
Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2010, Article ID 713659, 18 pages
doi:10.1155/2010/713659

Research Article
Dyon Condensation and Dual Superconductivity in
Abelian Higgs Model of QCD

B. S. Rajput1, 2 and Sandeep Kumar3

1 I-11, Gamma-2, Greater Noida (UP), India
2 Department of Physics, Kumaon University, Nainital, Uttrakhand, India
3 Department of Physics, D.S. College, Aligarh, Uttar Pradesh, India

Correspondence should be addressed to B. S. Rajput, bsrajp@gmail.com

Received 5 September 2010; Accepted 9 November 2010

Academic Editor: A. Petrov

Copyright q 2010 B. S. Rajput and S. Kumar. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Constructing the effective action for dyonic field in Abelian projection of QCD, it has been
demonstrated that any charge (electrical or magnetic) of dyon screens its own direct potential to
which it minimally couples and antiscreens the dual potential leading to dual superconductivity
in accordance with generalized Meissner effect. Taking the Abelian projection of QCD, an Abelian
Higgs model, incorporating dual superconductivity and confinement, has been constructed and
its representation has been obtained in terms of average of Wilson loop.

1. Introduction

Quantum chromodynamics (QCD) is the most favored color gauge theory of strong
interaction whereas superconductivity is a remarkable manifestation of quantum mechanics
on a truly macroscopic scale. In the process of current understanding of superconductivity,
Rajput et al. [1–3] and Kumar [4] have conceived its hopeful analogy with QCD and
demonstrated that the essential features of superconductivity, that is, the Meissner effect
and flux quantization, provided the vivid models [5–9] for actual confinement mechanism
in QCD. Mandelstam [10–12] propounded that the color confinement properties may result
from the condensation of magnetic monopoles in QCD vacuum. In a series of papers [13–
16], Ezawa and Iwazaki made an attempt to analyze a mechanism of quark confinement
by demonstrating that the Yang-Mills vacuum is a magnetic superconductor and such a
superconducting state is considered to be a condensed state of magnetic monopole. The
condensation of magnetic monopole incorporates the state of magnetic superconductivity
[17] and the notion of chromomagnetic superconductor where the Meissner effect confining
magnetic field in ordinary superconductivity would be replaced by the chromoelectric
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Meissner effect (i.e., the dual Meissner effect), which would confine the color electric flux. As
such one conceives the idea of correspondence between quantum chromodynamic situation
and chromomagnetic superconductor. However, the crucial ingredient for condensation in a
chromomagnetic superconductor would be the non-Abelian force in contrast to the Abelian
ones in ordinary superconductivity. Topologically, a non-Abelian gauge theory is equivalent
to a set of Abelian gauge theories supplemented by monopoles [18]. The method of Abelian
projection is one of the popular approaches to confinement problem, together with dual
superconductivity [19, 20] picture, in non-Abelian gauge theories. Monopole condensation
mechanism of confinement (together with dual superconductivity) implies that long-range
physics is dominated by Abelian degrees of freedom [21] (Abelian dominance).

The first model of QCD vacuum, in which the non-Abelian dyons are responsible for
confinement, was given by Simonov [19], and almost simultaneously it was demonstrated by
Bornyakov and Schierholz [22] that for (anti-) self-dual fields [23, 24] the Abelianmonopoles,
participating in confinement, become dyons. The non-Abelian dyons give rise to Abelian
dyons in the Abelian projection [22]. The mere notions of dyons and of the Kraan-van Baal
instantons [25, 26] (i.e., calorons) imply that the Y-M field is periodic in the Euclidean time
direction and thus leads to confinement. It has recently been demonstrated by Diakonov
and Petrov [27] that the ensemble of dyons can be described mathematically by an exactly
solvable field theory in three dimensions and that the resulting vacuum built of dyons has
certain features expected for the confining pure Y-M theory. It has also been shown by
them that the dyons ensemble induces the area law for spatial Wilson loops which fulfill
confinement in three dimensions. To investigate the possible physical implications of the
topological structure of non-Abelian dyons in connection with the issue of quark confinement
in QCD, extended gauge theory has been formulated [8, 9] in SU(2) and SU(3) groups from
the corresponding restricted chromodynamics (RCD), and it has been shown that in this
extended QCD the confinement mechanism of the corresponding RCD remains intact, and
physical spectrum contains color-singlet generalized electric glue balls made of valence gluon
pairs as well as the generalized magnetic glue balls as massive collective modes of condensed
vacuum. Recently, it has been shown [3, 4] that a perfect confinement can be achieved with
pure dyonic states participating in actual dyonic condensation of RCD vacuum as the result
of magnetic symmetry breaking in strong coupling limit.

Evaluating Wilson loops under the influence of the Abelian field due to all monopole
currents, monopole dominance has been demonstrated [21, 28]. In the Abelian projection
the quarks are the electrically charged particles and, if monopoles are condensed, the dual
Abrikosov-string carrying electric flux is formed between quark and antiquark. Due to
nonzero tension in this string, the quarks are confined by the linear potential. The conjecture
that the dual Meissner effect is the color confinement mechanism is realized if we perform
Abelian projection in the maximal gauge where the Abelian component of gluon field and
Abelian monopoles are found to be dominant [29, 30]. Then the Abelian electric field is
squeezed by solenoidal monopole current [31]. The vacuum of gluodynamics behaves as
a dual superconductor, and the key role in dual superconductor model of QCD is played
by Abelian monopole. The infrared properties of QCD in the Abelian projection can be
described by the Abelian Higgs Model (AHM) in which dyons are condensed. There exists
the model [27, 32–34] of QCD vacuum in which the non-Abelian dyons are responsible
for the confinement and the non-Abelian dyons give rise to Abelian dyons in the Abelian
projection. Therefore, an important problem, before studying the vacuum properties of non-
Abelian theories, is to Abelianize them so as to make contribution of the topological magnetic
degrees of freedom to the partition function explicit. Such a construction for non-Abelian
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gauge theories and its relevance to topological magnetic charge and hence to confinement
are still lacking in spite of large amount of recent literature [35–40] on the subject.

Starting with generalized field equations and the corresponding Lagrangian of the
field associated with Abelian dyons in this paper, it has been demonstrated that topologically,
a non-Abelian gauge theory is equivalent to a set of Abelian gauge theories supplemented
by dyons which undergo condensation leading to confinement and consequently to
superconducting model of QCD vacuum, where the Higgs fields play the role of a regulator
only. It has also been demonstrated that for the self-dual fields, the Abelian monopoles
become the Abelian dyons, and in low energy QCD the dyon interactions are saturated by
duality when Abelian projection is described by the Abelian Higgs model where dyons are
condensed leading to confinement and the state of dual superconductivity. Constructing
the effective action for dyonic field in Abelian projection of QCD in terms of electric and
magnetic constituents, Aμ and Bμ, of the generalized four-potential Vμ, the dyonic current
correlators have been derived and it has been demonstrated that the dyonic electric charge
produces screening effect forAμ-propagator and antiscreening effect for Bμ-propagator while
the dyonic magnetic charge produces screening effect for Bμ-propagator and antiscreening
effect for Aμ-propagator. These antiscreening effects have been shown to lead to dyonic
condensation and dual superconductivity and also to maintain the asymptotic freedom of
non-Abelian gauge theory (QCD) in its Abelian version. A non-Abelian SU(2) gauge has been
obtained in terms of Lagrangian density describing the fields associated with non-Abelian
dyons and it has been shown that these non-Abelian dyons give rise to Abelian dyons in the
Abelian projection of QCD. The infrared properties of QCD in this Abelian projection have
been described by constructing an Abelian Higgs model in which dyons are condensed and
the relevant degrees of freedom are two massive gluons, a U(1) gluon and a dyon. This AHM
has been shown to incorporate dual superconductivity and confinement as the consequence
of dyonic condensation.

The quantum average of Wilson loop has been obtained in the dyonic theory specified
by a partition function in terms of dyon Lagrangian in Abelian Higgs model, and the effective
electric and magnetic charges and four-currents of dyons have been determined fromWilson
loop given in terms of electromagnetic field tensor satisfying field equations identical to those
for usual electrodynamics.

2. Electromagnetic Duality and Dyonic Interaction

Agauge invariant and Lorentz covariant quantumfield theory of fields associatedwith dyons
has been developed [41–44] in purely group theoretical manner by using two four-potentials
and assuming the generalized charge, generalized current, and generalized four-potential as
complex quantities with their real and imaginary parts as electric and magnetic constituents,
that is,

generalized charge

q = e − ig, (2.1a)

generalized four-current

Jμ = jμ − ikμ, (2.1b)



4 Advances in High Energy Physics

and generalized four-potential

Vμ = Aμ − iBμ, (2.1c)

where e and g are electric and magnetic charges on dyon, jμ and kμ are electric
and magnetic four-current densities, and Aμ and Bμ are the electric and magnetic
four-potentials associated with dyons. Taking the wave function associated with
generalized field as

�ψ = �E − i �H, (2.1d)

the generalized field equations of these fields may be written as

�∇ · �Ψ = J0,

�∇ × �Ψ = −i�J − i∂
�Ψ
∂t
,

(2.2)

where J0 and �J are the temporal and spatial parts of Jμ defined by (2.1b).

In the compact form, these equations may be written as

Gμν,ν = Jμ,

Gd
μν,ν = 0,

(2.3)

where Gμν the generalized field tensor, is given as

Gμν = ∂μVν − ∂νVμ (2.4)

and Gd
μν is its dual given as

Gd
μν =

1
2
εμναβGαβ. (2.5)

Equation (2.4)may also be written as

Gμν = Fμν − iHμν, (2.6a)

where

Fμν = ∂μAν − ∂νAμ, (2.6b)

Hμν = ∂μBν − ∂νBμ. (2.6c)
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Then (2.3) reduces to the following form:

Fμν,ν = jμ, (2.7a)

Hμν,ν = kμ. (2.7b)

These equations are symmetrical under the duality transformations

Fμν −→ Hμν, Hμν −→ −Fμν, jμ −→ kμ, kμ −→ −jμ. (2.8)

The Lagrangian density for spin-1 generalized charge (i.e., bosonic dyon) of rest mass
m0 may be written as follows [41] in the Abelian theory:

L = m0 − 1
4

[
α
{(
Aν,μ −Aμ,ν

)2 − (
Bν,μ − Bμ,ν

)2} − 2β
{(
Aν,μ −Aμ,ν

)(
Bν,μ − Bμ,ν

)}]

+
{(
αAμ − βBμ

)
jμ −

(
αBμ + βAμ

)
kμ

}

= LP + LF + LI,

(2.9)

where α and β are real positive unimodular parameters, that is,

|α|2 + ∣∣β∣∣2 = 1. (2.10)

LP , LF , and LI are free particle, field, and interaction Lagrangians, respectively. The action
integral may be written as

S =
∫ t2

t1

Ldt = SP + SF + SI. (2.11)

Varying the trajectory of particle without changing the field, we get the following equation of
motion:

mẍμ = Re
(
q ∗Gμν

)
uν, (2.12)

where Re denotes the real part and uν is the νth component of four-velocity of dyon.
An Abelian dyon moving in the generalized field of another dyon carries a residual

angular momentum [45] (field contribution) besides its orbital and spin-angular momenta.
If we consider ith Abelian dyon moving in the field of jth dyon (assumed at rest), its gauge
invariant rotationally symmetric orbital angular momentum may be written as [45]

�J = �r ×
(
�p − μij �V T

)
+ μij

�r

r
, (2.13)
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where �r is the position vector and �p is the linear momentum of ith dyon, V T is the transverse
generalized vector potential of the field associated with jth dyon, and μij is the magnetic
coupling parameter defined as

μij = eigj − ejgi. (2.14)

The last term in (2.14) is the residual angular momentum carried by ith dyon besides its usual
orbital angular momentum and spin-angular momentum

�Jres = μij
�r

r
. (2.15)

For each pair of dyons, this residual angular momentum generates a one-dimensional
representation of the pair of four-momentum associated with these particles. This is the
subgroup of the Lorentz group which leaves both four-momenta invariant. This residual
angular momentum leads to chirality-dependent multiplicity in the eigenvalues of angular
momentum of an Abelian dyon.

With the development of non-Abelian gauge theories, Dirac monopole has mutated
in another way as we have to take into account not only electromagnetic U(1) gauge group
but also the color gauge group SU(3)c describing strong interaction. In QCD, because SU(3) is
compact, the color electric charges definedwith respect to anymaximal Abelian subgroup are
quantized. It implies that we can write down gauge field configurations that asymptotically
look like magnetic monopole of any chosen Abelian direction. The confinement of color
electric charge corresponds to the screening of color magnetic charge. There are monopole
field configurations in any non-Abelian gauge theory. The phase structure of any such
theory can be probed by adding a scalar field (i.e., Higgs field) in the adjoint representation
so long as it does not change the nature of flow of the coupling constant with energy.
For asymptotically free theories, the low energy behavior is dominated by the Abelian
monopoles of almost zero mass which are almost point-like. The interaction of these point-
like monopoles with gluons and charged particles can be studied as a dual analogue of point-
like charged particle interactions. It leads to condensation of monopole. Thus topologically,
a non-Abelian gauge theory is equivalent to a set of Abelian gauge theories supplemented
by monopoles which undergo condensation leading to confinement. Thus the non-Abelian
confinement of dyonic charge is related to linear Abelian theory in a dyonic superconductor.

Let us first consider the effective action for dyonic field in this Abelian projection of
QCD in the following manner [17]:

S = −1
4

∫
Gμν(x)/∈

(
x − y)Gμνd4xd4y + JμV μ, (2.16)

where /∈ (x − y) is the generalized dielectric constant defined as

/∈ (
x − y) = ∈ (

x − y) − iμ(x − y) (2.17)
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with ∈ (x−y) as ordinary dielectric constant and μ(x−y) as magnetic permeability such that

∫
∈ (

x − y)μ(x − z)d4y = δ(x − z), (2.18)

where δ(x) is Dirac-Delta function. The generalized field tensorGμν(x) of (2.16) satisfies field
equations (2.3) or equivalently the field equation (2.7a). The generalized four-current of field
equation (2.3) couples to Vμ, with the current-correlators given by

〈
Jμ
〉
=

δS

δVμ
, (2.19)

〈
jμ(x)J

(
y
)〉

=
δ2S

δVν(x)δVμ
(
y
) . (2.20)

Using (2.17) and (2.20), we have

〈
Jμ(x)Jν

(
y
)〉

= −
∫

d4k

(2π)4
eik(x−y)

[
k2δμν − kμkν

]
/∈
(
k2
)
, (2.21)

where /∈ (k2) is Fourier transform of /∈ (x − y). For free fields in vacuum, /∈ (k2) = 1. In
the perturbation theory, the deviation of /∈ (k2) from 1 can be interpreted as the vacuum
polarization due to dyon loops. For perturbatively small χ(k2), we have

/∈
(
k2
)
= 1 + χ

(
k2
)
, (2.22)

where

χ
(
k2
)
= χe

(
k2
)
− iχg

(
k2
)

(2.23)

with χe(k2) as perturbation related with electric charge loop and χg(k2) as the perturbation
related with magnetic charge loop.

Let us apply (2.21) to the case of dual superconductivity where /∈ includes fully
nonperturbative effects. This rigidly excludes generalized electromagnetic field in side
dual superconductor in conformity with the generalized Meissner effect with its real and
imaginary constituents as the strict Meissner effect and dual Meissner effect, respectively.
Then the generalized field Vμ can penetrate into a generalized superconductor up to the
generalized London penetration depth

λL = λe − iλg, (2.24)
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where λe is strict penetration depth due to Meissner effect and λg is the dual penetration
depth due to dual Meissner effect. For small values of k2, we have

/∈
(
k2
)
=
m2
L

k2
− ik2

m2
L

, (2.25)

where

mL =
1
λL

= mle − imLg (2.26a)

or

mL =
1

λe − iλg =
λe + iλg

|λL|2
. (2.26b)

It gives

mLe =
λe

|λL|2
,

mLg = − λg

|λL|2
.

(2.27)

Equations (2.21) and (2.1b) then give

〈[
jμ(x)jν

(
y
)
+ kμ(x)kν

(
y
)]〉

= −
∫

d4k

(2π)4
eik(x−y)

[
k2δμν − kμkν

]
∈
(
k2
)
,

〈[
jμ(x)kμ

(
y
) − jν(x)kμ

(
y
)]〉

= −
∫

d4k

(2π)4
eik(x−y)

[
k4δμν − k2kμkν

]
μ
(
k2
)
/m2

L.

(2.28)

These equations give the generalized propagator associated with generalized field Vμ.

3. Dual Superconductivity through Generalized Meissner Effect

Let us consider electric and magnetic charges on different particles (i.e., not dyons). Then
field equations (2.3) reduce to the following form:

Fμν,ν = jμ,

Fdμν,ν = 0,

Hμν,ν = kμ,

Hd
μν,ν = 0

(3.1a)
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or equivalently

Aμ = jμ,

Bμ = kμ,
(3.1b)

and equation of motion (2.12) becomes

mẍμ =
(
eFμν + gHμν

)
uν. (3.2)

All these equations are dual invariant under the transformations (2.8). The effective action in
this Abelian projection of QCD may be written as follows from (2.16):

S = −1
4

∫
Fμν(x) ∈

(
x − y)Fμν(y)d4xd4y − 1

4

∫
Hμν(x)μ

(
x − y)Hμν(y)d4xd4y + jμAμ + kμBμ.

(3.3)

The current-correlations (2.20) may then be written as follows:

〈
jμ
〉
=

δS

δAμ
,

〈
kμ

〉
=

δS

δBμ
,

〈
jμ(x)jν

(
y
)〉

=
δ2S

δAν

(
y
)
δAμ(x)

,

〈
kμ(x)kν

(
y
)〉

=
δ2S

δBν
(
y
)
δBμ(x)

.

(3.4)

For the given action in the present case, these relations lead to

〈
jμ(x)jν

(
y
)〉

= −
∫

d4k

(2π)4
[
k2δμν − kμkν

]
∈
(
k2
)
,

〈
kμ(x)kν

(
y
)〉

= −
∫

d4k

(2π)4
[
k2δμν − kμkν

]
μ
(
k2
)
.

(3.5)

For small perturbations, we have

∈
(
k2
)
= 1 ± χe

(
k2
)
,

μ
(
k2
)
= 1 ∓ χg

(
k2
)
,

(3.6)
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where the upper signs in the right-hand sides correspond to vacuum polarization due
to charged particle-loops and the lower signs correspond to that due to monopole-loops.
Relations (3.5) may also be written as

〈
jμ(x)jν

(
y
)〉

= −
∫

d4k

(2π)4

[
δμν −

kμkν

k2

]
m2
Le
,

〈
kμ(x)kν

(
y
)〉

= −
∫

d4k

(2π)4

[
δμν −

kμkν

k2

]
m2
Lg
.

(3.7)

These relations show that charged particles [χe(k2) ≥ 1] produce screening effect for
the Aμ-propagator, with the corresponding photon acquiring the mass mLe and antiscreening
effect for the Bμ-propagator. On the other hand, the monopole loops produce screening effect
for Bμ-propagator, with corresponding photon acquiring the mass mLg and antiscreening
effect for Aμ-propagator. Thus any particle (electrically charged or a monopole) screens
its own direct potential to which it minimally couples and antiscreens the dual potential
(Bμ for electric charge and Aμ for monopole). This dual antiscreening effect leads to dual
superconductivity in accordance with generalized Miessner effect.

4. Dyon Condensation and Confinement

The non-Abelian nature of gauge group [SU(3) or SU(2)] is quite crucial to dyon
condensation as mechanism of confinement. The method of Abelian projection is one of the
popular approaches to the confinement problem in the non-Abelian gauge theories. A general
non-Abelian theory of dyons consists of usual four-space (external) and n-dimensional
internal group space, where the field associated with dyons has n-fold internal multiplicity
and the multiplets of gauge field transform as the basis of adjoint representation of n-
dimensional non-Abelian gauge symmetry group. Choosing the internal gauge group as
SU(2), the generalized dyonic field tensor may be constructed as

�Gμν = Ga
μνTa (4.1)

with the generalized four-potential defined as

�Vμ = V a
μνTa, (4.2)

where repeated indices are summed over 1, 2, and 3 (internal degrees of freedom), vector
sign is denoted in the internal group space, and the matrices Ta are infinitesimal generators
of group SU(2), satisfying the commutation relation

[Ta, Tb] = iεabcTc (4.3)
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with εabc as a structure constant of internal group. We may connect �Gμν and �Vμ through the
following non-Abelian version of (2.4):

Ga
μν = ∂νV

a
μ − ∂μV a

ν +
∣∣q∣∣εabcVμbVνc, (4.4)

where the dyonic generalized charge q is given by (2.1a).
A suitable Lagrangian density of a spontaneously broken non-Abelian gauge theory

SU(2), yielding the classical dyonic solutions, may be constructed as

L = −1
4
Ga
μνG

μν
a +

1
2
(
Dμφ

)a(
Dμφ

)
a − V

(
φ
)

= Ldyon
(
Aμ, Bμ, φ

)
, where Dμφ = ∂μφ − iRe(q ∗ Vμ

)
φ =

(
∂μ − ieAμ − igBμ

)
φ,

(4.5)

with Re denoting the real part and

V
(
φ
)
=

1
4
(
φaφa

)2 − 1
2
v2(φaφa

)
with v =

〈
φ
〉
=
〈
0
∣∣φ∣∣0〉 (4.6)

determining the vacuum expectation value of Higgs field. In simplest manner, this equation
may be written as

V
(
φ
)
= −η

(∣∣φ∣∣2 − v2
)2

(4.7)

with η as a constant.
The gauge-dependent part of Lagrangian, that is, first term of rhs in (4.5) is invariant

under the following transformations of the fields Aμ and Bμ:

Vμ =

[
Aμ

Bμ

]
−→

[
A′
μ

B′
μ

]
= Vμ′ = R(δ)

[
Aμ

Bμ

]
= R(δ)Vμ, where R(δ) =

[
cos δ sin δ

− sin δ cos δ

]
(4.8)

with

δ = tan−1
(
g

e

)
. (4.9)
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Using the Lagrangian density given by (4.5), the electric and magnetic fields of dyons may
be calculated by imposing the following ansatz [46]:

Via = εaij(�r)
j K(r) − 1∣∣q∣∣r2 ,

V0a = (�r)a
J(r)∣∣q∣∣r2 ,

φa = (�r)a
H(r)∣∣q∣∣r2 ,

(4.10)

where the functions K(r), J(r), andH(r) satisfy the following equations:

r2H ′′(r) = 2HK2,

r2J ′′(r) = 2JK2,

r2K′′(r) = K
(
K2 − 1

)
+K

(
H2 − J2

)
.

(4.11)

A solution of these equations may be written as follows:

J(r) = α̃φ(r), H(r) = β̃φ(r), K(r) =
Cr

sinhCr
,

where β̃2 − α̃2 = 1, φ(r) = C(r) cothCr − 1.

(4.12)

In the Prasad-Sommerfield limit [47],

V
(
φ
)
= 0; but v =

〈
φ
〉
/= 0. (4.13)

In this limit, the dyons have lowest possible energy for given electric and magnetic charges e
and g, respectively. Thus we get the following expression for dyonic mass:

M = v
(
e2 + g2

)1/2
= v

∣∣q∣∣, (4.14)

where the electric and magnetic fields associated with dyons obey the first-order equations

Eai = Ga
0i = ∂

iV a
0 +

∣∣q∣∣εabcVibV0c =
(
Diφ

)a sinα,
Bai = εijkGjka =

(
Diφ

)a cosα,
D0

(
φ
)a = 0,

where α = tan−1 e
g
. (4.15)
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In these equations, i and 0 indicate space and time directions and a is an SU(2) vector index.
These electric and magnetic fields associated with dyons are non-Abelian in nature having
external as well as internal components. In the Abelian projection, obtained by setting

K(r) → 0, J(r) → b + cr, (4.16)

where b and c are positive constants having the dimensions of charge and mass, respectively,
these fields reduce to the following form in the asymptotic limit:

Eaj = − 3b∣∣q∣∣r4 (�r)
a(�r)j −

2c∣∣q∣∣r3 (�r)
a(�r)j ,

Baj = −
(�r)j(�r)

a

∣∣q∣∣r4 .

(4.17)

For vanishing c (i.e., vanishing mass), these fields correspond to point-like mass-less dyons
with electric charge 3b/|q| and magnetic charge 1/|q|. Thus non-Abelian dyons give rise
to the Abelian dyons in the Abelian projection. The infrared properties of QCD in the
Abelian projection can be described in the Abelian Higgs Model (AHM) in which dyons
are condensed. In this model, the relevant degrees of freedom are two massive gluons W±

μ ,
a U(1) gluon (associated with generalized field Vμ), and a dyon which we take to be scalar
represented by complex field φ. Then the Lagrangian (4.5) reduces to

Ldyon
(
Aμ, Bμ, φ

)
= −1

4
GμνG

μν +
1
2
∣∣(∂μ − ieAμ − igBμ

)
φ
∣∣2 + η

(∣∣φ∣∣2 − v2
)2
. (4.18)

In terms of this Lagrangian, the partition function in the Euclidean space-timemay be written
as

Zdyon =
∫
DAμDBμDφ exp

{
−
∫
d4xLdyon

(
Aμ, Bμ, φ

)}
. (4.19)

Applying the transformation (4.8) and integrating over the field A′
μ, this partition function

reduces to the following form in AHM:

Zdyon =
∫
DB′

μDφ exp
{
−
∫
d4xLAHM

(
B′
μ, φ

)}
,

with LAHM

(
B′
μ, φ

)
= −1

4
H ′

μνH
′μν +

1
2

∣∣∣
(
∂μ − igB′

μ

)
φ
∣∣∣
2
+ η

(∣∣φ∣∣2 − v2
)2
,

(4.20)

where the Higgs field φ has the magnetic charge

g =
∣∣q∣∣, H ′

μv = ∂μB′
v − ∂vB′

μ. (4.21)

This model (AHM) incorporates dual superconductivity and hence confinement as the
consequence of dyonic condensation since the Higgs-type mechanism arises here.
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5. Dyonic Loop in Abelian Higgs Model

In the dyon theory, specified by partition function (4.19), the quantum average of the Wilson
loop is [48]

〈
Wc

l

〉
dyon =

1
Zdyon

∫
DAμDBμDφ exp

{
−
∫
d4xLdyon

(
Aμ, Bμ, φ

)}
Wl

c(Aμ

)
, (5.1a)

where

Wl
c(Aμ

)
= exp

{
ie0

∫
d4xημA

μ

}
(5.1b)

with

ημ(x) =
∮

C

dx̆
μ

δ(4)(x − x̆(τ)), (5.1c)

which creates the particle with electric charge e0 on the world trajectory C.
Let us apply the transformation (4.8) to the quantum average (5.1a) and then integrate

over the field A′
μ. Thus we get

〈
Wc

l

〉
dyon =

〈
Kc

(ql,qm)

(
B′
μ

)〉
AHM

(5.2)

with the operator Kc
(qe,qm)

as the product of t′ Hooft loop and the Wilson loopWc:

Kc
(qe,qm)

(
B′
μ

)
= Hc

qe

(
B′
μ

)
·Wc

qm

(
B′
μ

)
, where qe =

e0g∣∣q∣∣ , qm =
e0e∣∣q∣∣ . (5.3)

Then the effective electric and magnetic four-current density may be written as follows:

jμ = qeημ, kμ = qmημ. (5.4)

In (5.3), the operatorHc
qe(B

′
μ) is

Hc
qe

(
B′
μ

)
= exp

{
−1
4

∫
d4x

[(
H ′

μv −
1
2
εμvαβFαβ

)2

−H ′
μvH

′μv
]}

, where H ′
μv = ∂μB′

v − ∂vB′
μ

(5.5)

and Fαβ is the dual field tensor satisfying

Fμν,ν = jμ (5.6)

which is identical to (2.7a) for the usual electrodynamic field tensor of the field associated
with Abelian dyons.
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6. Discussion

Equations (2.21), (2.22), and (2.23) for dyonic current correlations show that dyonic electric
charge produces the screening effect for Aμ-propagator and antiscreening effect for Bμ-
propagator, while the dyonic magnetic charge produces screening effect for Bμ-propagator
and antiscreening effect for Aμ-propagator. This antiscreening effect maintains the asymptotic
freedom of non-Abelian gauge theory (QCD) in its Abelian version. In QCD, because
of asymptotic freedom, the Landau singularity (led by charged particles in ordinary
electrodynamics) is in the infrared regime and hence the most convenient microscopic theory
of low energy QCD is produced by the chromodynamic dyons. The correlations (2.28) give
the generalized propagator associated with generalized field Vμ of dyons. In the Abelian
projection of QCD with the simultaneous existence of electric charges and monopoles (but
not dyons), the effective action is given by (3.3) and the current correlations are given by
(3.5), (3.6), and (3.7) which demonstrate that any particle screens its own direct potential to
which it minimally couples and antiscreens the dual potential (Bμ for electric charges andAμ

for monopoles). This dual antiscreening effect leads to dual superconductivity in accordance
with generalized Miessner effect. This dual superconductivity is the Higgs phase of QCD in
its Abelian projection. The antiscreening, described by (3.7), provides the prescription that
the magnetic photon (Bμ)-charge particle vertex is identical to the Aμ-charge particle vertex
with the constant e replaced by ie. Such prescription of coupling of a gauge particle to its
dual charge must be used only when all dual charges appear in loops. The duality prescribed
by these equations may be a strong guide to the description of confinement, and interactions
of chromomagnetic monopoles should be saturated by this duality, at least for low energy.

The gauge depended part of the Lagrangian density, given by (4.5) for the fields
associated with the non-Abelian dyons in the minimal gauge theory, is invariant under the
linear transformation (4.8). Equations (4.15) and (4.17) demonstrate that the non-Abelian
dyons give rise to Abelian dyons in the Abelian projection obtained by setting up conditions
given by (4.16). The infrared properties of QCD in this Abelian projection can be described
by the Abelian Higgs model with Lagrangian density given by (4.20) in which dyons are
condensed. In this model, the partition function in the Euclidean space-time is given by the
first part of (4.20). This model incorporates dual superconductivity and confinement as the
consequence of dyonic condensation. In the dyon theory, specified by the partition function
given by (4.19) in terms of dyon Lagrangian (4.18), the quantum average of Wilson loop
given by (5.1a) corresponds to quark Wilson loop if we consider this partition function as an
effective theory of QCD. In (5.2) this average is given in AHM with the effective electric and
magnetic charges and the effective electric and magnetic four-current densities given by (5.3)
and (5.4), respectively. t′ Hooft loop is precisely given by (5.5) in terms of electromagnetic
field tensor H ′

μν and the dual field tensor satisfies field equation (5.6) which is identical to
(2.7a) for the usual electromagnetic field tensor of field associated with Abelian dyons. It
is what we expect in the Abelian projection of QCD in the present Abelian Higgs Model of
Abelian dyons in the Abelian version of QCD.

It is generally suspected that the dyonic theory is CP-violating contrary to QCD in
the sense that dyon (e, g) and anti-dyon (−e,−g) with the same density, when combined
in one vacuum in equal amount, may violate CP-invariance. We have carried out [49] the
study of behavior of dyonium in non-Abelian gauge theory and also the study of dyon-dyon
bound states [50] and showed that the Bohr radius of dyonium is much smaller than the
atomic Bohr radius. The study of bound state of a dyon and an anti-dyon has also been
carried out [51], and it has been demonstrated that this state is very short lived and decays
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in to four or six photons depending on the spin-statistics relationship of the dyons involved.
Furthermore, CP-invariance of the vacuum requires that there must be equal number of self-
dual and anti-self-dual configurations of dyons up to the thermodynamic fluctuations

√
V

[52–54]. Recently, it has been demonstrated [27] that the integration measure over dyons
has the drastic effect on the ensemble of dyons when determinant over nonzero modes
is ignored and only the salient features like the renormalization of the coupling constant
and the perturbative potential energy [55] are taken into consideration. The question of CP-
invariance for dyonic system has also been addressed by Diakonov [56]. It has recently been
shown [57] that though the dyon-antidyon pair appears to violate CP-invariance, the CPT-
invariance is an exact symmetry for generalized dyon-antidyon system.
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