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Single Spectrum Bipartite Graph (SSBG) model is developed to forecast thunderstorms over Kolkata (22◦32′N,88◦20′E) during the
premonsoon season (April-May). The statistical distribution of normal probability is observed for temperature, relative humidity,
convective available potential energy (CAPE), and convective inhibition energy (CIN) to quantify the threshold values of the
parameters for the prevalence of thunderstorms. Method of conditional probability is implemented to ascertain the possibilities of
the occurrence of thunderstorms within the ranges of the threshold values. The single spectrum bipartite graph connectivity model
developed in this study consists of two sets of vertices; one set includes two time vertices (00UTC, 12UTC) and the other includes
four meteorological parameters: temperature, relative humidity, CAPE, and CIN. Three distinct ranges of maximal eigen values
are obtained for the three categories of thunderstorms. Maximal eigenvalues for severe, ordinary, and no thunderstorm events
are observed to be (2.6 ± 0.12), (1.88 ± 0.09), and (1.26 ± .03), respectively. The ranges of the threshold values obtained using
ten year data (1997–2006) are considered as the reference range and the result is validated with the IMD (India Meteorological
Department) observation, Doppler Weather Radar (DWR) Products, and satellite images of 2007. The result reveals that the model
provides 12- to 6-hour forecast (nowcasting) of thunderstorms with 96% to 98% accuracy.

Copyright © 2009 S. Chaudhuri and A. Middey. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

Thunderstorm is a mesoscale weather phenomenon with
space scale varying from a few kilometers to a couple
of 100 kilometers and time scale varying from less than
an hour to several hours. Severe thunderstorms create
lot of damages to the properties and crops, human, and
animal fatalities through strong surface wind, lightning,
large hail, and occasional tornadoes. Every year, during the
premonsoon months of April and May, Kolkata (22◦32′N,
88◦20′E) encounters with severe thunderstorms which are
locally known as Nor’westers or Kalbaishakhi. Forecasting
severe thunderstorms is a challenge for both meteorologists
and atmospheric scientists in India because such highly
nonlinear and chaotic phenomena may incur significant
detrimental consequences on agricultural productivity and
life [1]. The deterministic chaos inherent in the time series of
thunderstorms occurrence has been identified [2]. In the era

of the state-of-the-art computing techniques, sophisticated
and precise computational methods are coming up that can
aid in the study of complex atmospheric processes [3–9] and
others. There are various conventional methods for day-to-
day forecast of thunderstorms like synoptic weather charts,
thermodynamic diagrams (T-Φ gram), Radar observations,
and statistical and numerical models. The conventional
methods of forecasting the small scale weather phenomena
have some limitations [10, 11] because of the nonavailability
of close network of observatories and thus, might deviate
from accurate forecast. Thunderstorms are perennial features
of India; however, the genetic basis, structure, evolution
process, and the dynamics of thunderstorms vary with sea-
sons and locations. Premonsoon (April-May) thunderstorms
of Kolkata are the most devastating weather leading to
major loss of life and property on the surface and aviation
hazard aloft. It is associated with towering cumulonimbus
(Cb), high frequency of lightning, large hail, occasional
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Figure 1: Single spectrum bipartite graph (SSBG) with two set
vertices VT (V1, V2 ) and VP (V3, V4, V5, V6 ).
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Figure 2: Bipartite Graph Model for Thunderstorm forecast.

tornadoes, and very strong surface wind. The premonsoon
thunderstorms have significant socioeconomic impact over
this region.

This study aims to explore the applicability of Graph
Theory for forecasting premonsoon thunderstorms over
Kolkata. The advantage of the approach is that it can adopt all
the complexity, nonlinearity, and inherent chaos of a system
in its heuristic framework. The necessity of forecasting
thunderstorms [12–15] with considerable lead time (at least
12 hours) and accuracy (at least 90%) led to select some
relevant thermodynamic and dynamic parameters as the
input of the model from ten years (1997 to 2006) data
analysis [15–17]. Plethora of literature is available which
shows the applicability of statistical and numerical methods
to forecast thunderstorms [18]. For example, Davies (2004)
estimated CIN and Level of Free Convection (LFC) associ-
ated with tornado and supercell thunderstorm activity [19].
Huntrieser et al. (1997) have compared the traditional and
newly derived convective indices with their statistical forecast
skills over Switzerland [20]. Michalopoulou and Jacovides
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0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
M

ax
im

al
ei

ge
nv

al
u

es

1 11 21 31 41 51 61 71 81 91 101 111

Thunderstorm days

Maximal eigenvalues of the graph satisfying threshold criteria

Figure 4: The ranges of maximal eigenvalues of graph satisfying
threshold values and the values other than threshold criteria.

0

0.5

1

1.5

2

2.5

3

E
ig

en
va

lu
e

Severe TS Ordinary TS Non-TS

Average maximal
eigenvalue

2.6094
(+/−)0.12

1.881
(+/−)0.09

1.26
(+/−)0.04

Figure 5: Diagram showing the average maximal Eigenvalues
corresponding to Severe, Ordinary, and Nonthunderstorm days.



Advances in Meteorology 3

Table 1: Threshold values of the parameters.

CAPE
(J/Kg)

CIN
(J/Kg)

Temperature at
00 GMT before
TO (◦C)

Temperature at
12 GMT before
TO (◦C)

Relative
Humidity at 00
GMT before
TO (%)

Relative
Humidity at 12
GMT before
TO (%)

≥ 2000 ≤ 150 ≥ 25 ≥ 32 ≥ 85 ≥ 65
∗TO: Thunderstorm Occurrence.
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Figure 6: Diagram showing the predicted errors for 12- to 6-hour
and 24-hour forecast using SSBG model for 2007 validation.
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Figure 7: Validation diagram showing the variation of observed
and predicted eigenvalues with the single spectrum bipartite graph
model for the thunderstorms of 2007.

(1987) have used statistical method for some convective
parameters to forecast thunderstorms over Cyprus [21].
Shafer and Fuelberg (2006) discussed a statistical procedure
to forecast warm season lightning [22].

In the present study, SSBG model output shows distinct
ranges of maximal eigenvalues for severe (2.6 ± 0.12),
ordinary (1.88 ± 0.09), and no thunderstorm (1.26 ±
.03) events. These ranges are used as the reference range
for the prediction and the result is validated with the
observation of 2007. The model provides 12- to 6-hour
forecast (nowcasting) of thunderstorms with 96% to 98%
accuracy.
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Figure 8: Forecast skills of SSBG model (12 to 6 hours advance)
over Kolkata using 1997–2007 data.
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Figure 9: Observed and predicted via SSBG model (12 to 6
hours advance) eigenvalues of premonsoon thunderstorm days over
Kolkata during 1997–2007.

2. Data

The data source for the study is India Meteorological
Department http://www.imd.ernet.in and http://www
.weather.uwyo.edu. The lightning data are collected from
World Wide Lightning Location Network satellite images
(http://webflash.ess.washington.edu/). Hourly (INSAT)
KALPANA-1 imagery (IR) during the study period (April-
May) is also taken for the study. The data are collected
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Figure 10: The day-to-day variation of input parameters (clockwise: CAPE, CIN, Temperature, and Relative Humidity) along with
thunderstorm cases like severe (marked green), ordinary (marked red), and no thunderstorm and calculated eigenvalues for the month
of April, 2000.

for the months of premonsoon season (April and May)
within the period from 1997 to 2007. The location of the
study is Kolkata (22◦32′N, 88◦20′E). The input variables
provided in the present study are the upper air RS/RW
sounding data and the record of thunderstorms. Some
significant meteorological parameters like temperature (T),
relative humidity (Rh), convective available potential energy
(CAPE), and convective inhibition energy (CIN) are taken
as the input to develop the SSBG model. Among the four
parameters, the first two are the observed parameters and
the last two are the derived parameters. The severity of
thunderstorms is estimated by the wind speed of 70 km/h

or 38 knots, high frequency of lightning, and intense cloud
mass (evident from satellite imageries) whereas the wind
speed for ordinary thunderstorms is observed to be 50 km/h
or 27 knots, low frequency of lightning, and small cloud
patches (evident from satellite imageries).

3. Methodology

The normal probability distribution function [23] is used
as the statistical tool to identify the most probable range
of values of the selected input parameters (T , Rh, CAPE,
CIN) for the occurrence of thunderstorms (Table 1). The



Advances in Meteorology 5

Lightning events on 28.05.2006, 60 min prior to 16:40:00 UT

Lightning events on 28.05.2006, 60 min prior to 10:40:00 UT Lightning events on 28.05.2006, 60 min prior to 11:40:00 UT

Lightning events on 28.05.2006, 60 min prior to 14:10:00 UT

Figure 11: Satellite images showing the higher number of lightning events (marked region) associated with the severe squall line
advancement in May 28, 2006 (Severe thunderstorm day).

Table 2: Mean and standard deviation of normal probability
distribution for the selected ranges of parameters before the
occurrence of thunderstorms over Kolkata.

Parameters Mean Standard deviation

CAPE 2100 J/kg 1050

CIN 151.2 J/kg 98.3

Temperature at 00 GMT 25.5◦C 2

Temperature at 12 GMT 32.5◦C 2.5

R.H at 00 GMT 85.6% 3.2

R.H at 12 GMT 64.55% 2.93

method of conditional probability is adopted to ascertain
the possibilities of occurrence of thunderstorm within the
threshold ranges. SSBG model (Figure 1) is developed to
view the pattern of the eigenvalues for thunderstorm and
non thunderstorm days. Identification of the pattern of
eigenvalues for different categories of thunderstorms (severe,
ordinary, or no thunderstorm) at 12 to 6 hours before the
occurrence of the thunderstorms facilitated to develop the
forecast model.

3.1. Graph Theory—An Overview. Many real world situa-
tions, besides theoretical mathematics and computer science,
can be conveniently explained by a graph containing few
points and lines.

Basically a graph consists of a set of vertices (Vi) and a set
of edges (Ej) that can be expressed as

G = {V(G),E(G)},
V(G) = (v1, v2, v3, . . . , vi),

E(G) =
(
e1, e2, e3, . . . , ej

)
.

(1)

Graph can be represented by its incidence and adjacency
matrix.

The Adjacency matrix A = (ai j)nxn of a graph G is defined
as [24]

ai j =
⎧⎨
⎩

1 if vivj ∈ E,

0 otherwise.
(2)
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Figure 12: Satellite images showing the lower number of lightning events (marked region) associated with the ordinary squall advancement
in May 20, 2006 (Ordinary thunderstorm day).

A nonempty graph G is called connected if any two of its
vertices are linked by a path inG. The connectivity of a graph
is an important measure of its robustness as a network.

In a bipartite graph the vertices can be divided into two
disjoint sets U and V such that every edge connects one
vertex in U and one in V ; that is, there is no edge between
two vertices in the same set. Bipartite graphs are useful for
modeling matching problems and are extensively used in
modern coding theory, especially to decode the code words
received from the channels.

Spectral analyses in graph theory facilitate in fixing the
bounds on the distributions of eigenvalues. Some eigenvalues
have been referred to as the algebraic connection patterns of
a graph [25]. Graph eigenvalues have applications in wide
areas and in different pretexts. However, the fundamental
mathematics of spectral graph theory through all its connec-
tions to the pure and applied, the continuous, and discrete
can be viewed as a single united subject. There are different
lemmas and propositions of spectral graph theory to study
the variation characterization of Eigen values, their bounds,
and orientations [26].

3.2. Implementation Procedure. The endeavour of the present
study is to develop a bipartite graph connectivity model
(Figure 2) to forecast premonsoon thunderstorms over

Kolkata by assigning threshold values to the input parame-
ters. The input parameters considered in the present study
are the temperature (T), relative humidity (Rh), convective
available potential energy (CAPE), and convective inhibition
energy (CIN). Ten-year data analyses during the period from
1997 to 2006 for the premonsoon months of April and
May led to assign the threshold values to the meteorological
parameters (Table 1). The threshold values of the selected
parameters are obtained using normal probability distribu-
tion of ten years data set (Table 2). The values are assigned
to the input parameters by observing the normal probability
distribution of the parameters. The probability densities are
observed to be maximum for the threshold ranges (Table 3).

Conditional probability is used to corroborate the
assigned threshold values of the parameters for the occur-
rence of thunderstorms (Table 3).

The analysis is restrained in the computation of maximal
eigenvalue and their actual ranges and also the variation of
different categories of thunderstorms (severe, ordinary, and
no thunderstorm events) from the mean. Figure 4 shows the
patterns of the eigenvalues corresponding to thunderstorm
days. The spectra of the graph model show variable eigenval-
ues. This is apparent because, as the positions of the vertex
changes, the input in the adjacency matrix also changes and
that reflects in the change in the eigenvalues. Thus, spectra
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TIR no enhancement TIR no enhancement

TIR no enhancement TIR no enhancement

Proj: Mercator 2007.05.21 11:00:04 SAT: KALPANA-1

ASIA MER IR

Proj: Mercator 2007.05.21 09:00:04 SAT: KALPANA-1
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Figure 13: INSAT (KALPANA-1) hourly IR images showing intense convective cloud development and advancement towards Kolkata in
May 21, 2007 (Severe thunderstorm day).

Table 3: Conditional probabilities with the threshold values and the values other than the threshold ranges.

Threshold value Conditional probability Values other than threshold criteria Conditional probability

Pr (CAPE ≥ 2000 | TO) 0.8125 Pr (CAPE < 2000 | TO) 0.187

Pr (CIN ≤ 150 | TO) 0.758929 Pr (CIN > 200 | TO) 0.241

Pr (T00GMT ≥ 25 | TO after 00 UTC) 0.692308 Pr (T00GMT < 25 | TO after 00 UTC) 0.3

Pr (T12GMT ≥ 32 | TO after 12 UTC) 0.746479 Pr (T 12GMT < 32 | TO after 12 UTC) 0.253

Pr (RH00GMT ≥ 85% | TO after 00 UTC) 0.867347 Pr (RH < 85% | TO after 00 UTC) 0.34

Pr (RH12GMT ≤ 65% | TO after 12 UTC) 0.822785 Pr (RH > 65% | TO after 12 UTC) 0.298

Table 4: Validation of the single spectrum bipartite graph model with the observation of 2007.

Maximum eigen values for severe thunderstorms. Maximum eigen values for ordinary thunderstorms.

Range (2.6 ± 0.12) Predicted error Range (1.88 ± 0.09) Predicted error

Date Eigen value
6–12 hours

advance
forecast

24 hours
advance
forecast

Date Eigen value
6–12 hours

advance
forecast

24 hours
advance
forecast

6–12
hours

24 hours
6–12
hours

24 hours

9.04.07 2.457 1.855 0.02 0.255 03.05.07 2.0019 1.382 0.021 0.36

21.05.07 2.457 1.855 0.02 0.255 12.05.07 1.9943 1.615 0.038 0.167

28.05.07 2.8184 2.018 0.042 0.231 22.05.07 1.9922 1.565 0.027 0.201
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Proj: Mercator 2007.05.22 15:00:04 SAT: KALPANA-1
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Proj: Mercator 2007.05.22 12:00:06 SAT: KALPANA-1
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Proj: Mercator 2007.05.22 14:00:05 SAT: KALPANA-1
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Figure 14: INSAT (KALPANA-1) hourly IR images showing small convective cloud mass development and advancement towards Kolkata in
May 22, 2007 (Ordinary thunderstorm day).

of the bipartite graphs may lead to an inconclusive result
and the actual aim of forecasting thunderstorm might be
deviated. The bipartite graph model is thus restricted to a
single spectrum bipartite graph (SSBG) (Figure 1) in the
present study. The schematic of the forecast model using
SSBG is shown in Figure 2.

4. Results and Discussion

The analysis is done with ten-year data of premonsoon
season from 1997 to 2006. The data and record of 112 thun-
derstorms are collected for the station Kolkata (22◦32′N,
88◦20′E) and thus, 112 bipartite graphs are constructed. The
bipartite graphs in the model consist of two sets of vertices
(Figure 1), one with time (VT) and the other with the four
parameters (VP). The vertex list for VT is {v1, v2}, where
v1 ⇒ 00GMT, and v2 ⇒ 12GMT whereas for VP , the vertex
list is {v3, v4, v5, v6}, where v3 ⇒ T , v4 ⇒ Rh, v5 ⇒ CAPE,
and v6 ⇒ CIN. There will be a path between two set of
vertices, VT and VP , for a particular thunderstorm day if
the values in the vertex list of VP match with the threshold
values of the parameters. A set of connected bipartite
graphs is thus constructed for thunderstorm days. The

thunderstorm days are plotted on two sets of bipartite graphs
and their adjacency matrices are formed. The eigenvalues
of the bipartite graphs are computed. Only the highest
positive eigenvalues from each bipartite graph are taken as
the measure of connectedness of the graph. The statistical
method of conditional probability is used to establish that the
threshold ranges of the parameters are the required ranges
for the prevalence of thunderstorms (Table 3). The result
shows that the threshold value have higher probabilities than
the other values (Figure 3). The conditional probability thus
supports that the selected threshold values of the parameters
are optimum for the occurrence of thunderstorms. The two
sets of eigenvalues, one corresponding to the bipartite graphs
satisfying the threshold values of the parameters and the
other satisfying the values other than threshold ranges, are
computed and plotted (Figure 4). The eigenvalues computed
from the bipartite graph model with the threshold values of
the parameters as the inputs are then analyzed and classified
into two categories of thunderstorms: severe and ordinary
as per the record of IMD. The same analysis is done for
nonthunderstorm days. Three distinctly different ranges of
maximal eigen values are observed for severe, ordinary,
and no thunderstorm events (Figure 5). These ranges are
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(a) (b)

(c) (d)

Figure 15: Forecasting results of the SSBG model (10 hours in advance) using: (a) atmospheric soundings; and (b), (c), (d) Doppler images
of sequential advancement of a squall line in May 5, 2007.

taken as the input values of the model and the result is
validated with the observation of 2007. It is observed that
the thunderstorms and their severity can be predicted with
the model at 12 to 6 hours before the occurrence using
the selected ranges of the parameters with high degree of
accuracy. The prediction error is observed to vary within 2%
to 4% for 12- to 6-hour forecast while the error varies within
16% to 46% for 24 hours forecast (Figure 6). The predicted
errors are estimated using different ranges of eigenvalues (2.6
± 0.12), (1.88± 0.09), and (1.26± .03), respectively, for three
categories of thunderstorms. However, if, for a particular day,
the maximal eigenvalue deviates from the given ranges, then
the predicted error (%) is computed using the maximum
deviation from the mean eigenvalues.

Prediction error (P.E) can be computed as

P.E(%) =
∣∣Expected− Actual

∣∣
Actual

× 100. (3)

The result thus reveals that the different ranges of maximal
eigenvalue of the bipartite graph are related to the different
categories of thunderstorms. The different categories of
thunderstorms (severe, ordinary, and no thunderstorm)
show significant differences with the corresponding ranges

of eigenvalues. However, the statistical approach does not
provide any information regarding the severity of thunder-
storm, while bipartite graph connectivity approach can be
a useful tool to measure the strength of thunderstorms.
The model output is thus validated with the observation
of 2007. The results reveal that 12- to 6-hour forecast with
the maximal eigenvalues within the selected range (Table 4)
has better accuracy than 24-hour forecast (Figures 6 and
7). Forecast skills, Probability of Detection (POD), and
False Alarm Ratio (FAR) are computed with SSBG model
output using the total data set (training data and test data)
from 1997 to 2007 for premonsoon days (April-May) as
input to the model (Figure 8). Result shows that the POD
for severe and ordinary thunderstorms is, respectively, 97%
and 91% while FAR is 3% and 7%, respectively. However,
for nonthunderstorm events the FAR computed with SSBG
model output is observed to be 9% and POD is 86%.
Thus, according to the forecast skill analysis, out of 100 no
thunderstorm events, there will be 9 false alarms and 91 times
the model does not give any false positive alarm (Figure 9).
The prediction error (PE) calculated for the total data set is
3.2%. Thus, SSBG model provides 96.8% accurate forecast
with the 11-year data set (1997–2007).
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(a) (b)

(c) (d)

Figure 16: Forecasting results of the SSBG model (12 hours in advance) using (a) atmospheric sounding; and (b), (c), (d) Doppler images
of sequential advancement of an ordinary thunderstorm in May 22, 2007.

The day-to-day variation of input parameters (CAPE,
CIN, Temperature, and Relative Humidity) and the reported
thunderstorms are shown using the contour plot keeping
the days in X-axis and corresponding eigenvalues in Y-
axis (Figure 10). The severe thunderstorms are marked with
green, ordinary are marked with red, and no thunder-
storms event are marked with white dots. The eigenvalues
are computed for the month of April, 2000. Two severe
thunderstorms (15th and 24th April) and four ordinary
thunderstorms (12th, 21st, 23rd and 29th April) occurred in
the month of April, 2000 over Kolkata (22◦32′N, 88◦20′E)
are considered. The eigenvalues corresponding to the dif-
ferent categories of thunderstorms are observed to follow
the assigned pattern (Figure 5). Satellite-based lightning
data are also taken into account for the analysis of the
severity of thunderstorm along with the surface wind
speed and Radar observations. The lightning frequency
accompanied with severe thunderstorm (May 28, 2006)
and ordinary thunderstorm (May 20, 2006) over Kolkata
is depicted in Figures 11 and 12. Lightning frequency is
higher on severe thunderstorm day during the movement
of squall line over the station (Figure 11) while very few
lightning events occurred on ordinary thunderstorm days.

The SSBG forecast model is validated with actual obser-
vations of 2007 thunderstorm events using satellite images
(INSAT, KALPANA-1 IR), Doppler weather radar images,
and India Meteorological Department (IMD) observations.
A severe thunderstorm (May 21, 2007) with surface wind
speed of 81 km/h and an ordinary thunderstorm (May 22,
2007) with surface wind speed of 50 km/h are predicted
with lead time 10 hours and 12 hours, respectively, with
the SSBG forecast model. The forecast of thunderstorms
(April 9, May 3, May 12 and May 28, 2007) with the
model are successfully validated with Indian Meteorolog-
ical Department (IMD) observations (Table 4). Figure 13
shows the INSAT IR sequential images (KALPANA-1)
in May 21, 2007 (severe thunderstorm day). An intense
convection is observed at 11 to 13 UTC over Kolkata
and the surrounding areas. The cloud top temperature
is observed to be −70◦C. The satellite images show iso-
lated cloud patches at 12 UTC in May 22, 2007 (ordi-
nary thunderstorm day) which is being intensified at
15 UTC over Kolkata and adjoining areas (Figure 14).
The cloud top temperature is observed to be−58◦C. Doppler
Radar images also support the SSBG model forecast (Figures
15 and 16).
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5. Applicability and Limitations

The study shows that the threshold values of the mete-
orological parameters are optimum for the prevalence of
severe thunderstorms over Kolkata (22◦32′N, 88◦20′E).
SSBG model is capable of providing nowcasting for ordinary
and severe thunderstorms. However, the limitation of the
model is that it has to be a single spectrum model. If the
positions of the vertices are changed, then the model output
will be changed. It is obvious because change in the vertex
position leads to change in the adjacency matrix input and
consequently the eigenvalues, rank, and so forth will be dif-
ferent. Using the single spectra bipartite graph model three
well distinct maximal eigenvalues for different categories of
thunderstorms, severe, ordinary, and no thunderstorm are
obtained. The model is developed particularly to forecast
the thunderstorm of premonsoon season over Kolkata. The
SSBG forecast model is trained with the ten-year (1997–
2006) data during a particular time (April-May) to select
the threshold values of the input parameters. The model can
be used to forecast the thunderstorms of any other season
or places provided that the threshold values of the input
parameters are selected properly for the region.

6. Conclusion

The present study using SSBG model leads to state that the
threshold values of the selected meteorological parameters
are suitable for forecasting thunderstorms over Kolkata.
The maximal eigen values of the bipartite graphs corre-
sponding to severe, ordinary, and no thunderstorm days
follow distinctly different patterns, and for a particular
day if maximum eigen values are computed using the
selected parameters and matches with the patterns then
the occurrence and severity of the thunderstorms can be
predicted with 96% to 98% accuracy with 12- to 6-hour lead
time.
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