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The study of the condensation of monopoles and the resulting chromomagnetic superconductivity
have been undertaken in restricted chromodynamics of SU(2) gauge theory. Constructing the RCD
Lagrangian and the partition function for monopoles in terms of string action and the action of the
current around the strings, the monopole current in RCD chromo magnetic superconductor has
been derived and it has shown that in London’ limit the penetration length governs the monopole
density around RCD string in chromo magnetic superconductors while with finite (nonzero)
coherence length the leading behavior of the monopole density at large distances from the string
is controlled by the coherence length and not by the penetration length.

1. Introduction

Quantum chromo dynamics (QCD) is the most favored color gauge theory of strong
interaction whereas superconductivity is a remarkable manifestation of quantum mechanics
on a truly macroscopic scale. In the process of current understanding of superconductivity,
Rajput [1, 2] and Kumar et al. [3, 4] have conceived its hopeful analogy with QCD and
demonstrated that the essential features of superconductivity, that is, the Meissner effect
and flux quantization, provided the vivid models [5–9] for actual confinement mechanism
in QCD. The original ideas explaining color confinement in terms of dual superconductivity
of QCD vacuum were proposed by ‘t Hooft and Mandelstam in the series of papers
where ‘t Hooft demonstrated [7, 10, 11] that the vacuum of gluodynamics behaves as dual
superconductor and the key role in dual superconductor model of QCD is played by Abelian
monopoles and Mandelstam [12–14] propounded that the color confinement properties may
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result from the condensation of magnetic monopoles in QCD vacuum. In a series of papers
[15–18] Ezawa and Iwazaki made an attempt to analyze a mechanism of quark confinement
by demonstrating that the Yang-Mills vacuum is magnetic superconductor and such a
superconducting state is considered to be a condensed state of magnetic monopole. The
condensation of magnetic monopole incorporates the state of magnetic superconductivity
[19] and the notion of chromo magnetic superconductor where the Meissner effect, confining
magnetic field in ordinary superconductivity, would be replaced by the chromoelectric
Meissner effect (i.e., the dual Meissner effect) which would confine the color electric flux. As
such one conceives the idea of correspondence between quantum chromo dynamic situation
and chromomagnetic superconductor. However, the crucial ingredient for condensation in a
chromo magnetic superconductor would be the nonAbelian force in contrast to the Abelian
ones in ordinary superconductivity. Topologically, a nonAbelian gauge theory is equivalent
to a set of Abelian gauge theories supplemented by monopoles [11].The method of Abelian
projection is one of the popular approaches to confinement problem, together with dual
superconductivity [20, 21] picture, in nonAbelian gauge theories. Monopole condensation
mechanism of confinement (together with dual superconductivity) implies that long-range
physics is dominated by Abelian degrees of freedom [21] (Abelian dominance).

Evaluating Wilson loops under the influence of the Abelian field due to all monopole
currents, monopole dominance has been demonstrated [22, 23]. In the Abelian projection
the quarks are the electrically charged particles and, if monopoles are condensed, the dual
Abrikasove string carrying electric flux is formed between quark and antiquark. Due to
nonzero tension in this string, the quarks are confined by the linear potential. The conjecture
that the dual Meissner effect is the color confinement mechanism is realized if we perform
Abelian projection in the maximal gauge where the Abelian component of gluon field
and Abelian monopoles are found to be dominant [24, 25]. Then the Abelian electric field
is squeezed by solenoidal monopole current [26]. The vacuum of gluodynamics behaves
as a dual superconductor and the key role in dual superconductor model of QCD is
played by Abelian monopole. Therefore an important problem, before studying the vacuum
properties of nonAbelian theories, is to abelianize them so as to make contribution of
the topological magnetic degrees of freedom to the partition function explicit. To meet
this end, a dual gauge theory called restricted chromo dynamics (RCD) (i.e., an Abelian
version of nonAbelian QCD) has been constructed out of QCD in SU(2) theory [27–30]
by imposing an additional internal symmetry named magnetic symmetry [31–35] which
reduces the dynamical degrees of freedom. Attempts have been made [1–4] to establish
an analogy between superconductivity and the dynamical breaking of magnetic symmetry,
which incorporates the confinement phase in RCD vacuum.

In the present paper this structure of RCD has been used to undertake the study of
condensation of monopoles and the resultant chromomagnetic superconductivity in SU(2)
gauge theory. The RCD Lagrangian density for monopoles has been derived in magnetic
gauge and the resulting partition function has been computed in terms of string action and
the action of current around the strings. Using this partition function, the quantum average of
Wilson loop for monopoles has been computed and the sources of electric flux (i.e., quarks)
running along the trajectory have been introduced with the help of Wilson loop.

The monopole current in RCD chromo magnetic superconductor has been derived
in London limit which corresponds to infinitely deep Higgs potential leading to vanishing
coherence length. It has been shown that the squared monopole current in RCD chromo
magnetic superconductor in the London limit has a maximum at the distance of the order of
penetration length and it (the penetration length) governs the monopole density around the
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string in RCD chromomagnetic superconductor. The monopole current has also been derived
in RCD chromo magnetic superconductor with nonzero finite coherence length and it has
been shown that the monopole density is nonzero even in the absence of string. It has also
been shown that the quantum correction to the squared monopole density is much more than
its vacuum expectation value measured far outside the string. It has been demonstrated that
in the chromomagnetic superconductors with finite (nonzero) coherence length the quantum
corrections to squared monopole density control the leading behavior of the total monopole
density in the vicinity of the RCD string. It has also been shown that the leading behavior of
the monopole density at large distances from the string is controlled by the coherence length
and not by the penetration length.

2. Superconductivity due to Condensation of
Monopoles in SU(2) Gauge Theory

Monopole condensation mechanism of confinement, together with dual superconductivity,
implies that long-range physics is dominated by Abelian degrees of freedom and the
method of Abelian projection (i.e., Abelianization) is one of the popular approaches to the
problem of confinement, and hence superconductivity, in nonAbelian gauge theories. Such an
Abelianization of QCDmay be obtained in the form of restricted chromodynamics (RCD) by
imposing an additional internal symmetry namedmagnetic symmetry [31–35]which reduces
the dynamical degrees of freedom. Mathematical foundation of restricted chromodynamics
(RCD) is based on the fact that a nonAbelian gauge theory permits some additional internal
symmetry, that is, magnetic symmetry [36–39]. Unified space P of nonAbelian gauge theory
may be thought of as

P =M ⊗G, (2.1)

which is (4 + n) dimensional manifold where M is 4-dimensional external space and G, in
general, is the n-dimensional internal space, generated by n Killing vectors ξi satisfying the
conditions

[
ξi, ξj

]
= fkijξk, (2.2)

£ξigAB = 0, (2.3)

where gAB (A,B = 0, . . . , n + 3) is the metric of manifold P with gauge symmetry as n
dimensional isometry [40, 41] and £ξi is the Lie derivative along ξi. In (2.2) fkij is internal
structure parameter, the four-dimensional quotient space M = P/G is the base manifold
and P is the principal fiber bundle. It has been conjectured that the dynamics of magnetic
monopole is effectively described by a gauge theory based on magnetic symmetry which
has the topological meaning. This magnetic symmetry is an additional internal isometry H
having some additional Killing vector fields of generalized gauge theory. These additional
Killing vectors are purely internal ones and hence commute with already existing fields ξi
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of G. The internal isometry H is Cartan’s subgroup of G and commutes with it. Let the
additional Killing vector fields bema (a = 1, 2, . . . , k = dimH). Then we have

ma = mi
aξi, (i = 1, 2, 3),

(ξi,ma) = 0,

(ma,mb) = −f (H)c
ab

m(c),

£magAB = 0,

(2.4)

where £ma is the Lie derivative along the direction of magnetic symmetry. Since the isometry
H commutes with the right isometryG, it is called the left isometry. The topological magnetic
charge associated with monopoles corresponds to the elements of second homotopy group
π2(G/H).

Let us consider G as SU(2) Yang-Mills group and H as the global gauge group of
electromagnetic interactionU(1). Then

π2

(
G

H

)
= π2

(
SU(2)
U(1)

)
(2.5)

is determined by the second homotopy directly leading to the magnetic symmetry gauge
group of monopoles in terms of m. As such, monopoles are described in terms of the
topological charges. This magnetic symmetry obviously imposes a strong constraint on
the connection and hence may be regarded as symmetry of gauge potential. This gauge
symmetry restricts not only the metric but also the gauge potential. Such a restricted theory
RCD may be extracted from full QCD on restricting the dynamical degrees of freedom of
theory, keeping full gauge degrees of freedom intact, by imposing magnetic symmetry which
ultimately forces the generalized nonAbelian gauge potential Vμ = Aμ − Bμ, (with Aμ and Bμ
as electric and magnetic constituents) to satisfy a strong constraint given by

Dμm̂ = ∂μm̂ + ig �Vμ × m̂ = 0, (2.6)

where Dμ is covariant derivative for the gauge group, μ = 0, 1, 2, 3, and g is magnetic charge
on monopole. The vector sign and cross product in this equation are taken in internal group
space and m̂ characterizes the additional Killing symmetry (magnetic symmetry) which
commutes with the gauge symmetry itself and is normalized to unity, that is,

m̂2 = 1. (2.7)

This magnetic symmetry obviously imposes a strong constraint on the connection and
hence may be regarded as symmetry of gauge potential. This gauge symmetry restricts not
only the metric but also the gauge potential. Equation (2.6) gives the following form of the
generalized restricted potentials,

�Bμ = A∗
μm̂ − 1

g
m̂ × ∂μm̂, (2.8)
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with

�Aμ = B∗
μm̂, (2.9)

where Aμ and Bμ are the electric and magnetic constituents of gauge potential. These
equations give

m̂ · Âμ = B∗
μ, (2.10)

m̂ · B̂μ = A∗
μ (2.11)

as unrestricted Abelian components of the restricted potentials. If �Aμ = 0 in the original QCD
then unrestricted potential is only B∗

μ and the restricted part of the potential is given as

�Bμ = − 1
g
�m × ∂μm̂ = − �Wμ, (2.12)

whereWμ is the potential of topological monopoles in magnetic symmetry which is entirely
fixed by m̂ up to Abelian gauge degrees of freedom. The unrestricted part B∗

μ of the gauge
potential describes the monopole flux of color isocharges. This unrestricted part is the dual
potential associatedwith charged gluonsW±

μ and leads to condensation ofmonopoles and the
resultant state of chromo magnetic superconductivity as shown in our earlier papers [1–4].

In the presence of a complex scalar field φ (Higgs field) and in the absence of quarks
or any colored object, the RCD Lagrangian in magnetic gauge may be written as

L =
1
4
HμνH

μν +
1
2
∣∣Dμφ

∣∣2 − V (φ∗φ
)
, (2.13)

where

V
(
ϕ∗ϕ

)
= −η

(∣∣ϕ
∣∣2 − ν2

)2
(2.14)

Dμφ =
(
∂μ + igWμ

)
φ, (2.15)

Hμν =Wν,μ −Wμ,ν, (2.16)

with η as coupling constant of Higgs field and v as the vacuum expectation value that is,

v =
〈
φ
〉
0. (2.17)

In Prasad-Sommerfield limit [42]

V
(
φ
)
= 0, (2.18)
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but

v /= 0. (2.19)

HereWμ may be identified as the potential of topological monopoles in magnetic symmetry
entirely fixed by m̂ up to Abelian gauge degrees of freedom. Thus in the magnetic gauge, the
topological properties of m̂ can be brought down to the dynamical variableWμ by removing
all nonessential gauge degrees of freedom and hence the topological structure of the theory
may be brought into dynamics explicitly where monopoles appear as point-like Abelian
ones and the gauge fields are expressible in terms of purely time-like nonsingular physical
potential Wμ. Under the condition (2.19) the monopoles have lowest possible energy for
given magnetic charge.

The Langarian (2.13) of RCD in the absence of quark or any colored object looks like
Ginsburg-Landau Lagrangian for the theory of superconductivity. The dynamical breaking of
themagnetic symmetry, due to the effective potential V (φ∗φ), induces magnetic condensation
of vacuum leading to the magnetic super current which screens the magnetic flux that
confines the electric color iso-charges (due to dual Meissner effect). In other words, the dual
Meissner effect expels the electric field between static colored charges into a narrow flux tube,
giving rise to a linearly rising potential and to confinement. In this Abelian Higgs model of
RCD in magnetic symmetry the Wμ, defined by (2.16), is dual gauge field with the mass of
dual gauge boson given by

MB = gv, (2.20)

and φ is the monopole field with charge g and mass

Mφ =
√(

8η
)
v. (2.21)

With these two mass scales the coherence length ε and the penetration length λ are given by

ε =
1
Mφ

=
1

[√(
8η
)
v
] , (2.22)

λ =
1
MB

=
1

(
gv
) . (2.23)

The region in phase diagram space, where ε = λ, constitutes the border between
type-I and type-II superconductors. The dual superconductivity model proposed recently
by D’Alessandro et al. [21] places the Yang-Mills vacuum close to the border between type-I
and type II superconductors and marginally on the type-II side. Comparing this penetration
length λwith that of relativistic superconducting model, that is,

Ms =
√
2e
∣∣φ
∣∣ =

√
2eν =

1
λs
, (2.24)
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we get

λ

λs
=
√
2 cot θ, (2.25)

where

cot θ =
e

g
, (2.26)

e being the electric charge of gluonsW±
μ . This relation shows that with a suitable choice of the

charge-space parameter θ, the tube of confining flux can be made thin giving rise to a higher
degree of confinement of color flux by magnetically condensed vacuum.

3. Behaviour of Monopoles around RCD Strings in SU(2) Theory

Lagrangian, given by (2.13), yields the following field equations:

∂νH
μν = iϕ†Dμϕ = j0μ, (3.1)

D2
μϕ = 4β

[∣∣ϕ
∣∣2 − 1

]
ϕ, (3.2)

where

j0μ = iϕ†[∂μ + iWμ

]
ϕ,

β =
η

g2
,

jaμ = i
[
ϕ†τaDμϕ

]
= i
[
φ†τa

(
∂μ + iWμ

]
ϕ
]
,

(3.3)

with a = 1, 2, 3 and τa, Pauli matrices, constitute the conserved Notherian current. Using
relation (2.11), we may write (3.1) as

�Wμ − ∂ν∂μWν = iϕ†ϕ

[
∂μϕ

ϕ
+ iWμ

]

, (3.4)

which reduces to the following form in the Lorentz gauge

�Wμ = iφ†φ

[
∂μϕ

ϕ
+ iWμ

]

, (3.5)

which further reduces into following simple form for the small variation in φ

�Wμ +
∣∣ϕ
∣∣2Wμ = 0, (3.6)
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which is a massive vector-type equation where the equivalent mass of the vector particle state
(i.e., condensed mode) may be identified as

M =
∣∣φ
∣∣, (3.7)

with its expectation value

〈M〉 = ν, (3.8)

which gives

MB = g〈M〉 = νg =
1
λ
, (3.9)

where λ is penetration length. Thus the penetration length directly follows from the field
equation (3.1) obtained from the Lagrangian (2.5) of the extended Abelian Higgs model in
restricted chromodynamics.

Magnetically condensed vacuum of action of Lagrangian of (2.13) is characterized by
the presence of twomassive modes. The mass of scalar mode,Mφ given by (2.21), determines
how fast the perturbative vacuum around a colored source reaches the condensation and
the mass MD of the vector mode determines the penetration length of the colored flux.
The masses of these magnetic glue balls may be estimated [33, 36, 37] by evaluating string
tension of the classical string solutions of quark pairs, since the extended Abelian Higgs
model in restricted chromo dynamics, admits string-like solutions [38]. Let us examine the
behavior of monopoles around such RCD strings. The classical field equations (3.1) and (3.2)
contain a solution corresponding to the RCD string with a quark and an antiquark at its
ends. We consider such strings which are stationary and translationaly invariant along the
third direction Z = x3 of the reference frame used in Lagrangian (2.13). Let us consider the
following ansatz [39, 43] for the four components of the vector field Ŵμ and the two complex
components φ1 and φ2 of the Higgs field φ;

Wμ =
{
Wi

(
ρ
)
,Wα

(
ρ
)}
, (3.10)

φi = fi
(
ρ
)[
ei(wαxα)δi2

]
eiψ(p), (3.11)

where i = 1, 2, α = 3, 4, fi(ρ) are complex functions of ρ = (x2
1 + x

2
2)

1/2 and ω3 and ω4 are
real parameters. Here ω4 is the relative rotation and ω3 is the relative twist along z-axis
between the components φ1 and φ2 of the Higg’s field φ. This ansatz breaks the originally
present global SU(2) symmetry toU(1) and the various terms of the Lagrangian (2.13) reduce
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from four-dimensional configuration to the two-dimensional configuration in the following
manner;

HμνH
μν −→ H2

ij − 2[(∂iWα)(∂iWα)],

(
Dμϕ

)(
Dμϕ

) −→ ωα(ωα + 2Wα)
∣∣ϕ2

∣∣2 − ∣∣Diϕa
∣∣2 +WαW

α
∣∣ϕa

∣∣2,
(3.12)

[∣∣φ
∣∣2 − 1

]2 −→
[∣∣φa

∣∣2 − 1
]2
, (3.13)

where i, j, and a = 1, 2,WαWα =W2
3 −W2

4 , and ω
αωα = ω2

3 −ω2
4.

Then the action of Lagrangian (2.13) reduces to

A −→ ν2
∣∣q
∣∣2

∫
dx4dx3

∫
d2x

[
WαW

α
∣∣ϕa

∣∣2 +
1
2
ωα(ωα + 2Wα)

∣∣ϕ
∣∣2

−1
2
∣∣Diϕa

∣∣2 +
1
4
H2

ij −
1
2
(∂iWα)(∂iWα) + β

(∣∣ϕa
∣∣2 − 1

)2]
,

(3.14)

where

H12 = −H21 =
∂W2

∂x1
− ∂W1

∂x2
. (3.15)

With this Ansatz the field equations (3.1) and (3.2) take the following forms in the x1 − x2
plane

�Wα = −ωα

∣∣ϕ2
∣∣2 −Wα

∣∣ϕα
∣∣2, (3.16)

∂jHjk = i
[
φaDkφa

]
, (3.17)

D2
i ϕ1 = −4β

[∣∣ϕa
∣∣2 − 1

]
ϕ1 − 2WαW

αϕ1, (3.18)

D2
2ϕ2 = −4β

[∣∣∣ϕ2
a

∣∣∣ − 1
]
ϕ2 − 2WαW

αϕ2 +ωα(ωα + 2Wα)ϕ2, (3.19)

where (3.16)may also be written as

ΔWα = ωα

∣∣ϕ2
∣∣2 +Wα

∣∣ϕa
∣∣2 (3.20)

with Δ = −�.
Let us consider the solutions of these equations in the following simple case of the

ansatz used in (3.10) and (3.11)

W1 =
x̂2h

(
ρ
)

∣∣g
∣∣ρ2

, W2 = − x̂1h
(
ρ
)

∣∣g
∣∣ρ2

, W3 = 0, W4 = 0, (3.21)
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where x̂1 and x̂2 are unit vectors along x1 and x2 directions. In this case (3.20) gives

ωα = 0, (3.22)

and then (3.18) and (3.19) reduce to

D2
i ϕa = −4β

[∣∣ϕa
∣∣2 − 1

]
ϕa (3.23)

and relation (3.11) becomes

ϕi = fi
(
ρ
)
eiψ(ρ) (3.24)

showing that there is neither relative rotation nor relative twist between the components of φ1

and φ2 of the Higgs field φ. The solutions (3.21) and (3.24) are static and untwisted semilocal
solutions. Here ρ is the transverse distance to the string and

ψ = arg(x1 + ix2), (3.25)

lim
ρ→ 0

f
(
ρ
)
= lim

ρ→ 0
h
(
ρ
)
= 0,

lim
ρ→α

f
(
ρ
)
= lim

ρ→ 0
h
(
ρ
)
= 1,

(3.26a)

where

f
(
ρ
)
= f1

(
ρ
)
, h

(
ρ
)
= f2

(
ρ
)
. (3.26b)

From (3.1)we get the monopole current as

kμ = g Im
[
φ+Dμφ

]
= g

∣∣φ
∣∣2[∂μ argφ + gWμ

]
. (3.27)

Equation (3.25) gives

∂ψ

∂x1
= −x1

ρ2
,

∂ψ

∂x2
= −x2

ρ2
. (3.28)

Substituting relations (3.24), (3.21), (3.25), (3.26b), and (3.28) into (3.27), we get

ki = −
(
ν2∈ijxj

)

ρ2
gf2(ρ

)[
1 − h(ρ)],

k2 = 0, k4 = 0,

(3.29)
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where ∈12 = −∈21 = 1 and ∈11 = ∈22 = 0, summation over repeated index is conventionally
involved. Substituting relations (3.24), (3.21) and (3.28) into field equation (3.23), we have

f ′′(ρ
)
+
f ′(ρ

)

ρ
− f

(
ρ
)

ρ2
[
1 − h(ρ)]2

+

⎛

⎝
M2

φ

2

⎞

⎠
[
1 − f2(ρ

)]
f
(
ρ
)
= 0, (3.30)

where dash devotes derivatives with respect to ρ. At large distance, in view of equations
(3.20), we may have

f
(
ρ
)
= 1 − ε(ρ), (3.31)

where ε(ρ) is infinitesimally small at large distance such that

lim
ρ→∞

ε
(
ρ
)
= 0 (3.32)

Then (3.30)may be written as

ε′′
(
ρ
)
+
ε′
(
ρ
)

ρ
−M2

φε
(
ρ
)
= 0. (3.33)

Substituting r =Mφρ into this equation, we have

d2ε(r)
dr2

+
(
1
r

)
dε(r)
dr

− ε(r) = 0. (3.34)

which is modified Bessel’s equation of zero order, with its solution given as

ε(r) = AI0(r) = AI0
(
Mφρ

)
, (3.35)

where I0 is the modified Bessel’s function of zero order. In the similar manner, the field
equation (3.4)may be written into the following form by using relations (3.21) and (3.29);

h′′
(
ρ
) − h′

(
ρ
)

ρ
+M2

B

[
1 − h(ρ)]f2(ρ

)
= 0. (3.36)

At large distance we may have

h
(
ρ
)
= 1 − ξ(ρ), (3.37)

where limρ→∞ξ(ρ) = 0.
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Then (3.36) reduces to

d2ξ(r)
dr2

− dξ(r)
dr

− ξ(r) = 0, (3.38)

where r =MBρ. Let us substitute ξ(r) = rχ(r) into this equation. Then we have

r
d2χ(r)
dr2

+
dχ(r)
dr

− χ(r)
[
1 +

1
r2

]
= 0 (3.39)

which is modified Bessel’s equation of order-one with its solution given by

χ(r) =
ξ(r)
r

= BI1(r), (3.40)

where I1(r) is modified Bessel’s function of order one. Thus we have

ξ
(
ρ
)
= B

(
MBρ

)
I1
(
MBρ

)
. (3.41)

Substituting relations (3.35) and (3.41) into (3.31) and (3.37), we have at large value
of ρ,

f
(
ρ
)
= 1 −AI0

(
Mφρ

)
, (3.42)

h
(
ρ
)
= 1 − B(MBρ

)
I1
(
MBρ

)
. (3.43)

Substituting these results into (3.21) and (3.24) with (3.25), we get the solution of classical
field equations (3.2) and (3.23) corresponding to the RCD string with a quark and an
antiquark at its ends. The infinitely separated quark and antiquark correspond to an axially
symmetric solution of the string. For such a string solution with a lowest nontrivial flux,
the coefficient A in the solution (3.35) is always equal to one while the coefficient B in the
solution (3.41) is unity in the BogomoLny limit exactly on the border between the type I and
type II superconductors whereMB =Mφ, that is, coherence length and the penetration length
coincide with each other. Thus in RCD close to border, we set B = 1 besides A = 1 and then
we have

f
(
ρ
)
= 1 − I0

(
Mφρ

)
= −

∞∑

n=1

(
Mφρ/2

)2n

(n!)2
,

h
(
ρ
)
= 1 − (MBρ

)
I1
(
MBρ

)
= 1 −

(
MBρ/2

)2

2
−MBρ

∞∑

n=1

(
MBρ/2

)2n+1

Γ(n)Γ(n + 1)
.

(3.44)

The RCD string is well defined by these solutions.
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4. Monopole Density around RCD String

Substituting these relations (3.44) into (3.29), we can find themonopole density in the vicinity
of RCD string. To meet this end, let us write the partition function corresponding to RCD
Lagrangian of (2.13) in Abelian Higgs Model (AHM) in the following form by using (2.15);

Z =
∫
DWμDφ exp

{
−
∫
d4xLAHM

(
Wμ, φ

)}
with

LAHM
(
Wμ, φ

)
=

1
4
HμνH

μν +
1
2
∣∣(∂μ + igWμ

)
φ
∣∣2 + η

(∣∣φ
∣∣2 − ν2

)2
.

(4.1)

This model (AHM) incorporates dual superconductivity and hence confinement as the
consequence of monopole condensation since the Higgs-type mechanism arises here.

With this partition function the quantum average of Wilson loop may be written as

〈
Wc

l

〉
=
〈
Kc

(ql,qm)

(
Wμ

)〉

AHM
, (4.2)

where the expectation value in r.h.s is calculated in AHM with the operator Kc
(qe,qm)

as the
product of ‘t Hooft loop and the Wilson loopWc;

Kc
(qe,qm)

(
Wμ

)
= Hc

qe

(
Wμ

) ·Wc
qm

(
Wμ

)
, where qe = e0; qm =

e0
g
e, (4.3)

and Wilson loop given as

Wc
l

(
Wμ

)
= exp

{
ie0

∫
d4xημW

μ

}
with η(x) =

∮

C

dx̆μδ
(4)(x − x̆(τ)), (4.4)

which creates the particle with electric charge e0 on the world trajectory C.
Then the effective electric and magnetic four-current density may be written as

follows;

jμ = qeημ; kμ = qmημ. (4.5)

In (4.3) the operatorHc
qe(Wμ) is

Hc
qe

(
Wμ

)
= exp

{

−1
4

∫
d4x

[(
Hμν − 1

2
εμναβFαβ

)2

−HμνH
μν

]}

(4.6)

and Fαβ is the dual field tensor satisfying

Fμν,ν = jμ. (4.7)

This operator Hc
qecreates the string spanned by the loop C, carrying the flux qe. In AHM the

monopoles are condensed and in its string representation the topological interaction exists in
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the expectation value of the Wilson loop Wc given by (4.4). In the centre of ANO string the
Higgs field φ = |φ|eiθ vanishes, that is,

Reφ = Imφ = 0,
(4.8)

and the phase is singular on the world sheets of ANO string. Then the measure of the
integration over φ can be written as

Dφ = CD
∣∣φ
∣∣2Dθ (4.9)

where C is a constant. The integral
∫
Dθ contains the integration over functions which are

singular on two dimensional manifolds. Let us divide the phase into regular and singular
parts as

θ = θr + θs, (4.10)

where θs is defined by

(
∂μ∂ν − ∂ν∂ν

)
θs(x, x̆) = 2πεμναβ

∑

αβ

(x, x̆),

where

∑

αβ

(x, x̆) =
∫

∑
d2σεab∂ax̆α∂bx̆βδ

(4)[x − x̆(σ)],

(4.11)

with ∂a = ∂/∂σa, x̆μ string-position and
∑

as the collection of all the closed surfaces.
σ = (σ1, σ2) is the parameterization of string surface and a, b = 1, 2. Then the measure

Dθ can be decomposed as

Dθ = DθrDθs. (4.12)

Let us use these relations to find the monopole density in the vicinity of RCD string for
vanishing and nonvanishing coherence lengths respectively in the following subsections.

4.1. For Zero Coherence Length

From (2.21), we find the vanishing coherence length in the limitMφ → ∞ or η → ∞ which
corresponds to infinitely deep potential V (φ∗φ) of (2.14). This limit is London limit. Then the
RCD Lagrangian of (4.1) in AHM may be written as follows

Lm =
1
4
HμνH

μν +
ν2

2
(
∂μϕ + gWμ

)2 = Lm
(
Wμ, ϕ

)
, (4.13)
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where Lm denotes the Lagrangian density for monopoles. In terms of this Lagrangian, the
partition function of (4.1) may be written as follows

Z =
∫π

−π
Dφ

[∫∞

−∞
DWμ exp

{
−d4xLm

(
Wμ, ϕ

)}]
. (4.14)

The string in RCDmanifests itself as a singularity in the phase of the Higgs field according to
(4.11).

Let us fix the unitary gauge as

φ = 0 (4.15)

and make the consequent shift

Wμ −→Wμ − 1
g
∂μφ. (4.16)

Then the shift inHμν will be

Hμν −→ Hμν − 2π
g

(d)∑

μν

, (4.17)

where

(d)∑

μν

(x) =
1
2
∈μνρσ

∑

ρσ

(x) (4.18)

and we have used relations (4.11), (4.16), and (4.13). Substituting shifts (4.16) and (4.17) into
(4.14) and integrating over the fieldWμ, we get

Z =
∫

∂Σ=0
DΣ exp{−Astr(Σ)}, (4.19)

where Astr is the string action given as

Astr = 2π2ν2
∫
d4x

∫
d4yΣμν(x)DMB

(
x − y)Σμν

(
y
)
, (4.20)
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where DMB(x) is the scalar Yukawa propagator. It is the propagator of the scalar particle of
massMB = gv, that is,

(
Δ +m2

)
DMS(x) = δ

4(x), (4.21)

withm = gv as mass of dual gauge bosonWμ.
For closed strings, we have

∂vΣμν = 0. (4.22)

On the other hand, when the strings are spanned on the current jc, we have

∂νΣμν = jcμ. (4.23)

The action of the currents is given as follows by the short-ranged exchange of the dual gauge
boson,

Acurr
(
jc
)
=
e2

2

∫
d4x

∫
d4yj

(c)
μ (x)DMB

(
x − y)jcy

(
y
)
, (4.24)

where e is the electric charge of gluon, satisfying the quantization condition

eg = 2π. (4.25)

The quantum average of Wilson loop can be written here as a sum over strings similar to
(4.19),

〈
Wc

l

〉
=

1
Z

∫

∂Σ=jc
DΣ exp

{−Astr(Σ) −Acurr
(
jc
)}
, (4.26)

where Z is given by (4.19). In this equation the sources of electric flux (i.e., quarks) running
along the trajectory C are introduced with the help ofWc

l
.

Let us place the static quarks at spatial infinities of the axis-x3. Then the effects
of quarks (i.e., boundary effects) are avoided and consequently the second term of the
exponential in r.h.s of (4.26) may be ignored. In this case (i.e., infinite static string placed
along the third direction) (4.11) reduces to the following form of string current

Σμν =
(
∂μ,3∂ν,4 − ∂μ,4∂ν,3

]
δ(x1)δ(x2) = δ

μ,ν

3,4 δ(x1)δ(x2). (4.27)

From (3.27), the monopole current may be written as follows in the London limit;

kμ = gν2
[
∂μϕ + gWμ

]
. (4.28)
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When the singular phase φΣ corresponds to the string position fixed by (4.11), the Lagrangian
Lm in the exponential of (4.14) becomes

Lm
(
Wμ, ϕ

)
= Lm

(
Wμ, ϕΣ

)
, (4.29)

and then the functional generating the partition function in (4.14) may be written as

Z[Σ, C] =
∫∞

−∞
DWμ exp

{
−
∫
d4x

[
Lm
(
Wμ, ϕΣ

) − ikμCμ

]}
. (4.30)

Then the monopole current in the presence of the string is given by the variational derivative
[44]

〈
kμ(x)

〉
Σ =

g

Z(Σ, 0)

(
δ

i∂Cμ(x)

)2

Z[Σ, C]|C=0. (4.31)

And the squared monopole density is

〈
k2μ(x)

〉

Σ
=

g

Z(Σ, 0)

(
δ

i∂Cμ(x)

)2

Z[Σ, C]|C=0. (4.32)

In the manner analogous to (4.19) and (4.20), the generating functional (4.30)may be written
as

Z[Σ, C] = exp

[

−
∫
d4x

∫
d4y

{
g2ν4

2
Cμ(x)D

μv

MB

(
x − y)Cv

(
y
)
}

−2πiν2Cμ(x)D
μv

Ms

(
x − y)∂ρ

(d)∑

ρν

(
y
) −Astr(Σ)

]

,

(4.33)

where string action Astr(Σ) is given by (4.20).
Substituting this relation for generating functional into (4.32) and evaluating the

monopole density, we get the monopole current around the string as

k
μ
str = 〈kμ〉Σ = −2πgν2

∫
d4yD

μν

MB

(
x − y)∂ρΣd

ρν

(
y
)
. (4.34)
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For static string, this equation reduces to

kistr = −2πgν2∈ij xi
ρ

∂

∂ρ
DMB

(
ρ
)
, i, j = 1, 2,

k3str = 0, k4str = 0,

(4.35)

where

DMB

(
ρ
)
=

1
2π

I0
(
MBρ

)
, (4.36)

with I0 as modified Bessel’s function of zero order. The function DMB(ρ) given by (3.54), is
the propagator for a scalar massive particle in two space-time dimensions. Using (4.34) and
(4.36), the explicit form of the nonzero component of the solenoidal current may be written
as

kstrθ = ν2gMBI1
(
MBρ

)
, (4.37)

where I1(MBρ) is the modified Bessel’s function of order one given in (3.44). Thus the
monopoles form a solenoidal current which circulates around the string in transverse
directions. This current gives rise to the following squared monopole density;

〈
k2
〉

Σ
= ν4g2M2

BI
2
1

(
MBρ

)
. (4.38)

Substituting the value of I1(MBρ) from (3.44) into this relation, we find that the
squared density of the monopole current, in London limit (where coherence length is zero),
has a maximum at the distance of the order of the 1/MB (i.e., the order of penetration length).

4.2. For Nonzero Coherence Length

When the potential V (φ∗φ) of (2.14) is of finite depth, that is, η is finite thenMφ is finite and
hence coherence length ξ given by (2.23), is nonzero and finite. Then in the expression (4.38)
for squared monopole density in the vicinity of RCD string a term corresponding to quantum
vacuum correction is nonzero even in the absence of string. Thus the squared monopole
density, in this case, is written as

(
k2μ

)

Σ
=
(
k
string
μ

)2
+
(
k
quan
μ

)2
, (4.39)
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where (kstringμ )
2
is given by (4.38) and quantum vacuum correction (kquanμ )

2
is given by

(
k
quan
μ

)2
=
〈
k2μ

〉

0
= g2ν4D2

MB
(0) =

g2ν4∧2

16π2
, (4.40)

where we have used (4.36) and regularized the divergent expression by momentum cut off ∧.
Replacing vacuum expectation value v of the Higgs field φ by |φ(ρ)| in relation (4.40)

and then substituting it into (4.39), we get

(
k2μ

)

Σ
=
(
k
string
μ

)2
+ g2

∣∣ϕ
(
ρ
)∣∣4∧2

16π2
(4.41)

= g2ν4M2
BI

2
1

(
MBρ

)
+ g2

∣∣ϕ
(
ρ
)∣∣4∧2

16π2
. (4.42)

For ρ of the order of coherence length ξ the quantum correction to the squared monopole
density is much more than the vacuum expectation value measured far out side the string
(ρ � Σ). Thus the quantum corrections control the leading behavior of the total monopole
density in the vicinity of the RCD string.

Using the asymptotic expansions of modified Bessel’s functions in (3.44), and then
introducing it into (3.24), we get

∣∣φ
∣∣4 ≈

[

1 − 4

√
πξ

2ρ
e−ρ/ξ

]

. (4.43)

Then (4.42)may be approximately written as follows [38] at large distances;

(
k2μ

)

Σ
≈ g2∧2

16π2

[

1 − 4

√
πξ

2ρ
e−ρ/ξ

]

, (4.44)

which shows that the leading behaviors of the monopole density at large distances are
controlled by coherence length ξ and not by penetration length λ.

5. Discussion

The Lagrangian, given by (2.13) for RCD in magnetic gauge in the absence of quarks or
any colored objects, establishes an analogy between superconductivity and the dynamical
breaking of magnetic symmetry which incorporates the confinement phase in RCD vacuum
where the effective potential V (θ∗θ), given by (2.14), induces the magnetic condensation
of vacuum. This gives rise to magnetic super current which screens the magnetic flux and
confines the color iso-charges as the result of dual Meissner effect. The confinement of color
is due to the spontaneous breaking of magnetic symmetry which yields a nonvanishing
magnetically charged Higg’s condensate, where the broken magnetic group is chosen by
Abelianization process and hence the magnetic condensation mechanism of confinement in
RCD is dominated by Abelian degrees of freedom. Such Abelian dominance in connection
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with monopole condensation has recently been demonstrated by Bornyakov et al. [45].
The similar result has also been obtained more recently in a dual superconductivity model
[21].

In the confinement phase of RCD, the monopoles are condensed under the condition
(2.19) where the transition from 〈φ〉0 = 0 to 〈φ〉0 = v /= 0 is of first order, which leads to the
vacuum becoming a chromo magnetic superconductor in the analogy with Higg’s-Ginsburg-
Landau theory of superconductivity. Magnetically condensed vacuum is characterized by the
presence of two massive modes given by (2.20) and (2.21), respectively, where the mass of
scalar modeMφ determines how fast the perturbative vacuum around a color source reaches
condensation and the mass MB of vector mode determines the penetration length of the
colored flux. With these two scales of dual gauge boson and monopole field, the coherence
length ε and the penetration length λ have been constructed by (2.23) in RCD theory. These
two lengths coincide at the border between type-I and type-II-superconductors.

The ansatz given by relations (3.10) and (3.11) shows that there is a nontrivial
coordinate dependent relative phase between the components of SU(2) doublets. This
anastz breaks the originally present global SU(2) symmetry to U(1) and reduces the four-
dimensional action of Lagrangian (2.13) to the two dimensional one given by (3.14) with
the field equation given by (3.16), (3.17), (3.18), and (3.19). For the special case with the static
solution given by (3.21), (3.23) and (3.24) there is neither a relative rotation nor a relative twist
between the components of Higg’s field. Relations (3.35) and (3.41) remove the mistakes of
the similar relations of Chernodub et al. [44]. Substituting relations (3.44) into (3.21) and
(3.24), the solutions of classical field equations (3.1) and (3.2), corresponding to the RCD
string with a quark and antiquark at its ends, readily follows. The RCD string is well defined
by solutions (3.44) where the monopole current given by (3.27) near the RCD string, is zero
at the center of the string and also zero at points far away from the string.

Equation (4.14) gives the partition function in the Eulidean space-time with the RCD
Lagrangian density in magnetic gauge given by (4.13). This partition function has been
computed in the form given by (4.19) in terms of string action given by (4.20). The action
of the current around the strings is given by (4.24) which leads to the quantum average of
Wilson loop as given by (4.26) where the source of electric flux (i.e., quarks) running along
the trajectory are introduced with the help of Wilson loop.

Equation (4.28) gives the monopole current in London limit which corresponds to
infinitely deep Higg’s potential and leads to vanishing coherence length in the chromo
magnetic superconductor. Equation (4.31) gives the monopole current in the presence of
the string, which leads to squared monopole density given by (4.32). The monopole current
given by (4.34) reduces to the components given by (4.35) in terms of propagator (4.36) for a
scalar massive particle in two space-time dimensions. Equation (4.37) gives the explicit form
of the nonzero component of the solenoidal current which circulates around the string in
transverse directions. This current gives rise to the squared monopole current given by (4.38)
in London limit (i.e., vanishing coherence length). This squared current has a maximum at
the distance of the order of penetration length. Thus in London limit (zero coherence length)
the monopole density around the string in RCD is governed by penetration length.

Equation (4.39) shows that for nonzero finite coherence length, the monopole density
is nonzero even in the absence of string. Equation (4.42) shows that the quantum correction
to the squared monopole density is much more than the vacuum expectation value measured
far out side the string. Thus the quantum corrections control the leading behavior of the total
monopole density in the vicinity of the RCD string. Equation (4.43) shows that the leading
behavior of the monopole density at large distances is controlled by the coherence length
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and not by the penetration length. This result is in agreement with the numerical result of
Bornyakov et al. [45, 46].
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