correlation ignores high peak fluctuation and dependence
structure [29]. In this study, we apply a copula-based ap-
proach to analyze the significance of the interdependence
relationship between precipitation and temperature to
overcome the issue of normality undistributed data. The
interdependence of precipitation and temperature using
copula has not been extensively investigated in the literature,
especially for southern Ontario [11, 30]. Cong and Brady
[11] used copulas to study the dependence between tem-
perature and rainfall for Scania (Sweden’s southernmost
province). They found a significant negative correlation
from April to September. In terms of copula, Student was
selected as more appropriate for this region. They stated that
their results are strongly related to the studied region, and
those results vary spatially (from region to region) and
temporally. In this study, a copula-based approach was used
to determine the inherent relationship between daily mean
temperature and total precipitation (precipitation >0.1 mm).
Five copula functions belonging to three different families
were constructed to identify the joint distribution or in-
terdependence of precipitation and temperature (see the
following section). The proposed approach was applied to
gridded (0.0833 degrees or ~ 10km x 10km) climate data
available over the whole Canada but was used for a specific
region in southern Ontario, Canada. This study is the first
that focuses on the examination and quantification of the
nonlinear dependence between precipitation and tempera-
ture using copulas in southern Ontario.

2. Methods

2.1. Study Region and Datasets. 'The study region is located in
southern Ontario, Canada (Figure 1). The study area is
located between 42° 18'N 83° 01'W and 45° 31'N 74° 06'W
and bounded on the south by the international border with
the United States. The region encloses approximately
100,000 km?. This region is home to about 11 million people
(2016 Census of Canada) and represents almost one-third of
Canada’s population and approximately 75% of the province
of Ontario’s population. The climate in eastern Canada,
including the study area, is partly influenced by topo-
graphical effects, the Niagara Escarpment, and large lakes
[31]. The Niagara Escarpment crosses the study area from
Georgian Bay in the northwest to Lake Erie in the east and
influences rainfall patterns in the region. In addition, the
Laurentian Great Lakes have major effects on the climate in
the region including the following: (1) the moderation of
extreme temperatures in all seasons, (2) an increase in cloud
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FIGURE 1: Study location in southern Ontario, Canada. Green circles represent each of the 1699 ANUSPLIN grid points (~10 km x 10 km) in

the study area.

cover and precipitation during winter (snow-lake effect),
and (3) decreases in summertime convective clouds and
rainfall events. These effects are due to differences in the heat
capacities of water and land surfaces and the rate of the
Bowen ratio among the two surfaces and due to the large
differences in moisture source especially from the Great
Lakes [32, 33].

The observed daily precipitation and maximum and
minimum 2 m air temperature datasets used for this study
were extracted from gridded historical weather station data
(CanGrid) produced by Natural Resources Canada using
interpolated Environment Canada’s observed station across
Canada. This dataset [34] covers Canada (south to 60°N) and
contains daily variables from 1951 to 2013 on a Lambert
conformal conic projection with 5 arc minute spacing
(equivalent to a resolution of roughly 10 km). These climate
data were generated using the “ANUSPLIN” software [35].
This dataset has been used in many climate change studies in
the recent past (e.g., [36-38] and [8, 39, 40]). Canadian
gridded data from 1699 CanGrid grid points located in
southern Ontario corresponding to the boundaries of the
study site over the period of 1951-2013 were used in this
study (Figure 1). Based on the grid-points information, the
total annual precipitation for this period varies from the
lowest recorded value of 725 mm to 1162 mm.

2.2. Copula Concepts. Copula is a statistical notion used to
describe the nonlinear dependence between random vari-
ables and to establish joint distribution of these variables
using their marginal functions. It is also described as a
function that connects univariate distributions to a multi-
variate distribution describing the dependence among
correlated variables. The main advantages of using copula
approach are as follows: (1) flexibility in choosing arbitrary
marginal and structure of dependence, (2) extension to more
than two variables, and (3) separated analysis of marginal
distributions and dependence structure [41, 42]. The joint
distribution is fitted by estimating the marginal distributions
of variables and their correspondence separately, which is
not restricted to any parametric distribution (e.g., Gaussian

distribution). Copula method has been widely used to ex-
amine interactions and associations between hydrological
and/or climatological variables. De Michele and Salvadori
[43] identified the relation between intensity and duration of
storm rainfall in Italy by using Frank copula. Hao and
AghaKouchak [44] used a set of parametric copulas to derive
the Multivariate Standardized Drought Index from vectors
of precipitation and soil moisture. Lee et al. [45] studied the
influence of the tail shape of various copula functions (i.e.,
Gumbel, Frank, Clayton, and Gaussian) on drought bivar-
iate frequency analysis. Renard and Lang [46] suggested
applications of Gaussian copula on flood mitigation in
France. Grimaldi and Serinaldi [47] have proved the ade-
quacy of two copulas (Frank and Gumbel) on the flood
characteristics analyzed for Kanawha River in West Virginia
(United States). Chebana and Ouarda [48, 49] presented
regional multivariate flood analysis using copula and mul-
tivariate L-moments, as also used in the study of Saad et al.
[18] who have developed trivariate copula for flood analysis
over the Richelieu River located in southern Quebec. A
Gumbel copula was used by Leonard, Metcalfe, and Lambert
[50] to couple the seasonal rainfall maxima marginal dis-
tributions on the Murray-Darling Basin, Australia. Adlouni
and Ouarda [51] proposed the application of copula to
analyze the dependence of the water level of Saint-Louis
Lake on the maxima flow on the Chateauguay River in
Quebec (Canada). Rosa and Leite [52] presented that Frank
and Clayton copulas fit well in studying a relationship be-
tween maximal flow and volume in Portugal. To establish the
relation between the different flood characteristics, Sal-
arpour et al. [53] applied the t-copula on the Johor River in
Malaysia. A Gumbel copula was selected as the most ap-
propriate model for trivariate frequency analyses of peak
discharges, hydrograph volumes, and suspended sediment
concentrations in Bezak et al.’s work [54]. Also copula was
used to describe flood peak and volume, flood peak and
duration, and flood volume and duration [55, 56]; drought
severity and duration [45]; and heat waves and drought [57].
Therefore, copula function has been proved to a be very
useful and effective tool for multivariate hydrological and
climatological analysis and simulation.



Mathematically, a copula is a multivariate probability
distribution linking standard uniformly distributed mar-
ginals. Assuming that X and Y are pairs of random variables
with  cumulative  distribution  functions  (CDF),
F(x) =Pr[X <x] and G(y) = Pr[Y < y]. By the Sklar [58]
theorem, the joint two-dimensional distribution function of
X and Y, symbolized as H (x, y) with the cumulative joint
probability p, can then be generated as follows:

p=Pr[X<x,Y<y]=H(x,y) =C{F(x),G(»)}, (1)

where C: [0,1] x [0,1] — [0,1] is defined as the copula
function.

Here, C(u, v) is an arbitrary two-dimensional copula
function. The function C has the following elementary
properties [59]:

(1) For every u and v, C(u,0) = C(0,v) =0
2) C(u,1) =uetC(1,v) =v

(3) For each u;, uy, v;, and v,, if u;<u, and v, <v,,
C(uy, vy) = C(uy,vy) = C(uy,vy) + C(uy, v) =20

A variety of copula families have been described in the
literature (e.g., [59, 60]. Copula families differ in their pa-
rameter numbers and in their dependence structure, which
have bearing on their complexity. The parameters of copulas
control the strength of dependence. These parameters are
generally estimated using local optimization algorithms
(e.g., [61-63], Bayesian (e.g., [64, 65]), L-moments approach
(e.g., [66]), and exact maximum likelihood (EML) methods
[67]). In this study, five copula functions were used to
describe interdependence between precipitation and tem-
perature variables: Gaussian, Student, Frank, Clayton, and
Gumbel (Table 1). These copulas belong to elliptical
(Gaussian and t-copula) [60] and Archimedean (Frank,
Clayton, and Gumbel copulas) families [59]. Note that el-
liptical copulas are often employed for simple dependency
structure [68, 69]. Therefore, Archimedean family of copulas
is more desirable for hydrological analyses because it can be
easily constructed and can be applied whether the corre-
lation between the variables is positive or negative [56].
These copulas were selected for analysis because they have
been commonly used to evaluate climate variable interde-
pendence in hydrological and climatological studies.

2.3. Analysis Procedure. Available climate data were first
treated with the following criteria: days with no precipitation
(<0.10 mm) were removed from analysis and all other days
were grouped into seasons (December-January-February
(DJF), March-April-May (MAM), Jun-July-August (JJA),
and September-October-November (SON)). To fit the joint
distribution between temperature and precipitation using
copula approach, the following procedure was used:

(1) During the first step of analysis, adequate marginal
distribution (probability distribution function, PDF)
is chosen for each of the studied variables. In fact, the
marginal distribution of daily average temperature
and daily total precipitation in the study region was
identified. Identifying the fitted probability
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distribution allows predicting the probability of
exceedance for a specified magnitude (quantile) or
the magnitude associated with a specific exceedance
probability. There is no theoretical basis for the
choice of probability distribution and the parameter
estimation method. In this study, twelve probability
distributions were fitted for each grid and season.
The fitted PDFs are Beta, Exponential, Extreme
value, Gamma, Generalized extreme value, Gener-
alized Pareto, Inverse Gaussian, Logistic, Log-lo-
gistic, Log-normal, Normal, and Weibull (see
Table 2). Several methods to estimate the parameters
associated with these distributions are presented in
the literature, that is, the maximum likelihood
method (e.g., [70, 71]), method of moments (e.g.,
[72]), and L-moment method (e.g., [73]). In this
study, the maximum likelihood method was used.
The selection of the best fit distribution for each
variable (i.e., best marginal distribution fit of the grid
data) is based on the Bayesian information criterion
(BIC) proposed by Schwartz (1978). The smallest BIC
values identify the best fit distribution [74].

(2) In the second step of the analysis, the cumulative
distribution function (CDF) of these distributions is
used to compute the marginal cumulative probabilities
u; = F(x;) and v; = G (y;). This computation assumes
that F; and G; are the selected PDFs for total pre-
cipitation and daily average temperature for the grid i,
respectively. Note that u; and v; are strictly increasing
functions and range within the interval [0, 1].

(3) In the third step of the analysis, five copula functions
(as defined in Table 1) are fitted to the marginal
cumulative probabilities of daily average tempera-
ture and total precipitation. To select the suitability
(best fit) copula function, a method based on the
comparison of theoretical and empirical copula
functions was used. In detail, for each copula
function, the root mean square error defined as the
average square distance between theoretical and
empirical copulas was calculated. The appropriate
copula of each grid is the one that has the lowest root
mean square error. Note that the parameters of the
copula were estimated using the exact maximum
likelihood (EML) method [67].

Once the joint distribution of each grid is established
(including the margins, copula, and their parameters), it can
be used, for example, to calculate the joint risk (probability).
Joint probability of precipitation and mean temperature is
very important for the management and assessment of the
risks imposed by extreme meteorological and hydrological
events. It helps in the management of resources such as
agriculture sector productivity. Generally, in the bivariate
case, four simultaneous events can be of interest: (1) si-
multaneous exceedance {P>p, T>t}, (2) exceedance-non-
exceedance {P>p, T<t}, (3) non-exceedance-exceedance
{P<p, T=t}, and (4) simultaneous nonexceedance {P<p,
T<t}. In this study, we mainly focused on computing the
probability of concurrent extreme temperature and
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TaBLE 1: List of copula members used in this study.

g;i leﬂa Copula formula
—1 -1(y
Gaussian Cu,v) = ?OO w io( )(1/27'“/1 —p?)e =¥ -2)20-p) dxdy: x, y € R, p is the linear correlation, and @ is the normal
standardized function.
-1 -1 — (Kk+:
Student C(u,v) = _[t_”ocfu) t_”ociv) (12T = p2 )e U+ (P =#=2000)209 M2 445 1. € R, p is the linear correlation coefficient, and
! is the inverse cumulative distrgibutim;n lgunction (CDF) for Student’s t-distribution with x degree of freedom.
Gumbel C(u,v) = el [(“nw)+ (= Inv)’) }, where 6 measures the dependency between u and v.
Clayton Cu,v) = (w+v 0 -1)0Y9 \where 6 measures the dependency between u and v.
Frank C(u,v) = —(1/0)In[1 + (e - 1) (=% — 1))/ (e ? — 1))], where 0 measures the dependency between u and v.
TaBLE 2: The fitted marginal distribution of daily average temperature and daily total precipitation.
Name Function
Beta y=fxab)= (UB@b)x"" (1-x)" Tj (x)
where a, b >0 are the shape parameters; B(.) is the Beta function; and Ijg ;) is the indicator function.
Exponential y = flaxy) = (e s

where y is the mean.
y=f(x;u,0) = o~ Le(x—ul0) g=e(x~plo)

Extreme value . .
where y and o are, respectively, the location and scale parameters.

y=f(x;a,b) = (1/(b°T (a)))x* 'e-*/®) where a and b are the shape and scale parameters and T'(-) is the Gamma
o function.
y = f(x; ko) = (1o)e TEERDTT 0 4 (k(x = w)io)) "M, fork#0and (1 +k(x - u/a)) >0,
y = f(x:0,u0) = (1) Gl fork =0,
where y, 0, and k are, respectively, the location, scale, and shape parameters.

Gamma

Generalized
extreme value

for@ < xwhenk >0, orforf<x<6- (o/k) whenk<0,
Generalized for @< xwhenk =0,

Pareto

{y = f(x;kop, 0) = (1/0) (1 + k((x — 0)/0))~ =0,
y = fxkpo) = (1/o)e" =P,

where k, 0, and 0 are, respectively, the shape, scale, and threshold parameters.

F e uA) =\ (M2mx)e MG gor 50,

where y and A are, respectively, the mean and shape parameters.
fguo) = (e #ag(1+ ex Ty
where y and o are, respectively, the mean and scale parameters.
f(x;4,0) = (1/0) (1/x) (eUost=WIo) (1 4 glog(-wlo)2y - x>
where y and o are, respectively, the mean and scale parameters.
fOsu0) = (1/(xoV2m))e ((ogx-p?120%) forx>0

Inverse Gaussian
Logistic

Log-logistic

Log-normal .
where y and o are, respectively, the mean and scale parameters.
Normal If X follows the log-normal distribution with parameters y and o, then log(X) follows the normal distribution with mean
a y and standard deviation o. i
Weibull y = f(x;0,k) = (Klo) (x/o)* =

where o and k are, respectively, the scale and shape parameters.

(denoted as (P,,.)p and (P,4;,)p) variables. Therefore, using
some probability manipulation, they can be defined as

precipitation events including wet/cool (denoted by P,,,.) in
the winter (DJF) and dry/hot (denoted by P,;) in the
summer (JJA). Following Zhou and Liu [75], in order to

capture a large number of events, we used the 25™ and 75™
quantile thresholds of T and P to define these two
probabilities:

Pyjc = Pr[P2p;s, T <tys], )

Py, = Pr[P<pys, T2tys],

where p,s, pys, t,s and ts are, respectively, the 25 and 75"
quantile thresholds of precipitation and temperature. To
quantify the usefulness of introducing the dependence be-
tween precipitation and temperature, these two probabilities
were computed for each grid by assuming that P and T are
independent (denoted as (P,,.); and (P,;,);) and dependent

(Puse); = Pr[P2 pys, T <tys] = Pr[P> pys| x Pr[T <ty]
= (1=F(ps5)) X G(tas)s
(Pan)r = Pr[P < pys, T2 t55] = Pr[P < pys] x Pr[T > 1;5]
= F(pas) x (1= G(ts5)),
(Puic)p = Pr[P2 prs, T<ty5] = G(t,5)
= C{1 = F(ps5),G(tz5)}
(Pam)p = Pr[P < pys, T2 t55] = F(pys)
= C{F(pys5), 1 = G(t75)};
(3)
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FIGURE 2: (a) Spatial variability of seasonal average temperature (‘C) and (b) spatial variability of seasonal total precipitation (mm)
temporally averaged (over the period of 1960-2013) for the four seasons using ANUSPLIN data. Seasons are defined as DJF for winter,

MAM for spring, JJA for summer, and SON for fall.

where F and G are the selected PDFs for daily total pre-
cipitation and daily average temperature and C represents
the best fitted copulas for the selected grid. After computing
these probabilities for each grid of the study region, two

maps showing the differences of likelihoods between de-
pendent and independent (i.e., map for [(P,.)p— (Py.)i]
and one for [(P,;,)p — (Py,);]) were developed. These maps
showed the presence of risk not covered in the estimation of
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these concurrent extremes by ignoring the dependence
between temperature and precipitation. More details are
presented in the Results section.

3. Results

The spatial variability of monthly mean temperature that was
averaged over the study period for all four seasons is shown
in Figure 2(a). A high variability in temperatures between
seasons demonstrates the necessity of seasonal-scale copula
analyses for this study to capture variability and extreme
events. Monthly average temperature varied from —20 to 3°C
in the winter (DJF), from —10 to 19°C in the spring (MAM),
from 13 to 26°C in the summer (JJA), and from -5 to 20°C in
the fall (SON). During all seasons, the highest temperatures
were found in southwestern area (urban centers) close to the
Lake Ontario and Lake Erie in the western portion of the
study area. The lowest temperature was found in the
northern (rural) areas and at high elevations in the north-
west portion of the study area. Overall, as spatial variability,
we observed approximately +5°C gradient from the south-
west to the north across the study region.

The spatial variability of total precipitation by season and
temporally averaged over the studied period is shown in
Figure 2(b). Total monthly precipitation varied from 178 to
285 mm for DJF, from 185 to 240 mm for MAM, from 195 to
265 for JJA, and from 208 to 315 mm for SON. Variability in
seasonal total precipitation was spatially more complex than
average temperature, reflecting combined effects in surface
condition and topography. The lowest precipitation oc-
curred in the eastern and southern parts of the study region
close to the Lake Ontario and Erie Lakes but with a max-
imum in precipitation in the western part close to the Huron
Lake and Georgian Bay from fall to spring months (i.e.,
snow-lake effect). Day-and-night heating/cooling and wind
patterns adjacent to the lakes were more variable compared
to areas located further inland. Increased variability in these
on-shore winds may have contributed to lower/higher
precipitation adjacent to the lakes in southernmost/west-
ernmost Ontario. The area of highest monthly precipitation
was observed in the western and northern parts of the study
region east of Georgian Bay and Lake Huron is also a high
elevation sector relative to the southern part of the study site
and higher forest cover. Weather patterns in this area were
also more influenced by precipitation or known snow bands
extending eastwards of Lake Huron and Georgian Bay in the
west. These regional influences may have contributed to
higher precipitation in this part of the study area. In general,
a high seasonal variability (standard deviation not shown)
was found during the fall and winter seasons when com-
pared to variability during spring and summer.

Figure 3(a) shows the spatial variability of Spearman
rank correlation between daily data with total precipita-
tion and daily average temperature for all four seasons.
The p values of corresponding significance test are shown
in Figure 3(b). The two main advantages of the Spearman
rank correlation test as opposed to simple linear corre-
lation test are the following: (1) it can be computed
without any assumption about the normal distribution of

data and (2) it has low sensitivity for inhomogeneous time
series. This correlation has been used for trend analyses in
climatologic and hydrologic time series [76]. A positive
rank correlation was found between daily total precipi-
tation and average temperature across the studied area
and for all four seasons. Spatially, correlation was in most
significant grid point within the entire study area. The
highest correlation was observed in western parts in the
spring and autumn. Also a high correlation was observed
in the central parts of studied area adjacent to the Erie
Lakes and Huron in the summer but with low correlation
values outside of this area. This central and southern
region was proportionally warmer and fog occurrence was
higher as compared to elsewhere in the study area. Isaac
and Stuart [21] show that, on 90% of days during which
fog occurred, precipitation was also reported. Therefore,
the portion of the study site with common fog days was
expected to have a large number of days with precipita-
tion. In general, as suggested by Isaac and Stuart [21] from
a station-scale study, more precipitation falls during
warm weather conditions during the winter over southern
Ontario and Quebec.

Figure 4(a) shows the best fitted distribution (PDF) for
seasonal daily average temperature from 1951 to 2013 for the
study area. To show the spatial and temporal change of PDF
that may exist at the extreme ends of the study region, two
grids were selected: one in the furthest north east (grid 1)
and the other in the furthest southwest (grid 1699)
(Figure 4(b)). Selected distribution was found to vary spa-
tially and seasonally between the two ends of the study area.
During the winter season, based on average temperature, the
studied area was grouped into two different regions based on
temporal data distribution: (1) the southwestern part that
followed a normal distribution curve and (2) the north-
eastern part that followed a GEV distribution curve with a
high negative shape parameter (GEV type III). The shape
parameter belonged to a narrow range, approximately from
—8 to —10. The extreme cold temperature in the northeastern
part of the study region during winter can explain the use of
GEV III (Figure 4(b), red curve). GEV with a positive shape
parameter (GEV type II) was found to have the best GEV
distribution for spring and fall seasons. The shape parameter
varied spatially between 2 and 5 during spring and between
5.5 and 9.5 during fall. The observed variation in shape
parameters can be explained by the large temporal variability
of daily average temperature that occurred during these two
seasons, with nonlinear feedbacks according to the snow
cover and frozen conditions of the ground, which affects
diabatic fluxes and underlying heating/cooling process
(Figure 4(b)). The positive shape parameter value implies a
heavy tail distribution. The spring and fall data distributions
show that extreme values occurred more frequently relative
to other values. A two-parameter Weibull distribution with
large positive shape was observed for summer data
(Figure 4(b)).

Figure 5 shows the best fitted distribution for seasonal
total precipitation from 1951 to 2013 for the study area (5A)
and the PDFs of daily total precipitation at grids 1 and 1699
for different seasons (5B). The best fit distribution was
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observed to change spatially and seasonally with high spatial
varijability during spring and summer. This was an expected
result due to the high spatial variability of precipitation
processes that occurred during these seasons. Log-normal
(LN) and Generalized Pareto (GP) were found to be the best
distributions to fit to the daily data during all four seasons.
LN distribution assumes that the logarithm of daily total
precipitation is normally distributed and is useful when the

variable of interest is skewed to the right. LN was found to be
the best distribution in grids to fit with proportionally low
precipitation amount. Additionally, GP was found to be the
best distribution to fit data in grids with large daily pre-
cipitation amount.

Figure 6 shows the mean square error (MSE) between
theoretical and empirical copula functions of all 1699 grids.
For each grid, the best copula function that fits the joint
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distribution of precipitation and temperature is the one that
minimizes MSE. In general, no copula was the best fit for all
seasons and/or grids. That was expected due to differences in
geographical and geophysical conditions across the region
which influence temperature and precipitation variations.
Less variability in terms of best copula was observed during
winter and summer as compared to variability of best copula

during spring and fall. Copula variation can be explained by
the fact that temperature has the same positivity sign for all
grids during winter and summer (i.e., positive for summer
and negative for winter) which is not the case during spring
and fall (whereas the temperature positivity sign depends
upon the selected grid). Gumbel was found to be the best
copula during winter and Clayton copula was the best
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performer during summer. These two copulas are asym-
metric and belong to the Archimedean family. Gumbel
copula is used for modelling heavy dependencies in right tail,
which means that more precipitations in winter are generally
related to warm weather in this region. In fact, warmer air
can contain more water vapor than cooler air, which can
result in higher probability of more intense precipitation
(i.e., Clausius-Clapeyron relationship). Therefore, Clayton
copula is used for modelling heavy dependencies in left tail,
explaining the dependency between low amount precipi-
tation and extreme temperature in summer. Due to the
mechanisms mentioned previously in this section, greater
variability in temperature and precipitation during the
spring and fall seasons leads to more variability in terms of
the best copulas during these two seasons.

In this section, an application showing the effect of
ignoring the dependence between temperature and pre-
cipitation on the estimation of risks of extreme events such
as wet/cool in the winter and dry/hot in the summer is
presented. Figure 7 shows the differences between likeli-
hoods of concurrent extremes computed by assuming P and
T as dependent and independent variables. We found that
generally the differences are positive (varying between 8 and
14%), which means that ignoring the dependence leads to
underestimating the probabilities of occurrence of wet/cool
and dry/hot events up to 14% in southern Ontario. Also, we
observed that likelihood of differences is larger in the case of
wet/cool event compared to that in the case of dry/hot event.
This can be explained by the fact that precipitation and
temperature are more correlated in the winter than in the
summer for this region. In particular, the differences are
more significant in the urban centers close to the Lake
Ontario. In conclusion, this analysis indicates that the
correlations between P and T have a direct effect on the
estimation of occurrence risk of concurrent climate events.

Another example of the usefulness of modelling the
risk of an extreme event based on the joint distribution of
temperature and precipitation, as opposed to basing the
model on these two variables separately, is shown in
Figure 8. In fact, this figure shows the temperature-
precipitation space of grid 1682 (i.e., Toronto area) for
the four seasons. The contours represent the bivariate
quantile curve for different, simultaneous, non-
exceedance events. Note that the quantile function ex-
presses the magnitude of the event in terms of its
exceedance or nonexceedance probability, which is also
related to the return periods. The quantile curve is
composed of two parts: the naive part (tail) and the
proper part (central). The naive part is composed of two
segments starting at the end of both extremities of the
proper part. Detailed description and proprieties of the
bivariate quantile function can be found in Chebana and
Ouarda [77]. For the grid 1682 example in winter, for risk
value of p=0.9, the univariate quantile values of pre-
cipitation and temperature are 10 mm and 5°C, respec-
tively. The violet-colored curve in Figure 8 represents the
bivariate quantile extracted from the joint distribution.
Note that the combination of the univariate values
(precipitation=10mm and temperature =5°C) does not
belong to the bivariate quantile curve. This combination
corresponds to another risk (p) smaller than the actual
risk of p=0.9. Therefore, the wrong conclusion (in terms
of magnitude and return period) could be made without
taking into consideration the joint or confounding dis-
tribution. The generality of the bivariate quantile func-
tion, which can give several possible scenarios related to
the same risk p, is not the case of univariate quantile. The
univariate quantile represents the extreme points of the
proper part of the bivariate quantile curve indicated as the
black-dashed line in Figure 8.
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4, Discussion

In this study, a copula-based approach was used to deter-
mine the inherent seasonal relationship between the average
temperature and the total, nonzero precipitation at daily
resolution across southern Ontario. We found a positive
correlation between temperature and precipitation in the
entire region. Our analytical results are consistent with
previous studies reported in the literature, which indicate a
positive correlation between precipitation and temperature
in this region (e.g., [21, 78]) but with a different conclusion
as in the work of Trenberth and Shea [28] in which they
combine all “warmer” months from May to September. Isaac
and Stuart [21] computed a temperature-precipitation index
that derives the percentage of precipitation based on tem-
peratures colder than median daily temperature for 51
Canadian meteorological stations. They report a positive
correlation during winter for all stations located in southern
Ontario and Quebec.

The results of this study are an important step forward
to characterize and quantify nonlinear dependence be-
tween precipitation and temperature in an area that is
prone to the occurrence of extreme weather events and has
profound social and economic significance for Canada. The
proposed approach demonstrated here is flexible and as-
sumption-free. In fact, the modelled dependence structure
does not require the normality of marginal distributions of
variables which provide flexibility in correlating variables
and also prevents the necessity of similar marginal
distributions.

We found that the Gumbel and Clayton copulas are the
most suitable to fit the dependence between temperature and
precipitation during winter and summer, respectively.
Gumbel and Clayton are two asymmetric copulas, with right
(Gumbel) and left (Clayton) tail dependence [79]. This
explains the significant correlation between extreme tem-
perature and extreme precipitation in this region during
these seasons. Mechanistically, this reveals that less pre-
cipitation falls in general during cold weather conditions in
winter, and more precipitation falls during warm weather in
fall. Asymmetric copulas perform better to identify non-
linear correlation between temperature and precipitation in
this region.

5. Conclusion

In this paper, a copula-based approach was presented to
model the seasonal joint or confounding distribution of
temperature and precipitation. The proposed approach is
flexible and free of assumptions. Five copula members be-
longing to three families were fitted to 1699 grids
(~10km x 10 km resolution) in southern Ontario. For each
grid, an information criterion was computed using empirical
and theoretical copulas and the best fit copula was selected
based on the strength of nonlinear correlations. Modelling of
the joint distribution of precipitation and temperature will
help to produce improved simulations of weather events
which may help to increase the accuracy of risk evaluations.

Results showed that no copula performed consistently as
the best copula for all four seasons and for the entire region.
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Gumbel performed as the best fit copula for winter and
Clayton copula performed as the best fit copula for summer.
More variability in terms of best copula was found in spring
and fall, which may be due to the variation in temperature
during specific events or thresholds (i.e., around 0°C) be-
tween grid points and mixing of precipitation types which
can lead to different links with temperature (as noted in
[28]). By extracting the multivariate and the univariate
quantiles related to a preselected risk, it was found that
ignoring the joint or confounding/combined distribution of
precipitation and temperature may lead to underestimation
of the risk of an extreme event. This underestimation may
lead to a misinterpretation and a wrong conclusion in terms
of return periods. Our study also reveals that the relation-
ships and physics of combined occurrence of precipitation
and temperature events should be taken into account in
interpreting climate changes and in climate risk analyses.
Extremes in meteorological variables may have a sig-
nificant impact on ecosystems and society through the
occurrence of extreme weather events. Evaluating the risk
potential of climate variable extremes is critical for resilience
policy and mitigation of the negative effects of climatic
change. A potentially valuable extension of this research is
trivariate copula analyses to connect precipitation and
temperature with crop production planning and agricultural
economics and flood evaluation. Such study could be used in
developing risk reduction strategies for farmers and deci-
sion-makers, which will become increasingly important in
the face of climate change and its associated modification in
extremes, water cycle, and hydrometeorological hazards.
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