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This review is devoted to collecting some results on the high spin expansion of (minimal)
anomalous dimension. Thanks to the recent rationale on integrability, planar N = 4 super Yang-
Mills theory (or its AdS5 × S5 string counterpart) represents a very practicable field. Here the
attention will be restricted to its sector of twist operators, although the analysis tools are quite
general (in integrable theories). Some structures and ideas turn out to be general also for other
sectors or gauge theories.

1. Framework and Beyond

Wewill move our investigation within themaximally supersymmetric gauge theory in planar
limit, that is, for number of colours N → ∞ and coupling gYM → 0, so that the ‘t Hooft
coupling

λ = g2
YMN = 8π2g2 (1.1)

may stay finite. Among the different sectors (perturbatively closed under renormalisation),
we also pick up the twist sl(2) sector, spanned by local composite operators of trace form

Tr
(
DsZL

)
+ · · · , (1.2)
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where D is the (light-cone) covariant derivative acting in all the possible ways on the L
complex bosonic fields Z. Trace ensures, of course, gauge invariance. The Lorentz spin of
these operators is s and L is the R-charge which also coincides with the twist (classical
dimension minus the spin). Besides, this sector may be described—thanks to the AdS/CFT
correspondence [1–3]—by spinning folded closed strings on AdS5 × S5 spacetime with AdS5
and S5 angular momenta s and L, respectively [4, 5].

As being in a conformal model, suitable superpositions of operators form dilatation
operator eigenvectors with definite dimensions (eigenvalues), which are made up of a
classical part plus an anomalous one. For instance, in the sector (1.2) this spectral problem
shows up dimensions

Δ
(
g, s, L

)
= L + s + γ

(
g, s, L

)
, (1.3)

where γ(g, s, L) is the anomalous part. According to the AdS/CFT strong/weak coupling
duality, the set of anomalous dimensions of composite operators inN = 4 SYM coincides with
the energy spectrum of the AdS5 × S5 string theory ([1–5] and references therein), although
the perturbative regimes are interchanged. The highly nontrivial problem of evaluating the
anomalous part in N = 4 SYM was greatly simplified by the discovery of integrability in
the purely bosonic so(6) sector at one loop [6]. Later on, this fact has been extended to all
the gauge theory sectors and at all loops in a way which shows up integrability in a weaker
sense but still furnishes the investigators many powerful tools [7–10]. More in detail, any
operator (e.g., of the form (1.2)) has been thought of as a state of a “spin chain,” whose
Hamiltonian is, of course, the dilatation operator itself, although the latter does not have an
explicit expression of the spin chain form, but for the first few loops. Nevertheless, the large
size (asymptotic) spectrum has turned out to be exactly described by certain Asymptotic Bethe
Ansatz-like equations (the so-called Beisert-Staudacher equations, cf. [7–11] and references
therein). In other words, the anomalous dimensions coincide with the energies given by the
Bethe Ansatz solutions (or roots): this is, of course, a great simplification of the initial spectral
problem.

Unfortunately, this works only for infinitely long operators: anomalous dimensions of
operators with finite length depend not only on Asymptotic Bethe Ansatz (ABA) data but
also on finite size “wrapping” corrections: in the perturbative expansion wrapping effects are
observed [12, 13] starting from the order g2L. Recent progress [14–17] has shown that a set of
Thermodynamic Bethe Ansatz (TBA) equations provides a basis for exact (any length at any
coupling) predictions for anomalous dimensions of planar N = 4 SYM.

However, in the sl(2) sector of N = 4 SYM relevance of wrapping effects seems to be
reduced, even for short operators, if one goes to the high spin limit. For instance, findings of
[18, 19] have showed that, at least at twist two and up to five loops, wrapping corrections
start contributing at order O((ln s)2/s2). This fact has pushed the idea of applying ABA
techniques to the study of the high spin limit of twist operators, which—on the other hand—
had already received much attention in the past literature. Indeed, the high spin behaviour
of the anomalous dimension

γ
(
g, s, L

)
= Δ

(
g, s, L

) − L − s (1.4)
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shows a Sudakov behaviour

γ
(
g, s, L

)
= f
(
g
)
ln s + · · · , (1.5)

determined by the so-called universal (since it does not depend on L or the flavour) scaling
function, f(g) [11, 20–23]. Actually, this behaviour is more general than in planar N = 4 SYM
and the adjective scaling is due to the linear value of the cusp anomalous dimension with
coefficient f(g)/2 while the cusp angle tends to infinity [24]. (Polyakov noticed as first
that for cusped Wilson loop vacuum expectation value the charge renormalisation is not
enough as in the noncusped case, because of an extra logarithmic divergence due to the high
bremsstrahlung at the cusp. He was led to consider cusps because of their importance in
the loop dynamics (in Euclidian space-time) [25].) This large angle behaviour is due to the
dominance by the lowest twist (= 2) in the renormalisation of the vacuum expectation value
of a cusped Wilson loop with a very large angle. In the end, for an infinite angle cusp (i.e.,
with one light-cone segment) f(g) equals twice the cusp anomalous dimension of a light-
cone Wilson loop [26]. Additionally, the one-loop problem (and thus f(g)) stays exactly the
same for twist operators in QCD as long as the partonic helicities are aligned [27, 28]; this fact
also has justified partially the great interest on the twist operators (1.2).

In general, the high spin limit of anomalous dimensions of twist L operators goes on
as a series of logarithmic (inverse) powers

γ
(
g, s, L

)
= f
(
g
)
ln s + fsl

(
g, L

)
+

∞∑
n=1

γ (n)
(
g, L

)
(ln s)−n +O

(
(ln s)−∞

)
, (1.6)

that is, looks, at this order, like an expansion in the large “size” ln s. (with O((ln s)−∞),
we indicate terms going to zero faster than any inverse powers of ln s.) Recently [11], the
leading term (i.e., f(g)) was obtained—in the hypothesis of being wrapping free—from the
solution of a linear integral equation directly derived from the ABA via the root density
approach. Moreover, f(g) was carefully studied and tested both in the weak [11, 21] and
strong coupling limit [29–35].

The subleading (constant) contribution fsl(g, L) received also much attention. In the
ABA framework, it was shown [36] to come from the solution of a nonlinear integral equation
(NLIE). Then, it was obtained [37] starting from a linear integral equation (LIE). Explicit
weak and strong coupling expansions performed using the LIE of [37] are present in [38, 39]
and agree with some string theory computations [40–42]. Importantly, after results of [18, 19]
(cf. above) it may be inferred that both f(g) and fsl(g, L) are exactly given by this approach
based on the ABA (without wrapping corrections). Besides, both terms fix the 1/s coefficients
via the reciprocity relation which may still be, consistently with [18, 19], wrapping free.

The latter reasoning would support that even sublogarithmic terms from ABA be
exact, but it is even more unclear if and at what extent this might be trusted. In [43] we
studied and computed in a systematic way the ABA contribution to them, by using a set of
integral equations. Possible wrapping corrections to our results are still to be determined. In
this respect, in addition to TBA findings, also results on the string side of the correspondence
in the spirit of [40–42] could be of fundamental importance. Nevertheless, the definitive
proof on the absence of wrapping corrections should only come from exact (maybe TBA)
calculations.
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Wrapping effects should be negligible if one takes the infinite twist limit

s −→ ∞, L −→ ∞, j =
L − 2
ln s

fixed, (1.7)

and one restricts to the study of the scaling functions fn(g), f
(r)
n (g) appearing in the

expansion

γ
(
g, s, L

)
= ln s

∞∑
n=0

fn
(
g
)
jn +

∞∑
r=0

(ln s)−r
∞∑
n=0

f
(r)
n

(
g
)
jn +O

(
(ln s)−∞

)
. (1.8)

(This should be true at least for small values of g. But, again, this reasoning is not rigorous.)
For this reason, a reasonable amount of activity was also devoted to the study of limit (1.7),
using ABA techniques. Results concerning fn(g) at weak coupling are present in [36]. Strong
coupling behaviour of fn(g) was studied in [44–47] by relying on linear integral equations.
A detailed study of f (r)

n (g), r ≥ 0, can be found in [43, 48].
In this review we want to give a summary of our activity in the framework of high

spin limit of twist operators. We will first give a general description of the method we have
used and whose main tools are integral equations derived from the ABA equations. Then, we
will briefly report the most important results we obtained.

This review is organised as follows. In Section 2we review the ABA equations for twist
operators. We illustrate the properties of the minimal anomalous dimension operators and
explain a technique which allows exact computations of ABA contributions to the anomalous
dimension by using the so-called Nonlinear Integral Equation (NLIE). In Section 3 we
specialise to the high spin limit and show that, if one neglects O((ln s)−∞) terms, asymptotic
anomalous dimension can be computed by relying on integral equations. In Section 4 we
study the high spin limit at fixed twist. In Section 5 results in the scaling limit (1.7) are
discussed.

2. All-Loop ABA and the (N)LIE

Let us recall the Asymptotic Bethe Ansatz equations [7–11] for the sl(2) sector:

(
uk + i/2
uk − i/2

)L
(

1 + g2/2x−
k
2

1 + g2/2x+
k
2

)L

=
s∏

j=1
j /= k

uk − uj − i

uk − uj + i

(
1 − g2/2x+

kx
−
j

1 − g2/2x−
kx

+
j

)2

e2iθ(uk,uj ), (2.1)

where

x±
k = x±(uk) = x

(
uk ± i

2

)
, x(u) =

u

2

⎡
⎣1 +

√
1 − 2g2

u2

⎤
⎦, λ = 8π2g2, (2.2)
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λ being the ’t Hooft coupling. The so-called dressing factor [11, 49–51] θ(u, v) is given by

θ(u, v) =
∞∑
r=2

∞∑
ν=0

βr,r+1+2ν
(
g
)[
qr(u)qr+1+2ν(v) − qr(v)qr+1+2ν(u)

]
, (2.3)

the functions βr,r+1+2ν(g) = g2r+2ν−221−r−νcr,r+1+2ν(g) being

βr,r+1+2ν
(
g
)
= 2

∞∑
μ=ν

g2r+2ν+2μ

2r+μ+ν
(−1)r+μ+1 (r − 1)(r + 2ν)

2μ + 1

·
(

2μ + 1

μ − r − ν + 1

)(
2μ + 1

μ − ν

)
ζ
(
2μ + 1

)
,

(2.4)

and qr(u) being the density of the rth charge:

qr(u) =
i

r − 1

[(
1

x+(u)

)r−1
−
(

1
x−(u)

)r−1]
. (2.5)

It is now clear that configurations of Bethe roots, that is, solutions of (2.1), and the
corresponding eigenvalues of the energy are related, respectively, to composite operators and
their anomalous dimensions in the sl(2) sector of N = 4 SYM.

In the sl(2) sector states of twist L are described by an even number s of real Bethe roots
uk which satisfy (2.1). Bethe roots localize in an interval [−b, b] of the real line. In addition
to Bethe roots, also L real “holes” [11, 20, 36, 37, 52] are present (a better explanation of the
nature of holes will be given in the following). For any state, two holes reside outside the
interval [−b, b] and the remaining L−2 holes lie inside this interval. We will indicate with u

(i)
h

these “internal” holes.
In this paper we will focus on the minimal anomalous dimension state. For such a

state the positions of both roots and holes are symmetric with respect to the origin. For
what concerns the internal holes, they all concentrate near the origin, with no roots lying
in between.

In general, an efficient way to treat states described by solutions of a nonlinear set of
Bethe Ansatz equations consists in writing a nonlinear integral equation, which is completely
equivalent to them. The nonlinear integral equation is satisfied by the counting functionZ(u),
which in the case (2.1) reads as

Z(u) = Φ(u) −
s∑

k=1

φ(u, uk), (2.6)
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where

Φ(u) = −2L arctan 2u − iL ln

(
1 + g2/2x−(u)2

1 + g2/2x+(u)2

)
,

φ(u, v) = 2 arctan(u − v) − 2i

[
ln

(
1 − g2/2x+(u)x−(v)
1 − g2/2x−(u)x+(v)

)
+ iθ(u, v)

]
.

(2.7)

It follows from its definition that the counting function Z(u), as a function of the real variable
u, is a monotonously decreasing function and that

lim
u→±∞

Z(u) = ∓π(L + s). (2.8)

Therefore, there are L + s real points υk such that eiZ(υk) = (−1)L+1. It is a simple consequence
of the definition of Z(u) that s of them coincide with the Bethe roots. The remaining L points
are called “holes” and their role will be of fundamental importance in what follows. As we
anticipated before, for the minimal anomalous dimension state the internal holes concentrate
near the origin; that is, their positions u(i)

h are determined by the relations

Z
(
u
(i)
h

)
= π(2h + 1 − L), h = 1, . . . , L − 2. (2.9)

Excited states are obtained by making different choices for the “quantum numbers” h. It
follows from the structure of (2.9) that, for any state, u(i)

h depend in a nonlinear way on the
counting function Z(u).

The nonlinear integral equation for Z(u) is written by using a modification of the
standard ideas underlying the procedure concerning the excited state NLIE [53–57], this
modification being dictated by the physical situation with two “important” external holes.
Suppose that in the interval [−b, b] of the real line s Bethe roots and L − 2 holes are present.
Then, by using Cauchy theorem we can express a sum over the Bethe roots of an observable
O(u) as

s∑
k=1

O(uk) = −
∫b

−b

dv

2π
O(v)Z′(v) + Im

∫b

−b

dv

π
O(v − iε)

d

dv
ln
[
1 + (−1)LeiZ(v−iε)

]

+ Im
∫−ε

0

dy

π
O
(−b + iy

) d

dy
ln
[
1 + (−1)LeiZ(−b+iy)

]

+ Im
∫0

−ε

dy

π
O
(
b + iy

) d

dy
ln
[
1 + (−1)LeiZ(b+iy)

]
−

L−2∑
h=1

O
(
u
(i)
h

)
.

(2.10)

The right-hand side of (2.10) does not depend on ε > 0 as far as no poles of the integrands
O(w)(d/dw) ln[1 + (−1)LeiZ(w)] lie in the region | Im w| ≤ ε, |Rew| ≤ b. In addition, ε must
be kept sufficiently small, in such a way that

∣∣∣eiZ(z)
∣∣∣ < 1, (2.11)
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where z belongs to the integration contour of the last three integral terms in (2.10). This
condition is assured by the monotonicity of the counting function, that is, in our case Z′(v) <
0, v ∈ [−b, b]. We apply (2.10) to the sum over the Bethe roots contained in (2.6):

Z(u) = Φ(u) +
∫b

−b

dv

2π
φ(u, v)Z′(v) +

L−2∑
h=1

φ
(
u, u

(i)
h

)

− Im
∫b

−b

dv

π
φ(u, v − iε)

d

dv
ln
[
1 + (−1)LeiZ(v−iε)

]

− Im
∫−ε

0

dy

π
φ
(
u,−b + iy

) d

dy
ln
[
1 + (−1)LeiZ(−b+iy)

]

− Im
∫0

−ε

dy

π
φ
(
u, b + iy

) d

dy
ln
[
1 + (−1)LeiZ(b+iy)

]
.

(2.12)

What we have obtained is a nonlinear integral equation—for the counting function Z(u)—
which describes—in a way which is alternative to the Bethe Ansatz equations—the minimal
anomalous dimension state. Since Bethe roots are localised in an interval of the real axis (i.e.,
b < +∞), NLIE (2.12) is different from the equation introduced in [53–57], which contains
integrations over the entire real axis. This difference reveals crucial in the specific problem of
twist operators in the sl(2) sector. Indeed, important simplifications to the structure of (2.12)
arise in the high spin limit: if we decide to neglect terms going to zero faster than any inverse
power of ln s, then it is possible to get rid of the last three nonlinear terms in (2.12). We are
now going to show this important property.

Coming back to (2.10), we first use (2.11) in order to replace all the ln[1 + (−1)LeiZ(z)]
with

∑∞
n=1(−1)n+1(−1)nL(einZ(z)/n).We obtain

s∑
k=1

O(uk) = −
∫b

−b

dv

2π
O(v)Z′(v) + Im

∫b

−b

dv

π
O(v − iε)

d

dv

∞∑
n=1

(−1)n+1(−1)nL e
inZ(v−iε)

n

+ Im
∫−ε

0

dy

π
O
(−b + iy

) d

dy

∞∑
n=1

(−1)n+1(−1)nL e
inZ(−b+iy)

n

+ Im
∫0

−ε

dy

π
O
(
b + iy

) d

dy

∞∑
n=1

(−1)n+1(−1)nL e
inZ(b+iy)

n
−

L−2∑
h=1

O
(
u
(i)
h

)
.

(2.13)

In order to evaluate the nonlinear terms in this expression,

NL = Im
∫b

−b

dv

π
O(v − iε)

d

dv

∞∑
n=1

(−1)n+1(−1)nL e
inZ(v−iε)

n

+ Im
∫−ε

0

dy

π
O
(−b + iy

) d

dy

∞∑
n=1

(−1)n+1(−1)nL e
inZ(−b+iy)

n

+ Im
∫0

−ε

dy

π
O
(
b + iy

) d

dy

∞∑
n=1

(−1)n+1(−1)nL e
inZ(b+iy)

n
,

(2.14)
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we first assume that it is possible to exchange the series with the integrals. Then, we use the
following formulae:

∫v

dvO(v − iε)
d

dv
einZ(v−iε) = einx

∞∑
k=0

(
i

n

)k dk

dxk
O[Z−1(x)]

∣∣∣∣∣
x=Z(v−iε)

,

∫y

dyO
(±b + iy

) d

dy
einZ(±b+iy) = einx

∞∑
k=0

(
i

n

)k dk

dxk
O[Z−1(x)]

∣∣∣∣∣
x=Z(±b+iy)

.

(2.15)

We need to remark that results (2.15) are correct if the above infinite sums make sense either
as convergent or as asymptotic series. In our case, we can use (2.15), since the series we will
get are asymptotic.

Using (2.15) in the evaluation of the above nonlinear terms, the dependence on ε
cancels out, as it should be, and we are left with

NL =
∞∑
n=1

(−1)n+1(−1)nL
πn

×
[ ∞∑
k=0

i2k

n2k
sinnx

d2k

dx2k
O
(
Z−1(x)

)
+

∞∑
k=0

i2k

n2k+1
cosnx

d2k+1

dx2k+1
O
(
Z−1(x)

)]∣∣∣∣∣
x=Z(b)

x=Z(−b)
.

(2.16)

Now, we are allowed to choose b in such a way that eiZ(±b) = (−1)L: therefore, since O(v) is
bounded, all the terms in (2.16) proportional to the sine function are zero. Thus, we are left
only with terms containing the cosine function, that is, after summing over n,

NL = −
∞∑
k=0

(2π)2k+1

(2k + 2)!
B2k+2

(
1
2

)[
∂

∂x2k+1
O
(
Z−1(x)

)]∣∣∣∣
x=Z(b)

x=Z(−b)
, (2.17)

where Bk(x) is the Bernoulli polynomial. Relation (2.17) allows to write the final formula:

s∑
k=1

O(uk) = −
∫b

−b

dv

2π
O(v)Z′(v) −

L−2∑
h=1

O
(
u
(i)
h

)

−
∞∑
k=0

(2π)2k+1

(2k + 2)!
B2k+2

(
1
2

)[
∂

∂x2k+1
O
(
Z−1(x)

)]∣∣∣∣
x=Z(b)

x=Z(−b)
.

(2.18)
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The following expressions

d

dx
O
(
Z−1(x)

)∣∣∣∣
x=Z(b)

x=Z(−b)
= 2

O′(b)
Z′(b)

,

d2

dx2
O
(
Z−1(x)

)∣∣∣∣∣
x=Z(b)

x=Z(−b)
= 2

O′′(b) −O′(b)(Z′′(b)/Z′(b))

[Z′(b)]2
,

d3

dx3
O
(
Z−1(x)

)∣∣∣∣∣
x=Z(b)

x=Z(−b)

= 2
O′′′(b) − 3O′′(b)(Z′′(b)/Z′(b)) −O′(b)(Z′′′(b)/Z′(b)) + 3O′(b)

(
(Z′′(b))2/(Z′(b))2

)

[Z′(b)]3

(2.19)

give an idea of the form of the first nonlinear terms appearing in (2.18). Next step is to apply
(2.17) to the nonlinear integral terms (the last three ones) contained in (2.12). We have to
replace O(v) with −φ(u, v). From the form of (2.17) we realise that such nonlinear terms are
proportional to derivatives

dn

dvn
φ(u, v)

∣∣∣∣
±b
, n ≥ 1. (2.20)

When s → ∞, b = (s/2)(1 +O(1/s)) and for such derivatives

dn

dvn
φ(u, v)

∣∣∣∣
±b

= O

(
1

bn+1

)
. (2.21)

On the other hand, for the derivatives of the counting function we can give the estimates

dn

dvn
Z(v)

∣∣∣∣
±b

= O

(
1
bn

)
. (2.22)

Putting all together, we conclude that when the spin s → +∞, the nonlinear integral terms
contained in (2.12) are O(1/b) = O((ln s)−∞). Therefore, if we decide to neglect terms
O((ln s)−∞) and to focus only on corrections O((ln s)−n), we are entitled not to consider all
the nonlinear integral terms in (2.12). In this case we are left with

Z(u) = Φ(u) +
∫b

−b

dv

2π
φ(u, v)Z′(v) +

L−2∑
h=1

φ
(
u, u

(i)
h

)
+O

(
(ln s)−∞

)
, (2.23)

and this equation has to be solved together with condition (2.9), which fixes the holes
positions u

(i)
h in terms of the counting function Z(u). It is important to remark that within

our approximations nonlinearity with respect to Z(u) enters only through (2.9).
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Equations (2.23) and (2.9) are our starting point for the study of the high spin limit.
They will be worked out in next section.

3. Integral Equations for the Logarithmic Terms

Let us consider integral equation (2.23) satisfied by the counting function in the high spin
limit. Passing to derivatives, we define

σ(u) = Z′(u). (3.1)

We have

σ(u) = Φ′(u) +
∫b

−b

dv

2π
d

du
φ(u, v)σ(v) +

L−2∑
h=1

d

du
φ
(
u, u

(i)
h

)
+O

(
(ln s)−∞

)
. (3.2)

We now decompose such equation in its one loop (with index 0) and higher than one loop
(with index H) contributions. We set Φ(u) = Φ0(u) + ΦH(u), φ(u, v) = φ0(u, v) + φH(u, v),
σ(u) = σ0(u) + σH(u), where

Φ0(u) = −2L arctan 2u, ΦH(u) = −iL ln

(
1 + g2/2x−(u)2

1 + g2/2x+(u)2

)
,

φ0(u, v) = 2 arctan(u − v), φH(u, v) = −2i
[
ln

(
1 − g2/2x+(u)x−(v)
1 − g2/2x−(u)x+(v)

)
+ iθ(u, v)

]
,

(3.3)

and where, after neglecting quantities which are O((ln s)−∞), σ0(u) and σH(u) satisfy

σ0(u) = Φ′
0(u) +

∫b0

−b0

dv

2π
d

du
φ0(u, v)σ0(v) +

L−2∑
h=1

d

du
φ0

(
u, u

(i)
h

)
+O

(
(ln s)−∞

)
,

σH(u) = Φ′
H(u) +

∫b

−b

dv

2π
d

du
φH(u, v)σH(v) +

∫b0

−b0

dv

2π
d

du
φH(u, v)σ0(v)

(3.4)

+
∫b

−b

dv

2π
d

du
φ0(u, v)σH(v) +

L−2∑
h=1

d

du

[
φ
(
u, u

(i)
h

)
− φ0

(
u, u

(i)
h

)]
+O

(
(ln s)−∞

)
. (3.5)

In (3.4) and (3.5) the notation u
(i)
h stands for the one loop component of the position of the

hth internal hole. In order to solve the one loop (3.4), we consider (see 3.52 of [37]) a function
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σ
(s)
0 (u), whose Fourier transform reads

σ̂
(s)
0 (k) = −4π

L/2 − e−|k|/2 cos
(
ks/

√
2
)

2 sinh(|k|/2) + 2π
e−|k|/2

2 sinh(|k|/2)
L−2∑
h=1

eiku
(i)
h − (4π ln 2)δ(k). (3.6)

Function (3.6) satisfies the following important property [37]:

∫b0

−b0
duf(u)σ0(u) =

∫+∞

−∞
duf(u)σ(s)

0 (u) +O
(
(ln s)−∞

)
, (3.7)

which allows to extend to the whole real axis the integrations involving σ0(u): a look at many
loops (3.5) shows that this is just the property we need in order to try to solve it.

It follows from results in [21] and from numerical checks that we can extend to the
entire real axis the integrations involving σH(u): what we are missing are O((ln s)−∞) terms.
Putting all these pieces together, the equation satisfied by σH(u) is

σH(u) = Φ′
H(u) +

∫+∞

−∞

dv

2π
d

du
φH(u, v)

[
σH(v) + σ

(s)
0 (v)

]

+
∫+∞

−∞

dv

2π
d

du
φ0(u, v)σH(v) +

L−2∑
h=1

d

du

[
φ
(
u, u

(i)
h

)
− φ0

(
u, u

(i)
h

)]
+O

(
(ln s)−∞

)
.

(3.8)

It is now convenient to pass to Fourier transforms. We have

Φ̂H(k) =
2πL
ik

e−|k|/2
[
1 − J0

(√
2gk

)]
,

φ̂H(k, t) = −8iπ2 e
−(|t|+|k|)/2

k|t|

[ ∞∑
r=1

r(−1)r+1Jr
(√

2gk
)
Jr
(√

2gt
)1 − sgn(kt)

2

+ sgn(t)
∞∑
r=2

∞∑
ν=0

cr,r+1+2ν
(
g
)
(−1)r+ν

×
(
Jr−1

(√
2gk

)
Jr+2ν

(√
2gt
)
− Jr−1

(√
2gt
)
Jr+2ν

(√
2gk

))]
.

(3.9)
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Therefore, the Fourier transform of (3.8) reads

σ̂H(k) =
πL

sinh(|k|/2)
[
1 − J0

(√
2gk

)]

+
1

sinh(|k|/2)
∫+∞

−∞

dt

|t|

[ ∞∑
r=1

r(−1)r+1Jr
(√

2gk
)
Jr
(√

2gt
)1 − sgn(kt)

2
e−|t|/2

+ sgn(t)
∞∑
r=2

∞∑
ν=0

cr,r+1+2ν
(
g
)
(−1)r+νe−|t|/2

×
(
Jr−1

(√
2gk

)
Jr+2ν

(√
2gt
)
− Jr−1

(√
2gt
)
Jr+2ν

(√
2gk

))]

·
[
σ̂H(t) + σ̂

(s)
0 (t) + 2π

L−2∑
h=1

eitu
(i)
h

]
+ 2π

e−|k|/2

2 sinh(|k|/2)
L−2∑
h=1

[
e−iku

(i)
h − e−iku

(i)
h

]
+O

(
(ln s)−∞

)
.

(3.10)

Inserting in (3.10) the expression (3.6) for σ̂
(s)
0 (t), introducing the “magic” kernel K̂(t, t′),

defined in [11] as

K̂
(
t, t′
)
=

2
tt′

[ ∞∑
n=1

nJn(t)Jn
(
t′
)
+ 2

∞∑
k=1

∞∑
l=0

(−1)k+lc2k+1,2l+2
(
g
)
J2k(t)J2l+1

(
t′
)]

, (3.11)

and restricting to k ≥ 0, we finally get the integral equation:

σ̂H(k) =
πL

sinh(k/2)

[
1 − J0

(√
2gk

)]
− g2 k

sinh k/2

∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
)

·
⎧
⎨
⎩σ̂H(t) − 4π

(L/2) − e−|t|/2 cos
(
ts/

√
2
)

2 sinh(|t|/2) − (4π ln 2)δ(t)

+2π
e−|t|/2

2 sinh(|t|/2)
L−2∑
h=1

cos tu(i)
h

+ 2π
L−2∑
h=1

cos tu(i)
h

}

+ π
e−k/2

sinh(k/2)

L−2∑
h=1

[
cos ku(i)

h
− cos ku(i)

h

]
.

(3.12)
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Since we are interested in the computation of the anomalous dimension, we go back to the
general formula (2.18) for the evaluation of observables:

s∑
k=1

O(uk) = −
∫b

−b

dv

2π
O(v)Z′(v) −

L−2∑
h=1

O
(
u
(i)
h

)

−
∞∑
k=0

(2π)2k+1

(2k + 2)!
B2k+2

(
1
2

)[
∂

∂x2k+1
O
(
Z−1(x)

)]∣∣∣∣
x=Z(b)

x=Z(−b)
.

(3.13)

If we specialise to the energy (anomalous dimension), we have

O(v) = e(v) =
i

x+(v)
− i

x−(v)
. (3.14)

Again, in the large spin limit, one has (with n ≥ 1)

dn

dvn
e(v)

∣∣∣∣
±b

= O

(
1

bn+1

)
, (3.15)

together with the estimate (2.22) for the counting function. It follows that the nonlinear terms
contained in the expression (3.13) for the energy are O(1/b) = O(1/s). Therefore, if we
neglect O((ln s)−∞) terms, we are allowed to work with only the linear expression:

γ
(
g, s, L

)
=

s∑
k=1

e(uk) = −
∫b

−b

dv

2π
e(v)Z′(v) −

L−2∑
h=1

e
(
u
(i)
h

)
+O

(
(ln s)−∞

)
, (3.16)

whichwe find convenient to write in terms of the one loop and higher than one loop densities:

γ
(
g, s, L

)
=

s∑
k=1

e(uk) = −
∫b

−b

dv

2π
e(v)σH(v) −

∫b0

−b0

dv

2π
e(v)σ0(v) −

L−2∑
h=1

e
(
u
(i)
h

)
+O

(
(ln s)−∞

)
.

(3.17)

Extending the domains of integration to the real axis does not give problems, since we are
neglecting O((ln s)−∞) terms: we get

γ
(
g, s, L

)
=

s∑
k=1

e(uk) = −
∫+∞

−∞

dv

2π
e(v)σH(v) −

∫+∞

−∞

dv

2π
e(v)σ(s)

0 (v) −
L−2∑
h=1

e
(
u
(i)
h

)
+O

(
(ln s)−∞

)
.

(3.18)

Passing to Fourier transforms we have

ê(k) =
2
√
2π
g

e−|k|/2

k
J1
(√

2gk
)
, (3.19)
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and, consequently,

γ
(
g, s, L

)
= −
∫+∞

−∞

dk

4π2

2
√
2π
g

e−|k|/2

k
J1
(√

2gk
)[

σ̂H(k) + σ̂
(s)
0 (k) + 2π

L−2∑
h=1

cos ku(i)
h

]
+O

(
(ln s)−∞

)
.

(3.20)

Comparing (3.20)with (3.10), we see that

γ
(
g, s, L

)
=

1
π
lim
k→ 0

σ̂H(k) +O
(
(ln s)−∞

)
, (3.21)

which extends the Kotikov-Lipatov relation [58] to all the sublogarithmic O((ln s)−n), n ≥ 1,
contributions and allows to compute the high spin anomalous dimension from the higher
than one loop density.

For computational reasons, it is more convenient to use the function

S(k) =
sinh(|k|/2)

π |k|

{
σ̂H(k) − π

e−|k|/2

sinh(|k|/2)
L−2∑
h=1

[
cos ku(i)

h − cos ku(i)
h

]}
=⇒ γ

(
g, s, L

)
= 2lim

k→ 0
S(k).

(3.22)

The function (3.22) satisfies the integral equation (for k > 0):

S(k) =
L

k

[
1 − J0

(√
2gk

)]
− g2

∫+∞

0

dt

π
e−t/2K̂

(√
2gk,

√
2gt
)

·
⎧
⎨
⎩

πt

sinh(t/2)
S(t) − 4π ln 2δ(t) − π(L − 2)

1 − et/2

sinh(t/2)
− 2π

1 − e−t/2 cos
(
ts/

√
2
)

sinh(t/2)

+π
et/2

sinh(t/2)

L−2∑
h=1

[
cos tu(i)

h − 1
]}

= 4g2 ln sK̂
(√

2gk, 0
)
+ 4g2

∫+∞

0

dt

et − 1
K̂∗
(√

2gk,
√
2gt
)
+
L

k

[
1 − J0

(√
2gk

)]

+ 4g2γEK̂
(√

2gk, 0
)
+ g2(L − 2)

∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) 1 − et/2

sinh(t/2)

− g2
∫+∞

0
dtK̂

(√
2gk,

√
2gt
)∑L−2

h=1

[
cos tu(i)

h − 1
]

sinh(t/2)

− g2
∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) t

sinh(t/2)
S(t),

(3.23)
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where K̂∗(t, t′) = K̂(t, t′) − K̂(t, 0). We remark that such equation depends on the position of
the holes u(i)

h
(but not on both u

(i)
h
, u(i)

h
) and that the quantity u

(i)
h

is also an unknown of the
problem and has to be determined by solving (2.9):

Z
(
u
(i)
h

)
= π(2h + 1 − L), h = 1, . . . , L − 2, (3.24)

which introduces nonlinear effects in the equation for the density S(k). Equation (3.23) is
exact if we neglect—in the high spin limit—terms which are O((ln s)−∞) and is the main
integral equation of this paper. (Actually, for twist two there is a simple way to get also the
O(ln s/s) andO(1/s) terms from the first of (3.23): it is sufficient to replace in the argument of
the cos function the quantity s/

√
2, which represent the leading contribution to the position

of the external hole at large s, with themore accurate estimate [59, 60] (s/
√
2)(1+((γ+1)/2s)+

O(1/s2)). We then get the same result as (29) of [38].) It will be our starting point in order to
investigate the high spin limit of (minimal) anomalous dimension of twist operators in the
sl(2) sector.

We will study two cases. First, we will consider the limit:

s −→ ∞, L fixed. (3.25)

Then, we will focus on the scaling limit (1.7) [20]:

s −→ ∞, L −→ ∞, j =
L − 2
ln s

fixed. (3.26)

The case (3.25)will be reported in Section 4, the case (1.7) in Section 5.

4. High Spin at Fixed Twist

In this section we report our results on the fixed twist case (3.25). We naturally make a move
from (3.23), in which the various contributions to the known (forcing) term are separated
according to their power of ln s. As a consequence of the structure of the forcing term, the
high spin expansion of the function S(k) goes on as a series of logarithmic (inverse) powers
(1.6):

S(k) =
∞∑

n=−1
S(n)(k)(ln s)−n +O

(
(ln s)−∞

)
. (4.1)

Consequently, the anomalous dimension at high spin follows the same fate:

γ
(
g, s, L

)
= f
(
g
)
ln s + fsl

(
g, L

)
+

∞∑
n=1

γ (n)
(
g, L

)
(ln s)−n +O

(
(ln s)−∞

)
. (4.2)
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Coming back to S(k), the term proportional to ln s satisfies the BES linear integral equation:

S(−1)(k) = 4g2K̂
(√

2gk, 0
)
− g2

∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) t

sinh(t/2)
S(−1)(t), (4.3)

whose solution determines the universal scaling function through f(g) = 2S(−1)(0). The BES
equation was introduced in [11, 21] and thoroughly studied in the weak [11, 21] and the
strong coupling [29–35] limit. The interested reader can refer to these papers for a detailed
study of (4.3).

The four subsequent terms—independent of s—appear in the linear integral equation
for the density which determines the virtual scaling function fsl(g, L). This equation was
written in [24, equation 4.11], and then it was reobtained in [38] and used there and in our
contemporaneous paper [39] (where it appears as equation 3.3). In notations used in this
paper it reads (k ≥ 0)

S(0)(k) = 4g2
∫+∞

0

dt

et − 1
K̂∗
(√

2gk,
√
2gt
)

+
L

k

[
1 − J0

(√
2gk

)]
+ 4g2γEK̂

(√
2gk, 0

)

+ g2(L − 2)
∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) 1 − et/2

sinh(t/2)

− g2
∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) t

sinh t/2
S(0)(t),

(4.4)

the virtual scaling function fsl(g, L) being

fsl
(
g, L

)
= 2S(0)(0). (4.5)

As in the case of f(g), an explicit expression for fsl(g, L), interpolating from weak to strong
coupling, has not been found yet. What we did is expanding (4.4) in a systematic way
for small g, thus getting the weak coupling convergent series for fsl(g, L) (formula (4.1)
of [39]):

fsl
(
g, L

)
=
(
γE − (L − 2) ln 2

)
f
(
g
)
+ 8(2L − 7)ζ(3)

(
g√
2

)4

− 8
3

(
π2ζ(3)(L − 4) + 3(21L − 62)ζ(5)

)( g√
2

)6

+
8
15

(
π4ζ(3)(3L − 13) + 75(46L − 127)ζ(7) + 5(11L − 32)π2ζ(5)

)( g√
2

)8
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−
(
128
945

π6ζ(3)(11L − 49) + 8
(
2695ζ(9)L + 16ζ(3)3L − 7156ζ(9) + 56ζ(3)3

)

+
40
3
(25L − 64)π2ζ(7) +

8
45

(103L − 310)π4ζ(5)
)(

g√
2

)10

+
(
32
45

π4ζ(7)(295L − 772) +
8
3
π2
(
1519ζ(9)L + 24ζ(3)3L − 3628ζ(9) − 88ζ(3)3

)

+ 8
(
33285ζ(11)L + 536ζ(3)2ζ(5)L − 86082ζ(11) − 1728ζ(3)2ζ(5)

)

+
8
945

(2023L − 6266)π6ζ(5) +
8(2956L − 13231)π8ζ(3)

14175

)(
g√
2

)12

+ · · · .

(4.6)

In addition, in [39] we performed the strong coupling analysis, by means of analytical and
numerical computations. For the first leading terms (formula (4.12) of [39])we provided the
following outcome:

fsl
(
g, L

)
= 2

√
2g

[
ln

2
√
2

g
− c1 − 3 ln 2

2
√
2πg

ln
2
√
2

g
+
c0 + (2 − L)π

2
√
2πg

− K

8π2g2
ln

2
√
2

g

+
k−1

2
√
2g2

+O

(
ln g
g3

)]
,

(4.7)

where c1 = 1, c0 = 6 ln 2 − π , K = β(2) is the Catalan’s constant and (see also [38])

k−1 =
4K − 9(ln 2)2

4
√
2π2

= −0.0118253 . . . . (4.8)

Importantly, in this asymptotic expansion we could show that the only trace of the twist
comes up in the piece c0 + (2 − L)π and thus cancels out completely, at order O(s0), in the
asymptotic (large g) expansion ofΔ−s = γ+L. It follows that the constant term (i.e.,O(g0)) in
Δ−s = γ +L at orderO(s0) is (6 ln 2+π)/π for any twist: this allowed successful comparisons
with string theory results [40–42], which does not distinguish between null and small values
of L.

An alternative analysis of the strong coupling limit can be found in [38]. This
computation was done adapting the method introduced in [34] for f(g).

For what concerns γ (n)(g, L), that is, the O((ln s)−n), n ≥ 1, contributions to the
anomalous dimensions, they are “driven” by the holes depending parts of (3.23). As a
consequence of (3.21), one has γ (n)(g, L) = 2S(n)(0), where S(n)(k) satisfies the integral
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equation (k > 0):

S(n)(k) = −g2
∫+∞

0
dtK̂(

√
2gk,

√
2gt)

∑L−2
h=1

[
cos tu(i)

h
− 1
]

sinh(t/2)

∣∣∣∣∣∣∣
(ln s)−n

− g2
∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) t

sinh(t/2)
S(n)(t),

(4.9)

with the symbol |(ln s)−n standing for the component proportional to (ln s)−n. The analysis of
this case was done in detail in the paper [43]. We report here the main results.

In order to fulfil condition (2.9), the position of the internal holes has to expand in
inverse powers of ln s:

u
(i)
h =

∞∑
n=1

αn,h(ln s)
−n +O

(
(ln s)−∞

)
. (4.10)

Introducing the (even) derivatives in zero of the (even) function σ(u) = Z′(u), developing
them in powers of ln s,

d2q

du2q
σ(u = 0) =

∞∑
n=−1

σ
(n)
2q (ln s)−n, (4.11)

and imposing the condition (2.9) for the holes, we eventually get the following recursive
equation for the unknowns αn,h:

αp+1,h = −
p∑

r=1

σ
(−1)
r

σ
(−1)
0

∑
{j1,...,jp−r+1}

p−r+1∏
m=1

(αm,h)jm

jm!
−

p−1∑
l=0

p−l∑
r=1

σ
(l)
r−1

σ
(−1)
0

∑
{j1,...,jp−r−l+1}

p−r−l+1∏
m=1

(αm,h)jm

jm!
, p ≥ 1,

α1,h =
π(2h − 1 + L)

σ
(−1)
0

, p = 0,

(4.12)

where the jm contained in the second term of the right-hand side are constrained by the
conditions

∑p−r+1
m=1 jm = r + 1,

∑p−r+1
m=1 mjm = p + 1 and the ones in the third term by

∑p−r−l+1
m=1 jm = r,

∑p−r−l+1
m=1 mjm = p − l.

The next step is the Neumann expansion for the functions S(n)(k) (in the domain
k > 0):

S(n)(k) =
∞∑
p=1

S
(n)
p

(
g
)Jp
(√

2gk
)

k
=⇒ γ (n)

(
g, L

)
=
√
2gS(n)

1

(
g
)
. (4.13)
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Straightforward but lengthy calculations, originating from (3.23), lead to the conclusion that

the Neumann modes S(n)
p (g) satisfy the system

S
(n)
2p−1

(
g
)
= −(2p − 1

)∫+∞

0

dt

t

Pn

(
g, t
)
J2p−1

(√
2gt
)

sinh(t/2)
− 2
(
2p − 1

) ∞∑
m=1

Z2p−1,m
(
g
)
S
(n)
m

(
g
)
,

S
(n)
2p

(
g
)
= −2p

∫+∞

0

dt

t

Pn

(
g, t
)
J2p
(√

2gt
)

sinh(t/2)
− 4p

∞∑
m=1

Z2p,m
(
g
)
(−1)mS(n)

m

(
g
)
.

(4.14)

(We use the notation: Zn,m(g) =
∫+∞
0 (dt/t)(Jn(

√
2gt)Jm(

√
2gt)/(et − 1)). ) In (4.14) Pn(g, t)

appears as a coefficient in the high spin expansion

P
(
s, g, t

)
=

∞∑
n=1

Pn

(
g, t
)
(ln s)−n (4.15)

of the internal holes-depending function

P
(
s, g, t

)
=

L−2∑
h=1

[
cos tu(i)

h
− 1
]
, (4.16)

appearing in (4.9). As a consequence of (4.12), Pn(g, t) depends on the various coefficients
αm,h of (4.10) as

Pn

(
g, t
)
=

n∑
r=1

tr cos
πr

2

∑
{j1,...,jn−r+1}

∑L−2
h=1
∏n−r+1

m=1 (αm,h)jm∏n−r+1
m=1 jm!

,
n−r+1∑
m=1

jm = r,
n−r+1∑
m=1

mjm = n. (4.17)

In order to study the system (4.14), it is useful to introduce the “reduced coefficients” S̃
(k)
p ,

defined in (4.23) and (4.24) of [47] as solutions of the reduced systems:

S̃
(k)
2p

(
g
)
= I

(k)
2p

(
g
) − 4p

∞∑
m=1

Z2p,m
(
g
)
(−1)mS̃(k)

m

(
g
)
,

S̃
(k)
2p−1

(
g
)
= I

(k)
2p−1

(
g
) − 2

(
2p − 1

) ∞∑
m=1

Z2p−1,m
(
g
)
S̃
(k)
m

(
g
)
,

(4.18)
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with the explicit (i.e., not depending on the densities σ(n)
2q ) forcing terms:

I
(k)
r = r

∫+∞

0

dh

2π
h2k−1

Jr
(√

2gh
)

sinh(h/2)
. (4.19)

Indeed, solutions to the systems (4.14) are linear combinations of the various S̃
(k)
r (g) with

coefficients depending on αn,h. In particular, for what concerns γ (n)(g), its expression in terms
of S̃(k)

1 and αm,h reads

γ (n)
(
g
)

√
2g

= −2π
n∑
r=1

S̃
(r/2)
1 cos

πr

2

∑
{j1,...,jn−r+1}

∑L−2
h=1
∏n−r+1

m=1 (αm,h)jm∏n−r+1
m=1 jm!

,
n−r+1∑
m=1

jm = r,
n−r+1∑
m=1

mjm = n.

(4.20)

The various αn,h are written in terms of the densities with the help of (4.12), leaving
eventually γ (n)(g) as depending on S̃

(k)
1 and σ

(r)
2q , with r ≤ n − 3. This last property is very

important, since it makes possible to build up a recursive calculation scheme for the γ (n)(g),
opening the way to push the computation up to the desired order in ln s.

As an example in paper [43] we gave the following exact results for the first γ (n)(g):

γ (1)
(
g, L

)
= 0,

γ (2)
(
g, L

)
=
√
2g

π3

3
(
σ
(−1)
0

)2 (L − 3)(L − 2)(L − 1)S̃(1)
1

(
g
)
,

γ (3)
(
g, L

)
= −2

√
2g

π3σ
(0)
0

3
(
σ
(−1)
0

)3 (L − 3)(L − 2)(L − 1)S̃(1)
1

(
g
)
,

γ (4)
(
g, L

)
=
√
2g2π

⎧
⎪⎨
⎪⎩

⎡
⎢⎣− π2

3
(
σ
(−1)
0

)2

⎛
⎜⎝ σ

(1)
0

σ
(−1)
0

− 3
2

(
σ
(0)
0

)2
(
σ
(−1)
0

)2

⎞
⎟⎠(L − 3)(L − 2)(L − 1)

− π4σ
(−1)
2

90
(
σ
(−1)
0

)5 (L − 3)(L − 2)(L − 1)(5 + 3L(L − 4))

⎤
⎥⎦S̃(1)

1

− π4

360
(
σ
(−1)
0

)4 (L − 3)(L − 2)(L − 1)(5 + 3L(L − 4))S̃(2)
1

⎫
⎪⎬
⎪⎭
.

(4.21)

Due to the aforementioned recursive properties, such expressions can be explicitly computed
in the weak and in the strong coupling limit. Weak coupling expansions are presented in
Appendix A of [43]. The strong coupling leading term is given in Section 3 of [43].
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5. High Spin and Large Twist

We now want to study the anomalous dimension in the limit (1.7):

s −→ ∞, L −→ ∞, j =
L − 2
ln s

fixed. (5.1)

Since the number of internal holes becomes infinite, we need to treat the sum over them
contained in (3.23) by means of the technique discussed in Section 2. Before doing that, we
introduce two points ±c which separate the internal holes and the Bethe roots: since the
number of internal holes equals L − 2, the “separator” c has to satisfy the following relation:

Z(c) =
1
2

∫ c

−c
dvσ(v) = −πj ln s. (5.2)

Now we can specialise formula (2.18) to the sum

L−2∑
h=1

[
cos tu(i)

h − 1
]
, (5.3)

over the internal holes u
(i)
h ∈ [−c, c]. Remember that in [−c, c] no Bethe roots are present:

therefore the right-hand side of (2.18) is zero. We get

L−2∑
h=1

[
cos tu(i)

h
− 1
]
= −
∫ c

−c

dv

2π
(cos tv − 1)σ(v) − π

6
t sin tc
σ(c)

− 7π3

360

t3σ(c) sin tc + 3t2σ1(c) cos tc − 3t
(
(σ1(c))2/σ(c)

)
sin tc + tσ2(c) sin tc

(σ(c))4

+O

(
jn

(ln s)5

)

= −2
∫+∞

−∞

dk

4π2
σ̂(k)

[
sin(t + k)c

t + k
− sin kc

k

]
− π

6
t sin tc
σ(c)

− 7π3

360
t3σ(c) sin tc + 3t2σ1(c) cos tc + tσ2(c) sin tc

(σ(c))4
+O

(
j3

(ln s)3

)
,

(5.4)

where σm(c) denotes themth derivative of the density σ(v) in v = c. This expression has to be
inserted in (3.23) and worked out together with condition (5.2): we get in general a nonlinear
integral equation for the quantity S(k), related to the Fourier transform of the density of Bethe
roots and internal holes σ̂(k) through (3.22).
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This joined analysis of (3.23) and (5.2) gets simplified in the limit (1.7). Indeed, it
follows from the structure of (3.23) that, in the case of limit (1.7), the function S(k) expands
as [36, 43, 48]

S(k) =
∞∑

r=−1
(ln s)−r

∞∑
n=0

S(r,n)(k)jn +O
(
(ln s)−∞

)
, (5.5)

and, correspondingly, the anomalous dimension behaves as (1.8):

γ
(
g, s, L

)
= ln s

∞∑
n=0

fn
(
g
)
jn +

∞∑
r=0

(ln s)−r
∞∑
n=0

f
(r)
n

(
g
)
jn +O

(
(ln s)−∞

)
. (5.6)

The functions fn(g) and f
(r)
n (g) are called generalised scaling functions. In particular f0(g)

coincides with the universal scaling function f(g).
Similarly, the separator between internal holes and Bethe roots, c, enjoys the following

scaling in the limit (1.7):

c =
∞∑
r=0

(ln s)−r
∞∑
n=1

c(r,n)jn. (5.7)

The constants c(r,n) are connected to the various components σ(r,n)
2q in which the density and

its derivatives in zero expand in the limit (1.7):

d2q

du2q
σ(u = 0) =

∞∑
r=−1

∞∑
n=0

σ
(r,n)
2q (ln s)−rjn, (5.8)

by means of (5.2):

1
2

∫ c

−c
dvσ(v) = −πj ln s. (5.9)

For instance, using (5.7) and (5.8) in (5.2), we get, for the first c(r,n),

c(0,1) = − π

σ(−1,0) , c(0,2) = π
σ(−1,1)
[
σ(−1,0)]2 , c(0,3) =

π3

6
σ
(−1,0)
2[

σ(−1,0)]4 − π

[
σ(−1,1)]2
[
σ(−1,0)]3 ,

c(1,1) = π
σ(0,0)

[
σ(−1,0)]2 , c(1,2) = −2π σ(0,0)σ(−1,1)

[
σ(−1,0)]3 ,

c(1,3) = 3π
σ(0,0)[σ(−1,1)]2
[
σ(−1,0)]4 − 2

3
π3σ

(0,0)σ
(−1,0)
2[

σ(−1,0)]5 +
π3

6
σ
(0,0)
2[

σ(−1,0)]4 ,

c(2,1) = −π
[
σ(0,0)]2
[
σ(−1,0)]3 .

(5.10)
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Therefore, once we take the limit (1.7) and use condition (5.2), we easily get that (3.23) splits
in a set of equations, one for every function S(r,n)(k). Remember that S(−1,0)(k) coincides with
the BES density (function S(−1)(k) of last section): therefore, it satisfies the BES linear equation
(4.3), that is,

S(−1,0)(k) = 4g2K̂
(√

2gk, 0
)
− g2

∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) t

sinh(t/2)
S(−1,0)(t). (5.11)

Another particular case is the function S(−1,1)(k): this satisfies the linear equation

S(−1,1)(k) =
1
k

[
1 − J0

(√
2gk

)]
+ g2

∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) 1 − et/2

sinh(t/2)

− g2
∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) t

sinh(t/2)
S(−1,1)(t)

(5.12)

and determines the generalised scaling function f1(g) = 2S(−1,1)(0). Equation (5.12) was
studied in paper [44].

The last case that has to be treated separately is r = j = 0. However, in this case,
the density is obtained from S(0)(k) ((ln s)0 contribution at fixed twist, see last section) and
S(−1,1)(k), by means of the equality

S(0)(k) = (L − 2)S(−1,1)(k) + S(0,0)(k). (5.13)

In the three cases we have discussed up to now, the dynamics of the internal holes is not
relevant: for the required approximations the internal holes can be supposed all lying at the
origin; that is, the sum (5.3) can be considered as vanishing.

The particular form of the expansion (5.7)with coefficients given by (5.10) is however
of fundamental importance for all the remaining cases. They can be studied together, by
means of the integral equation

S(r,n)(k) = −g2
∫+∞

0
dtK̂

(√
2gk,

√
2gt
) ∑L−2

h=1

[
cos tu

(i)
h

− 1
]

sinh(t/2)

∣∣∣∣∣∣∣
jn/(ln s)r

− g2
∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) t

sinh(t/2)
S(r,n)(t),

(5.14)

in which the sum over the internal holes is evaluated through (5.4) and the “separator” c is
expanded as in (5.7), with coefficients depending on the quantities σ(r,n)

2q and determined by
the use of (5.2).



24 Advances in High Energy Physics

From the methodological point of view, we need to distinguish two cases. The first
one covers the values r = −1, n ≥ 2 and r = 0, n ≥ 1. In this case only the first term in
the right-hand side of (5.4), which is linear in the density, is relevant. Therefore in the final
equation nonlinearity comes only from the nonlinear dependence of c on the density and
their derivatives in zero:

S(r,n)(k) = g2
∫+∞

0
dt

K̂(
√
2gk,

√
2gt)

sinh(t/2)

∫ c

−c

dv

2π
(cos tv − 1)σ(v)

∣∣∣∣∣
jn/(ln s)r

− g2
∫+∞

0
dte−t/2K̂

(√
2gk,

√
2gt
) t

sinh(t/2)
S(r,n)(t).

(5.15)

For instance, using (5.10)we get for the first cases

∫ c

−c

dv

2π
(cos tv − 1)σ(v)

∣∣∣∣
ln s·j2

= 0,

∫ c

−c

dv

2π
(cos tv − 1)σ(v)

∣∣∣∣
ln s·j3

=
1
6
π2 t2
[
σ(−1,0)]2 ,

∫ c

−c

dv

2π
(cos tv − 1)σ(v)

∣∣∣∣
ln s·j4

= −1
3
π2 t2σ(−1,1)
[
σ(−1,0)]3 ,

∫ c

−c

dv

2π
(cos tv − 1)σ(v)

∣∣∣∣
ln s·j5

= − π4t4

120
[
σ(−1,0)]4 +

π2[σ(−1,1)]2t2
2
[
σ(−1,0)]4 − π4σ

(−1,0)
2 t2

30
[
σ(−1,0)]5 ,

∫ c

−c

dv

2π
(cos tv − 1)σ(v)

∣∣∣∣
jr/(ln s)0

= 0, r = 1, 2,

∫ c

−c

dv

2π
(cos tv − 1)σ(v)

∣∣∣∣
j3/(ln s)0

= −1
3
π2 σ(0,0)

[
σ(−1,0)]3 S̃

(1)
1

(
g
)
,

∫ c

−c

dv

2π
(cos tv − 1)σ(v)

∣∣∣∣
j4/(ln s)0

= π2σ
(0,0)σ(−1,1)
[
σ(−1,0)]4 S̃

(1)
1

(
g
)
,

∫ c

−c

dv

2π
(cos tv − 1)σ(v)

∣∣∣∣
j5/(ln s)0

= −
⎡
⎣1
6

⎛
⎝π4

5
σ
(0,0)
2[

σ(−1,0)]5 + 12π2σ
(0,0)[σ(−1,1)]2
[
σ(−1,0)]5 − π4σ

(0,0)σ
(−1,0)
2[

σ(−1,0)]6

⎞
⎠

× S̃
(1)
1

(
g
) − π4

30
σ(0,0)

[
σ(−1,0)]5 S̃

(2)
1

(
g
)]

.

(5.16)
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In the remaining cases, that is, r ≥ 1, the evaluation of the sum over the internal holes (5.3)
involves also terms explicitly nonlinear in the density. Thanks to formulae (2.18) and (5.4),
however, everything is under control and, for instance, for the first values of r, n we get

L−2∑
h=1

[
cos tu(i)

h − 1
]∣∣∣∣∣

j0/(ln s)r
= 0, r = 1, 2, 3, 4,

L−2∑
h=1

[
cos tu(i)

h − 1
]∣∣∣∣∣

j/ ln s

=
π2

6
t2

(
σ(−1,0))2 ,

L−2∑
h=1

[
cos tu(i)

h − 1
]∣∣∣∣∣

j2/ ln s

= −π
2

3
t2

σ(−1,1)
(
σ(−1,0))3 ,

L−2∑
h=1

[
cos tu(i)

h − 1
]∣∣∣∣∣

j3/ ln s

= −π
2

2
t2
(
σ(0,0))2
(
σ(−1,0))4 − π2

6
t2

(
σ(−1,0))4

[
2
3
π2σ

(−1,0)
2

σ(−1,0) − 3
(
σ(−1,1)

)2
+
t2

6
π2

]
,

L−2∑
h=1

[
cos tu(i)

h
− 1
]∣∣∣∣∣

j/(ln s)2
= −π

2

3
t2

σ(0,0)

(
σ(−1,0))3 ,

L−2∑
h=1

[
cos tu(i)

h
− 1
]∣∣∣∣∣

j2/(ln s)2
= π2t2

σ(0,0)σ(−1,1)
(
σ(−1,0))4 ,

L−2∑
h=1

[
cos tu(i)

h
− 1
]∣∣∣∣∣

j/(ln s)3
=

7π4

360
t4

1
(
σ(−1,0))4 +

7π4

90
t2

σ
(−1,0)
2(

σ(−1,0))5 +
π2

2
t2
(
σ(0,0))2
(
σ(−1,0))4 .

(5.17)

In both cases, next steps are the usual ones and details can be found in [43, 47, 48]. First, we
perform a Neumann expansion for the even functions S(r,n)(k), in the domain k ≥ 0:

S(r,n)(k) =
∞∑
p=1

S
(r,n)
p

(
g
)Jp
(√

2gk
)

k
. (5.18)

This implies that the generalised scaling functions are expressed as

f
(r)
n

(
g
)
=
√
2gS(r,n)

1

(
g
)
. (5.19)

The Neumann modes S
(r,n)
p (g) satisfy linear systems and are linear combinations of the

“reduced” coefficients S̃(k)
p which are solutions of the systems (4.18). The coefficients driving

such linear combinations depend on the densities and their derivatives in zero, σ(r ′,n′)
2q , with

r ′ ≤ r, n′ ≤ n − 1. This property allows to find, step by step, exact expressions for the
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generalised scaling functions f (r)
n (g) in terms of σ(r ′,n′)

2q and S̃
(k)
1 . For the first of them we get

the following results:

f3
(
g
)

√
2g

=
1
3
π3 S̃

(1)
1

(
g
)
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f4
(
g
)

√
2g

= −2
3
π3 S̃
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)
σ(−1,1)

[
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√
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3
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=
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+
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(5.20)
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Explicit expressions in the weak and strong coupling limit for the various f (r)
n (g) can be given

without much ado, because of the iterative structure of the relations which determine them.
They can be found in [43, 47, 48].

In particular, strong coupling limit of the anomalous dimension is of interest since it
can be checked against string theory calculations. For what concerns the function

f
(
g, j
)
=

∞∑
n=0

fn
(
g
)
jn, (5.21)

performing such a check, is not a difficult task, after results by Alday and Maldacena [23].
Introducing (at large g) the quantity

m
(
g
)
=

25/8π
Γ(5/4)

g1/4e−πg/
√
2
[
1 +O

(
1
g

)]
(5.22)

in [23], it was proved that in the limit (1.7), when g → ∞, j � g, with j/m(g) fixed,
the quantity f(g, j) + j has to coincide with the energy density of the ground state of
the O(6) nonlinear sigma model with mass gap m(g). When j/m(g) � 1, we are in the
nonperturbative regime of the O(6) nonlinear sigma model. In this case the energy density
can be computed by using Bethe Ansatz-related techniques. This computation has been
systematically performed in [61]. In order to have agreement between our calculations for
f(g, j) and computations of [61] for the O(6) nonlinear sigma model, we must have that
the quantities Ωn(g) computed in that paper have to be related to fn(g) by the relation
fn(g) = 2n−1Ωn(g). Our results [39] for the strong coupling limit of f3(g), f4(g), and f5(g)
are

f3
(
g
)
=

π2

24m
(
g
) +O

(
e−πg/

√
2
)
,

f4
(
g
)
= − π2

12
[
m(g)

]2S1 +O(1),

f5
(
g
)
= − π4

640
[
m(g)

]3 +
π2

8
[
m(g)

]3 [S1]2 +O
(
eπg/

√
2
)
,

(5.23)

where we used the compact notations

S2s+1 =
1

π2s+1

∞∑
n=0

(−1)n
[

1

(n + 1/2)2s+1
+

1

(n + 1)2s+1

]
, (5.24)

and agree with corresponding formulae contained in [61]. (In [39] results for the strong
coupling limit of fn(g) and checks with O(6) nonlinear sigma model results were performed
up to n = 8.)
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6. Conclusions

In this paper we have discussed our activity on the study of minimal anomalous dimension
of twist operators in the sl(2) sector ofN = 4 SYM at high spin. We preferred to give a general
description of the methods we used: the reader can refer to the original papers for details and
for a complete list of our results.

The main tool we used is integral equation (3.23) for the density of Bethe roots. This
equation coincides with the exact nonlinear integral equation equivalent to the Asymptotic
Bethe Ansatz equations of the sl(2) sector if we neglect terms going to zero faster than any
inverse power of the logarithm of the spin. Equation (3.23) is linear, apart from the nonlinear
dependence of the internal holes positions u(i)

h on the counting functionZ(u). These nonlinear
effects are taken into account by inverting relation (2.9): in the high spin limit such inversion
is feasible because of the recursive properties of (4.12) determining the various u

(i)
h
. This

allows to give explicit expressions (4.20) for the coefficients of the high spin expansion of
the anomalous dimension.

When the twist goes to infinity, the internal holes are described by their density and
contribute to integral equation (3.23) introducing explicitly nonlinear terms. These nonlinear
terms are evaluated (see Section 5) by using properties and techniques of the nonlinear
integral equation, which are discussed in Section 2. Their contribution tomain equation (3.23)
is obtained by applying formula (2.18) and is reported in (5.16) and (5.17). In this case also,
recursive properties of the equations determining the high spin limit of the density are crucial
in order to obtain explicit expressions for the anomalous dimension.
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