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We review a recent investigation of the effect of magnetic catalysis of mass generation in
holographic Yang-Mills theories. We aim at a self-contained and pedagogical form of the review.
We provide a brief field theory background and review the basics of holographic flavordynamics.
The main part of the paper investigates the influence of external magnetic field to holographic
gauge theories dual to the D3/D5- and D3/D7-brane intersections. Among the observed
phenomena are the spontaneous breaking of a global internal symmetry, Zeeman splitting of the
energy levels, and the existence of pseudo, Goldstone modes. An analytic derivation of the Gell-
Mann-Oaks-Renner relation for the D3/D7 set up is reviewed. In the D3/D5 case, the pseudo-
Goldstone modes satisfy nonrelativistic dispersion relation. The studies reviewed confirm the
universal nature of the magnetic catalysis of mass generation.

1. Introduction

An important concept in our attempt to describe the structure of our physical reality dating
back to Democritus is the atomic principle, namely, the idea that macroscopic bodies are build
out of fundamental particles. In modern perspective, we are interested in studying the basic
interactions between the building blocks of matter. It is experimentally well established that
there are four fundamental interactions: electromagnetic, strong and weak interactions as
well as gravity. Despite the remarkable success of the Standard Model of particle physics
unifying the first four interactions, it still remains a challenge to come up with a consistent
quantum theory of gravity. At present, one of the most promising directions towards a unified
theory of the fundamental interactions lies in the framework of string theory.
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Historically, string theory emerged as an attempt to describe the strong interactions
by what was called dual resonance models. However, shortly after its discovery, Quantum
Chromodynamics (QCD), which is a SU(3) Yang-Mills gauge theory, superseded it. The
matter degrees of QCD, consist of quarks which are in the fundamental representation of
the gauge group, while the interaction between the fundamental fields is being mediated
by the gluons which are the gauge fields of the theory thus transforming in the adjoint
representation of SU(3).

A remarkable property of QCD is the fact that it is asymptotically free, meaning that
at large energy scales, or equivalently at short distances, it has a vanishing coupling constant.
This makes QCD perturbatively accessible at ultraviolet. However, the low energy regime of
the theory is quite different. At low energy, QCD is strongly coupled, the interaction force
between the quarks grows immensely and they are bound together; they form hadrons.
This phenomenon is called confinement. Additional property of the low energy dynamics
of QCD is the formation of a quark condensate which mixes the left and right degrees of the
fundamental matter and leads to a breaking of their chiral symmetry. It is extremely hard to
examine the properties of the strongly coupled low energy regime of QCD, since the usual
perturbative techniques are not applicable.

The AdS/CFT correspondence [1, 2], as we will describe in detail in Section 3.1
of this review, is a powerful analytic tool providing a nonperturbative dual description
of non-abelian gauge theories, in terms of string theory defined on a proper gravitational
background. An important extension of the correspondence making it relevant to the
description of flavored Yang-Mills theories was the introduction of fundamental matter via
the introduction of probe flavor branes [3]. The most understood case is in the limit when
the number of different flavors is much less than the number of colors. This corresponds
to the quenched approximation on gauge theory side and the probe approximation on
supergravity side of the correspondence. We will review more details about the way the
AdS/CFT dictionary works in Section 3.2.

Despite its great potential direct application of the AdS/CFT, correspondence to
realistic non-abelian gauge theories such as QCD remains a challenge. A major limitation
is that realistic field theories do not seem to have simple holographic backgrounds.
Furthermore, there are indications that most realistic gauge theories do not even pose exact
holographically dual geometries. Nevertheless, applications of the AdS/CFT correspondence
are still possible. One plausible direction is the investigation of non-abelian gauge
theories exhibiting universal behaviour. Particularly interesting is to analyze the phase
structure of strongly coupled Yang-Mills theories. An example of such application of the
holographic approach is the study of properties of strongly coupled quark-gluon plasmas
[4].

Another possible direction is the study of phenomena known to have a universal
nature. An important example is the phenomenon of mass generation in an external magnetic
field. This phenomenon has been extensively studied in the conventional field theory
literature [5–8]. The effect was shown to be model independent and therefore insensitive
to the microscopic physics underlying the low-energy effective theory. The essence of this
effect is the dimensional reduction D → D-2 (3 + 1 → 1 + 1) in the dynamics of fermion
pairing in a magnetic field. Magnetic catalysis of mass generation has been demonstrated in
various 1 + 2 and 1 + 3 dimensional field theories. Given the universal nature of this effect,
it is natural to explore this phenomenon in the context of holographic gauge theories. In this
review, we focus on such studies for holographic gauge theories dual to the Dp/Dq-brane
intersection.
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The structure of the review is as follows.
In Section 2, we provide a short field theory background. In the first subsection,

we describe the properties of flavored SU(Nc) Yang-Mills theory focusing on the global
symmetries of the Lagrangian. We remind the reader about some basics of the phenomenon of
Chiral Symmetry breaking. We describe the effective field theory approach to that of Chiral
Symmetry breaking and provide a brief derivation of the famous Gell-Mann-Oaks-Renner
relation [9]. In the second subsection, we review the mechanism of the chiral symmetry
breaking due to the presence of an external magnetic field [5].

Section 3 of this review is dedicated to the AdS/CFT correspondence and its extension
to include matter in the fundamental representation of the gauge group. In the first subsection
we outline the main ideas that lead to the formulation of the Maldacena’s conjecture [1, 2]. We
discuss some qualitative and quantitative aspects of the correspondence and provide a brief
description about the way the AdS/CFT dictionary operates. The second subsection focuses
on the addition of flavor degrees of freedom to the correspondence. We review the approach
of [3] and provide some basic extracts from the AdS/CFT dictionary, which will be important
for the studies presented in Section 4.

Section 4 is the main part of the review. We present the studies of the influence of
external magnetic field on holographic gauge theories dual to the D3/D5- and the D3/D7-
branes intersection performed in [10–13]. In the case of the D3/D7 system, we review the
general properties of the holographic set up and the way chiral symmetry breaking is realized
as a separation of the color and flavor branes in the infrared. We review the properties of
the light meson spectrum of the theory and uncover Zeeman splitting of the energy levels
as well as the existence of Goldstone modes corresponding to the spontaneously broken
Chiral Symmetry. In the limit of small bare masses review, the analytic derivation of the
Gell-Mann-Oaks-Renner relation obtained in [12] from dimensional reduction of the eight-
dimensional effective action of the probe D7-brane. We also review the analogous studies of
the D3/D5 system. Again there are mass generation, Zeeman splitting, and Goldstone modes.
Interestingly, the broken Lorentz invariance in this case leads to nonrelativistic dispersion
relations.

We end with a brief summary of the presented material and a short discussion in the
conclusion section of the review.

2. Field Theory Preliminaries

In this section, we provide a basic field theory background. Our goal is to remind the
reader about some of the properties of strongly coupled flavored Yang-Mills theories, in
particular, their global symmetries and the corresponding spontaneous symmetry breaking.
We outline the effective field theory description of Chiral Symmetry breaking and provide a
brief derivation of the Gell-Mann-Oaks-Renner relation [9]. We also provide a short review
of the effect of magnetic catalysis of mass generation.

2.1. Flavored Yang-Mills Theory and Chiral Symmetry Breaking

Flavored Yang-Mills Theory

The lagrangian of four-dimensional pure SU(Nc) Yang-Mills theory coupled to Nf flavors of
fermionic fields is given by
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L = − 1
4g2

YM

Tr
[
FμνF

μν] +
θ

32π2
Tr

[
FμνF̃

μν
]
+

Nf∑

i=1

ψi
(
iγμDμ −mi

)
ψi,

Fμν = ∂μAν − ∂νAμ − i
[
Aμ,Aν

]
, Dμ = ∂μ − iAμ, F̃μν =

1
2
εμνρσFρσ.

(2.1)

The first term in (2.1) is a dynamical term for the gauge field Aμ. The second term (the so-
called θ-term) is topological and is related to the Pontryagin index of Aμ. The parameter θ
ranges from 0 to 2π and parametrizes topologically distinct sectors of the theory. The last
term in (2.1) describes the matter (fundamental) fields of the theory. Let us look closely at
the last term. If one defines the left and right fermionic fields ψL,R = 1/2(1 ± γ5)ψ, it can be
written as

Lf =
Nf∑

i=1

(
ψiLiγ

μDμψ
i
L + ψ

i
Riγ

μDμψ
i
R −mi

(
ψiLψ

i
R + ψiRψ

i
L

))
. (2.2)

It is clear that the mass of the matter fields mi can be interpreted as a coupling between
the left and right fields ψL/R. Therefore, at vanishing mi we have two distinct sets of Nf

fermionic fields and at classical level the theory has a global U(Nf)L ×U(Nf)R symmetry. It
is instructive to split the global symmetry to

U
(
Nf

)
L
×U

(
Nf

)
R
= SU(Nf)V × SU(Nf)A ×U(1)V ×U(1)A. (2.3)

Let us focus first on the abelian symmetry. In infinitesimal form we have the transformations:

δψL = −iαψL, δψR = −iαψR, for U(1)V , (2.4)

δψL = −iαψL, δψR = +iαψR, for U(1)A. (2.5)

Transformation (2.5) is just a rigid U(1)-gauge transformation and correspond to some
quantum number. We will not be interested in breaking gauge symmetries in these notes;
this is why we focus on the transformation (2.5).

Anomalous Chiral Symmetry

In terms of the fields ψ, ψ, transformation (2.5) can be written as

δψ = −iαγ5ψ, δψ = −iαψγ5. (2.6)

The corresponding Noether current is given by

jμ5 = ψγμγ5ψ, (2.7)

and is conserved upon applying the equations of motion. Clearly a nonzero fermionic
condensate 〈ψψ〉 would break the Chiral transformation (2.6). Naively one would expect
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the existence of a corresponding Goldstone boson. This is the famous η′-meson in QCD.
However, it turns out that the measure of the path integral has a non-zero Jacobian under
the transformation (2.6), and the axial current defined in (2.7) is anomalous. In fact, one can
show that the anomaly is given by (look at [14, pages 185–192] for a brief derivation)

∂μj
μ5 = − 1

16π2
Tr

[
FμνF̃

μν
]
, (2.8)

and the chiral transformation can be absorbed into a redefinition of the theta angle of the
theory θ → θ − 2α. This suggests that the mass of the η′-meson can be related to the
topological susceptibility of the theory χYM = ∂2Evac/∂

2θ|Nf=0. For a canonically normalized
η′-field, one can obtain the following Witten-Veneziano formula [15, 16]:

m2
η′ =

4Nf

f2
η′

χYM ∝
Nf

Nc
, (2.9)

where we have used the Nc dependence of fη′ for large Nc, fη′ ∝
√
Nc [17].

The fact that m2
η′ ∝ Nf/Nc has an important consequences for the large Nc limit of

the theory. It suggests that if the number of flavors is Nf � Nc (the so-called quenched
approximation), the mass of the η′-meson is effectively zero and the anomalous U(1)A axial
symmetry is restored. This result is essential for the holographic studies that we will review
in Section 4. In fact, the holographic supersymmetric gauge theory that we consider has an
anomalous U(1)R-symmetry, which mimics the anomalous U(1)A symmetry (2.6). It is the
spontaneous breaking of this symmetry under external magnetic field that has been explored
in the holographic set up presented in Section 4.1.

Nonsinglet Chiral Symmetry

Let us now focus on the non-abelian part of the global symmetry (2.3). We will be interested in
the dynamical breaking of this symmetry by a nonvanishing fundamental condensate 〈ψψ〉.
Clearly only the axial SU(Nf)A is broken by the fundamental condensate. Goldstone theorem
suggests the existence ofN2

f
−1 goldstone fields. InNf = 3 Quantum Chromodynamics, these

are the π±, π0, K±, K0, K0, and η mesons.
An important extension of this discussion is the case when the mass of the

fundamental fields is not vanishing but is still a small parameter with respect to some relevant
energy scale. In this case, the Chiral Symmetry is an approximate symmetry of the theory and
the corresponding goldstone particles (mesons) acquire small masses. At leading order, there
is an important relation between the mass of the mesons, the bare mass of the fundamental
fermions, and the fundamental condensate, namely, the Gell-Mann-Oaks-Renner relation [9].
Since we will be interested in verifying this relation via holographic techniques in Section 4,
let us provide a brief derivation using an effective field theory description.
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Effective Chiral Lagrangian and the Gell-Mann-Oaks-Renner Relation

In what follows we will treat the fundamental condensate of the theory as an order parameter
of dynamically broken Chiral Symmetry along the lines of [14]. Let us define a condensate
matrix as

Σij

0 =
〈
ψiLψ

j

R

〉

0
. (2.10)

Nonbreaking of the vector symmetry implies that the matrix order parameter Σij can be
brought into the following form:

Σij

0 =
1
2
δijΣ0, (2.11)

by the group transformation (2.3). Here Σ0 is in general a complex scalar. Now fluctuations
of the order parameter (2.11) will be described by a unitary matrix U(x) ∈ SU(Nf)A:

Σ(x)ij =
1
2
Σ0U(x)ij (2.12)

as well as a fluctuations of the phase of Σ0 parametrized by elements of U(1)A. Let us focus
on the non-abelian case first. It is convenient to express U(x) as an exponential

U(x) = exp

{
2iπa(x)ta

f2
π

}

, (2.13)

where πa are the physical meson fields, fπ is a constant of dimension of mass (the pion’s
decay constant in Quantum Chromodynamics), and ta are the generators of SU(Nf)A. To
fix the exact form of the effective lagrangian, note that there is a unique invariant structure
involving two derivatives:

L(kin)
eff =

f2
π

4
Tr

[
∂μU∂

μU†
]
. (2.14)

To leading order in πa, we obtain

L(2,kin)
eff =

1
2
∂μπ

a∂μπa + · · · (2.15)

and hence we have a canonically normalized bosonic field. In order to fix the mass term of
our pseudo-Goldstone fields, let us note that the mass term in (2.2) can be traded for

Lmeff = −Re[Tr{MΣ(x)}], (2.16)
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where we have defined the mass matrixM = ‖miδ
ij‖. Now using (2.12) and (2.13) one arrives

at

Lmeff = const +
Re[Σ0]
f2
π

⎛

⎝
Nf∑

i=1

mi

⎞

⎠πaπa +O
(
π3

)
. (2.17)

Therefore, to quadratic order our effective action is given by

L(2)
eff =

1
2
∂μπ

a∂μπa +
Re[Σ0]
f2
π

⎛

⎝
Nf∑

i=1

mi

⎞

⎠πaπa. (2.18)

Equation (2.18) implies the following expression for the mass of the meson fields πa:

M2
π = −2 Re[Σ0]

f2
π

⎛

⎝
Nf∑

i=1

mi

⎞

⎠ = −
2〈ψψ〉
f2
π

m, (2.19)

where in the last equality we have used is 〈ψψ〉 =Nf Re[Σ0] and we defined

m =
1
Nf

Nf∑

i=1

mi. (2.20)

Equation (2.19) is the famous Gell-Mann-Oaks-Renner relation [9]. Using similar arguments,
one can obtain similar expression for the mass of the η′-meson corresponding to the
spontaneous breaking of the U(1)A Chiral Symmetry (which is nonanomalous in the
quenched approximation Nf �Nc).

2.2. Magnetic Catalysis of Mass Generation in Field Theory

In this subsection, we will review the mechanism of the chiral symmetry breaking due to the
presence of an external magnetic field. We will follow closely the outline provided in [18, 19].

To start with, let us make a few comments on the general properties of the chiral
fermions in a constant magnetic field turned on in x3 direction of the 4d spacetime. The
lagrangian of a relativistic fermion is of the standard form

L =
1
2

[
Ψ,

(
iγμDμ −m

)
Ψ

]
, (2.21)

where the covariant derivative is given by

Dμ = ∂μ − ieAext
μ , Aext

μ = −Bx2δμ,1. (2.22)
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One of the most important characteristic of the system is its spectrum, or the so-called Landau
levels, which can be easily obtained from the above lagrangian

En(k3) = ±
√
m2 + 2|eB|n + k2

3 , n = 0, 1, 2, . . . . (2.23)

First of all, one can immediately see the degeneracy of the Landau levels. The energy is
parametrized by a continuous parameter k3, the momentum along the magnetic field, and
a discrete parameter n related to the finite dynamics in the plane orthogonal to the magnetic
field. The number of states for the lowest Landau level is different from the others; Landau
degeneracy factor for the lowest level is |eB|/2π while for the other is |eB|/π . Our purpose
will be to show that the dynamics of the lowest Landau level (LLL) is the one playing crucial
role in the chiral symmetry breaking.

The dynamics of the chiral condensates in an external magnetic field has many
interesting and important features. To make conclusions for those which we will use in
the next sections, let us start with expressing the chiral condensate through the fermion
propagator S(x, y)

〈
0
∣∣∣Ψ Ψ

∣∣∣0
〉
= lim

x→y
trS

(
x, y

)
. (2.24)

Thus, the problem we are going to study is encoded in the properties, or more concretely the
pole structure of the fermion propagator S(x, y).

The fermion propagator is well known form a long time and is usually defined as the
matrix element

S
(
x, y

)
=

(
iγμDx

μ +m
)〈

x

∣∣∣∣∣
−i

(
γμDμ

)2 +m2

∣∣∣∣∣
y

〉

=
(
iγμDx

μ +m
)∫∞

0
ds

〈
x
∣∣∣e−is[(γ

μDμ)
2+m2]

∣∣∣y
〉
.

(2.25)

To calculate the matrix element 〈x| exp(−is[(γμDμ)
2 + m2])|y〉, one can use the Schwinger’s

proper time approach, which gives

〈
x
∣∣∣e−is[(γ

μDμ)
2+m2]

∣∣∣y
〉
=

e−i(π/4)

8(πs)3/2
ei[Scl−sm

2]
(
eBs cot(eBs) + γ1γ2eBs

)
. (2.26)

In the above expression, Scl is defined as

Scl = e
∫x

y

Aext
ν dxν − 1

4s
(
x − y

)
ν

⎡

⎢
⎣gνμ +

((
Fext

)2
)

νμ

B2 (1 − eBs cot(eBs))

⎤

⎥
⎦(x − y)μ, (2.27)

where the integration is along a straight line connecting the two points since the result is path
independent.
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Separating the phase factor containing the integration, the propagator can be
represented in the following convenient form:

S
(
x, y

)
= eie

∫x
y A

ext
ν dxν S̃

(
x − y

)
, (2.28)

where

S̃(x) = −i
∫∞

0

ds

16(πs)2
e−ism

2
e−(i/4s)[(x0)2−x2

A(eBs)cot(eBs)−(x3)2]

.

(
m +

1
2s

[
γ0x0 − γAxA(eBs)cot(eBs) − γ3x3

]
− eB

2
εABγ

AxB
)

.
(
(eBs)cot(eBs) − γ2γ2(eBs)

)
, A = 1, 2, ε12 = +1.

(2.29)

It is more convenient to consider the propagator in the Euclidean momentum space.
Transforming to the Euclidean momentum space (k0 → ik4, s → −is), we get

〈
0
∣∣∣ΨΨ

∣∣∣0
〉
=
−i

(2π)2
tr

∫
d4kS̃E(k)

=
4m

(2π)2

∫
d4k

∫∞

1/Λ
ds e−s(m

2+k2
4+k

2
3+k

2
A(tanh(eBs)/eBs))

=
eBm

(2π)2

∫∞

1/Λ

ds

s
e−sm

2
coth(eBs),

(2.30)

where Λ is UV cutoff. It is instructive to look at the behavior of the condensate for the
infinitesimal m. The last expression in this limit takes the form

〈
0
∣∣∣ΨΨ

∣∣∣0
〉

m→ 0−−−−−→ −|eBs| m
4π2

(

log
Λ2

m2
+O

(
m0

))

. (2.31)

It is clear that the logarithmic singularity is due to the contributions from large distances, that
is, for large proper time s. The conclusion one can draw about the role of the magnetic field
is that it confines effectively the dynamics in only two dimensions, that is, we arrive at 1 + 1
dynamical problem. To uncover the nature of the logarithmic singularity, let us take a closer
look at the fermion propagator in Euclidean signature

ŜE(k) = −i
∫∞

0
ds e−(m

2+k2
4+k

2
3)s e−(k

2
⊥/eB) tanh(eBs)

(
1 +

1
i
γ1γ2 tanh(eBs)

)

.

(
−kμ +m +

1
i
γAkBε

AB tanh(eBs)
)
.

(2.32)
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It is obvious that all the terms can be obtained by differentiating on parameters or integrating
by parts of the expression

I =
∫∞

0
ds e−ρ̃s e−(λ/2) tanh(eBs), (2.33)

where λ = k2
⊥/eB, ρ̃ = m2 + k2

3 + k2
4. The second exponent can be expanded over Laguerre

polynomials Lαn using the generating function (z = − exp(−2eBs))

eλ/2e(λ/2)·((z−1)/(z+1)) =
∞∑

n=0

cn(λ)zn, cn(λ) = Ln(λ) − Ln−1(λ), |z| < 1. (2.34)

The final expression one can obtain after lengthy but straightforward calculations is

ŜE(k) = −ie−k
2
⊥/eB

∞∑

n=0
(−1)n

Dn(eB, k)
k2

4 + k
2
3 +m

2 + 2eBn
, (2.35)

where

Dn(eB, k) = 4
(
k1γ1 + k2γ2

)
L1
n

(

2
k2
⊥

eB

)

+
(
m − k4γ4 − k3γ3

)
[
(
1 − iγ1γ2

)
Ln

(

2
k2
⊥

eB

)

−
(
1 + iγ1γ2

)
Ln−1

(

2
k2
⊥

eB

)]

.

(2.36)

Thus, the poles of the propagator are located at the Landau levels! From this result,
one can draw the following important conclusions. Analyzing the terms in the propagator,
one can see that the logarithmic singularity in the condensate is due to the lowest Landau level. The
second conclusion is that the above expression explicitly shows the 1 + 1 nature of the lowest
Landau level dynamics. Thus, the dynamics of the fermion pairing in a magnetic field in 4d
is 1 + 1 dimensional phenomenon.

Summarizing, we stress on the conclusion that the presence of a magnetic field drives
spontaneous chiral symmetry breaking even when the field strength is weak. The mechanism
is fairly universal since it catalyzes the fermion pairing at the lowest Landau level. The pairing
dynamics is essentially 1 + 1 dimensional in the infrared region. Concluding this section, we
note that the generation of dynamical masses can be illustrated on the examples of concrete
models described in the literature (see e.g., [5, 18, 19]).

3. Holographic Flavor Dynamics in a Nutshell

The idea of gauge/string duality is one of the most profound in the realm of fundamental
interactions. It influenced a lot both sides of the correspondence: since the first papers on the
subject appear, several new important ideas and results have emerged in string and gauge
theories.
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A crucial milestone was the large N limit proposed by t’Hooft [20]. Instead of using
SU(3) as a gauge group,

′
t Hooft proposed to consider SU(N) Yang-Mills theory and take

the limit N � 1, while keeping the so-called
′
t Hooft coupling fixed λ = Ng2

YM.
′
t Hooft

proved that in this limit only planar diagrams contribute to the partition function which
makes the theory more tractable. On the other side, the expansion in 1/N corrections of the
QCD partition function and the genus expansion of the string partition function exhibit the
same qualitative behavior, suggesting that perhaps a dual description of the large N limit of
non-abelian gauge theories might be attainable in the framework of string theory.

In this section we will discuss some qualitative and quantitative aspects of the
holographic correspondence between strings and gauge theories. Once the correspondence is
argued, our primary interest will be focused on the introduction of favors and their dynamics.

3.1. The AdS/CFT Correspondence

Let us make the above ideas more concrete introducing the basic ingredients of the so-
called AdS/CFT correspondence. In our outline, we will assume basic knowledge of the
concepts of superstring theory and the notion of D-branes. (We refer the reader to [21] for a
comprehensive introduction to the subject.)

One can conceive of two basic types of strings. The first are the so-called closed strings,
which at any moment of time have the topology S1. It turns out that the closed strings
define a consistent perturbation theory in and of themselves, and that it is this case that
leads to the type II supergravities the equation of motion. One might also consider the so-
called open strings which, at any instant of time, have the topology of an interval. In order
for the dynamics of such strings to be well defined, one must specify boundary conditions
at the ends. One possibility is to impose Neumannn boundary conditions to describe the
free ends. Another possibility is to impose Dirichlet boundary conditions requiring the end
points of the string to remain fixed at some points of the spacetime. One can also consider a
mixture of Dirichlet and Neumann boundary conditions, insisting that the end of the string
remain, attached to some submanifold of spacetime, but otherwise leaving it free to roam
around the surface. Surfaces associated with such Dirichlet boundary conditions are known
as Dirichlet submanifolds, that is, D-branes. To shorten the long discussion, we just stress that
it turns out that the Dirichlet submanifolds are sources of the Ramond-Ramond gauge fields
and of the gravitational field. That is, they carry both stress-energy and Ramond-Ramond
charges. Summarizing, one can say that in many ways, the discovery of D-branes was a
breakthrough for string theory. D-branes provide nonperturbative solutions to the theory.
They also couple naturally to both open strings, which have gauge fields in their spectrum,
and to closed strings, which have gravitons as vibration modes. This complementary nature
of D-branes makes for a powerful framework for further study of the ideas of gauge/string
duality.

The idea of the gauge/string duality passed though many controversial developments
over few decades. The early hints about a possible gauge/string duality came very close
to reality with the development of the concept of Dp-branes and their identification
as the sources of the well-known black p-brane solutions of type IIB supergravity. The
key observation was that the low energy dynamics of a stack of N coincident Dp-
branes can be equally well described by an SU(N) supersymmetric Yang-Mills theory
in p + 1 dimensions and an appropriate limit of a p-brane gravitational background.
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The first gauge theory studied in this context is the large NN = 4SU(N) supersym-
metric Yang-Mills theory in 1 + 3 dimensions which is a maximally supersymmetric
conformal field theory. The corresponding gravitational background is, as proposed by
Maldacena [1, 2], the near horizon limit of the extremal 3-brane solution of type IIB
supergravity. This was the original formulation of the standard (by now) AdS/CFT
correspondence.

An important step was the understanding of the role of one of the additional
coordinates (supplementing the four usual ones) as a renormalization-group scale. The idea
was further promoted demonstrating the possibility of self-consistent account of the back
reaction of the gravity on the D-branes and vice versa. Further development of this idea
leads to the formulation of the AdS/CFT correspondence. We refer the reader to the extensive
review [22] for a detailed historical overview and a detailed list of references and focus on
the physical aspects of the correspondence.

Low Energy Dynamics of D3-Branes and the Decoupling Limit

When there are N parallel Dp-branes, their low energy dynamics is described by a reduction
of the N = 1 supersymmetric ten-dimensional Yang-Mills theory of the gauge group
U(N) to the p + 1 dimensional supersymmetric Yang-Mills-Higgs theory. The physics of the
supersymmetric Yang-Mills systems can be understood by that of the D-brane dynamics and
vice versa.

Let us consider a stack of N coincident D3-branes. This system has two different kinds
of perturbative-type IIB string theory excitations, namely, open strings that begin and end on
the stack of branes and closed strings which are the excitations of empty space. Let us focus
on the low-energy massless sector of the theory.

The first type of excitations corresponds to zero length strings that begin and end
on the D3-branes. The orientation of these strings is determined by the D3-brane that they
start from and the D3-brane that they end on. Thus, the states describing the spectrum of
such strings are labeled by λij , where i, j = 1, . . . ,N. It can be shown that in the case of
oriented strings [21] λij transform in the adjoint representation of U(N). On the other side,
the massless spectrum of the theory should form anN = 4 supermultiplet in 1+3 dimensions.
The possible form of the interacting theory (if we take into account only interactions among
the open strings) is thus completely fixed by the large amount of supersymmetry that we
have and is theN = 4U(N) supersymmetric Yang-Mills theory. Note that U(N) came from
the transformation properties of λij . On the other side, U(N) can be thought of as a direct
product ofU(1) and SU(N), geometrically theU(1) corresponds to the collective coordinates
of the stack of D3-branes. We will restrict ourselves to the case when those modes were not
excited; we refer the reader to [22] for further discussion on this point.

The second kind of excitations is that of type IIB closed strings in flat space. The low-
energy massless sector is thus a type IIB supergravity in 1 + 9 dimensions.

The complete action of the system is a sum of the actions of those two different sectors
plus an additional interaction term. This term can be arrived at by covariantizing the brane
action after introducing the background metric for the brane [23]. It can be shown [22] that
in the α′ → 0 limit the interaction term vanishes and the two sectors of the theory decouple.

To summarize, the low energy massless perturbative excitations of the stack of D3-
branes are given by two decoupled sectors, namely,N = 4SU(N) supersymmetric Yang-Mills
theory and supergravity in flat 1 + 9 space-time. Our next step is to consider an equivalent
description of this system in terms of effective supergravity solution.
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Let us consider the extremal black 3-brane solution of type IIB supergravity. The
corresponding gravitational background is given by [21]

ds2 = H−1/2
3 ημνdx

μdxν +H1/2
3 dxidxi,

e2Φ = g2
s ,

C(4) = H−1
3 g−1

s dx
0 ∧ · · · ∧ dx3,

(3.1)

where μ = 0, . . . , 3, i = 4, . . . , 9, and the harmonic (in six dimensions) function H3 is given by

H3 = 1 +
4πg3Nα′2

r4
. (3.2)

The integer number N quantizes the flux of the five-form field strength dC(4). It can also be
interpreted as the number of D3-branes sourcing the geometry. We note that the elementary
D3-brane solutions for small y have a warp factor describing a “throat” geometry. For very
large y, the throat opens into a flat R

1,4 space. Taking the near horizon limit of the geometry
corresponds to sending α′ → 0 while keeping the quantity u = r/α′ fixed. Such a limit serves
two goals: first it enables one to zoom in the geometry near the extremal horizon, and second
it corresponds to a low energy limit in the string theory defined on this background. After
leaving only the leading terms in α′, one can obtain the following metric [1, 2]:

ds2 =
u2

R2

(
−dx2

0 + dx
2
1 + dx

2
2 + dx

2
3

)
+ R2du

2

u2
+ R2dΩ2

5,

C(4) =
1
gs

u4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3,

eΦ = gs,

R4 = 4πgsNcα
′2.

(3.3)

The background in (3.3) is that of an AdS5 × S5 space-time of radius R. Note that from a
point of view of an observer at r → ∞, the type IIB string theory excitations living in the
near horizon area, namely, superstring theory on the background (3.3), will be redshifted by
an infinite factor of √gtt = H−1/4

3 . Therefore, we conclude that type IIB superstring theory
on the background of AdS5 × S5 should contribute to the low-energy massless spectrum of
the theory seen by an observer at infinity. However, an observer at infinity has another type
of low-energy massless excitations of type IIB string theory, namely, type IIB supergravity
on flat 1 + 9 space or gravitational waves. Those two different types of excitations can be
shown to decouple form each other. To verify this one can consider the scattering amplitudes
of incident gravitons of the core of the geometry (the near horizon area). It can be shown
that at low energies (ω � 1/R) the absorption cross-section of such a scattering σabs goes
like [24, 25] σabs ∝ ω3R8. Therefore, one has that σabs → 0 and those two types of excitations
decouple in the low energy limit ω → 0.

Let us see what the decoupling limit means for the string sigma model in the D3-brane
background. We will concentrate here on the metric part, thereby ignoring the contributions
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from the five-form field F5. We denote the D = 10 coordinates by xM,M = 0, 1, . . . , 9, and
the metric by GMN(x). We choose the first 4 coordinates to coincide with xμ of the Poincaré
invariant D3 worldvolume, while the coordinates on the 5-sphere are xM for M = 5, . . . , 9
and the coordinate x4 = u. The full D3-brane metric takes the form ds2 = GMNdx

MdxN =
R2G̃MN(x;R)dxMdxN , where the rescaled metric G̃MN is given by

G̃MN(x;R)dxMdxN =

(

1 +
R4

u4

)1/2(
du2

u2
+ dΩ2

5

)(

1 +
R4

u4

)−1/2
ηij

u2
dxidxj. (3.4)

Substituting this metric back into the nonlinear sigma model, we obtain

SG =
1

4πα′

∫

Σ

√
−γγmnGMN(x)∂mxM∂nxN =

R2

4πα′

∫

Σ

√
−γγmnG̃MN(x)∂mxM∂nxN. (3.5)

The overall coupling constant for the sigma model dynamics is given by

R2

4πα′
=

√
λ

4π
, λ ≡ gsN. (3.6)

Keeping gs and N fixed but letting α′ → 0 implies that R → 0. It is easy to see that under
this limit the sigma model action admits a smooth limit, given by

SG =

√
λ

4π

∫

Σ

√
−γγmnG̃MN(x)∂mxM∂nxN, (3.7)

where the metric G̃MN(x; 0) is the metric on AdS5 × S5,

GMN(x;R)dxMdxN =
ηij

u2
dxidxj +

du2

u2
+ dΩ2

5, (3.8)

rescaled to unit radius. Moreover, the coupling 1/
√
λ has taken over the role of α′ as the

nonlinear sigma model coupling constant and the radius R has canceled out.

The AdS/CFT Correspondence

As we learned from the above, the massless sector of the low energy dynamics of N
coincident D3-branes allows two possible descriptions. Conjecturing that these descriptions
are equivalent is the core of Maldacena’s AdS/CFT correspondence [1, 2]. Notice that in
both descriptions one part of the decoupled sectors is a type IIB supergravity in flat space.
Thus, we are naturally led to the conclusion that type IIB superstring theory on the background
of AdS5 × S5 background is dual to N = 4SU(N) supersymmetric Yang-Mills theory in 1 + 3
dimensions. We have presented this statement in a diagrammatic way in Figure 1.
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Type IIB superstring theory

on the background of AdS5 × S5 +

+

Type IIB supergravity
in flat 1 + 9 space-time

N = 4SU(Nc) SUSY YM Type IIB supergravity
in flat 1 + 9 space-time

Figure 1: A diagrammatic statement of the Ads/Cft correspondence.

A further hint supporting the AdS/CFT correspondence is that the global symmetries
of the proposed dual theories match. Indeed, an AdS5 space-time of radius R can be
embedded in an R

2,6 flat space. It can then be naturally described as a hyperboloid of
radius R and thus has a group of isometry SO(2, 6) which is also the group of rotations
in 2 + 4 dimensions. On the other side, the S5 part of the geometry has a group of
isometry SO(6) (the group of rotations in 6 dimensions). This leads us to the conclusion
that the total global symmetry of string theory on AdS5 × S5 gravitational background
is SO(2, 4) × SO(6). It is satisfying that the corresponding gauge theory has the same
global symmetry. Indeed, it is a well-known fact that the N = 4 supersymmetric Yang-
Mills theory in 1 + 3 dimensions is a conformal field theory. As such it should has
the global symmetry of the conformal group in 1 + 3 dimensions, but this is precisely
SO(2, 4). Actually, since the theory is supersymmetric, the full global symmetry group is
the superconformal group which includes an SU(4) global R-symmetry. In particular, this
group rotates the gauginos of the super Yang-Mills theory. However, it is well known
that SU(4) ∼= SO(6), and therefore the global symmetry of the gauge theory is indeed
SO(2, 4) × SO(6)!

An important aspect of the correspondence is the regime of the validity of the dual
description. Depending on the precise way in which we are taking the α′ → 0 limit,
there are two basic forms of the AdS/CFT correspondence. The strongest form is that
the string/gauge correspondence holds for any N. Unfortunately, this strong form of the
conjecture cannot be tested directly since it is not known how to quantize superstring
theory on a curved background in the presence of Ramond-Ramond fluxes [26]. The
second form of the conjecture holds in the t’Hooft limit when N → ∞ and the t’Hooft
coupling λ ∝ gsN is kept fixed. In this way on gauge side of the correspondence, only
planar diagrams contribute to the partition function while on string side the required
gs → 0 limit suggests semiclassical limit of the superstring theory on AdS5 × S5. An
important observation is that large λ � 1 suggests large AdS radius R ∝ λ1/4 and hence
small curvature of the AdS background. This implies that the supergravity description is
perturbative and thus provides an analytic tool for perturbative studies of nonperturbative
field theory phenomena. On the other side, if we are at weak t’Hooft coupling (λ �
1), we can perform perturbative studies on gauge side of the correspondence and
transfer the result to the perturbatively inaccessible regime of the supergravity description.
Therefore, we conclude that the AdS/CFT correspondence is a strong/weak duality. In
this work, we will concentrate solely on the study of strongly coupled λ � 1 Yang-Mills
theories. Hence, we will perform the analysis on the supergravity side of the AdS/CFT
correspondence.
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The AdS/CFT Dictionary

It did not take long until an explicit formulation of Maldacenas conjecture was found.
Gubser et al. [27] and Witten [28] independently proposed to identify the classical on-shell
supergravity action, expressed in terms of given boundary values, with the effective action of
super Yang-Mills theory, where the supergravity boundary values play the roles of generating
currents. Moreover, Witten suggested that via this identification any field theory action on
(d+1)-dimensional anti-de Sitter space gives rise to an effective action of a field theory on the
d-dimensional boundary of Anti-de Sitter space. Most importantly, this field theory on the
boundary must be a conformal field theory, because the AdS symmetries act as conformal
symmetries on the asymptotic boundary. This duality has since been called the AdS/CFT
correspondence.

The general correspondence formula is [28]

∫

Ψ0

DΨe−IAdS[Ψ] =
〈

exp
∫
ddxO(x)Ψ0(x)

〉
, (3.9)

where the functional integral on the left-hand side is over all fields Ψ whose asymptotic
boundary values are Ψ0, and O denotes the conformal operators of the boundary conformal
field theory.

In the classical limit, which will be considered exclusively throughout this Chapter, the
functional integral on the left-hand side of (3.9) becomes redundant, and the correspondence
formula can be given in the simple, form [27, 28]:

IAdS[Ψ0] =WCFT[Ψ0], (3.10)

where IAdS is the classical on-shell action of an AdS field theory, expressed in terms of the
field boundary values Ψ0, and WCFT is the CFT effective action with generating currents,
given by minus the logarithm of the right-hand side of (3.9). However, one must expect IAdS

to be divergent as it stands, because of the divergence of the AdS metric on the AdS horizon,
x0 = 0. Thus, in order to extract the physically relevant information, the on-shell action has
to be renormalized by adding counter terms, which cancel the infinities. After defining the
renormalized, finite action by

IAdS,fin = IAdS − Idiv, (3.11)

where Idiv stands for the local counter terms, one identifies IAdS,fin with the CFT effective
action. Thus, the meaningful correspondence formula is

IAdS,fin ≡WCFT. (3.12)

Given a field theory action on AdS space and a suitable regularization method, it is
straightforward to calculate the renormalized on-shell action IAdS,fin. On the other hand, the
CFT effective action

WCFT[Ψ0] = − ln
〈

exp
∫
ddxO(x)Ψ0(x)

〉
(3.13)
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contains all information about the conformal field theory living on the AdS horizon, in
that all correlation functions of its operators can be obtained in a standard fashion. Thus,
the AdS/CFT correspondence formula (3.12) provides for the most amazing fact that the
properties of certain conformal field theories can be obtained from seemingly unrelated
theories, namely, field theories on AdS spaces. Moreover, any field theory on AdS space,
which includes gravity, has a corresponding counterpart CFT, whose action might not even
be known. Thus, the AdS/CFT correspondence might be an invaluable tool for formulating
nontrivial CFT’s in various dimensions, although studies of this aspect.

Let us focus on the precise way that the AdS/CFT correspondence is implemented on
the example of a scalar field φ. After a closer look at the geometry of the AdS5×S5 background,
we conclude that it has five noncompact directions. Four of them are parallel to the D3-branes
world volume and correspond to the 1 + 3 directions of the dual gauge theory. The fifth
non-compact direction is the radial direction u (radial in the transverse, to the D3-branes,
R

6 space) and its interpretation in the dual gauge theory is not obvious. To shed more light
on it, let us consider the action of a free massless scalar field in 1 + 3 dimensions [26]:

S =
∫
d4x

(
∂φ

)2
. (3.14)

The corresponding field theory is conformal and thus has a global symmetry SO(2, 4) which
is the conformal group in 1 + 3 dimensions. Therefore, we can consider the transformation
properties of the scalar field φ under the action of the dilatation operator. One can verify that
the transformation:

x −→ eαx, φ −→ e−αφ, (3.15)

leaves the action (3.14) invariant. Furthermore, we learn that the scalar field φ has a scaling
dimension one. On the other side, the SO(2, 4) group is the group of isometry of AdS5 and
one can verify from (3.3) that the transformation x → eαx suggests

u −→ e−αu. (3.16)

Therefore, we learn that the coordinate u scales as energy under dilations and thus has a
natural interpretation as an energy scale of the dual gauge theory.

The further development of the AdS/CFT correspondence resulted in a map between
gauge invariant operators inN = 4 super Yang-Mills in a particular irreducible representation
of the SU(4) R-symmetry group and supergravity fields in the isomorphic representation of
the SO(6) global symmetry. These representations are obtained after Kaluza-Klein reduction
of the supergravity fields on the internal S5 sphere. Let us consider for simplicity the case of
a scalar field of mass m, propagating on the AdSd+1 background. The relevant action is [26]

S =
∫
ddx du

√
−g

(
gab∂aφ∂bφ −m2φ2

)
. (3.17)
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The solution of the corresponding equation of motion the following asymptotic behavior at
large u:

φ(u, x) =
(

1
u

)4−Δ
φ0(x) +

(
1
u

)Δ

〈O(x)〉, (3.18)

where

Δ =
d

2
+

√
d2

4
+ R2m2. (3.19)

Note that the supergravity field φ(u) is a scalar field and is thus invariant under the action
of the dilatation operator because the latter is one of the generators of the global symmetry
SO(2, 4). Therefore, we conclude that φ0 and 〈O(x)〉 carry scaling dimensions 4 − Δ and Δ,
respectively. In [27] it was suggested that φ0 and 〈O(x)〉 correspond to the source and the
vacuum expectation value of the gauge invariant operator O(x). It is also worth noting that
the expression:

∫
ddxφ0(x)〈O(x)〉 = inv. (3.20)

is invariant under the SO(2, 4) global symmetry. It was suggested that the exact form of the
map is given by the relation [27, 28]:

〈
e
∫
ddxφ0(x)〈O(x)〉

〉

CFT
= ZSugra

[
φ0(x)

]
, (3.21)

where

ZSugra
[
φ0(x)

]
= lim

ε→ 0
ZSugra

[
φ0

(
1
ε
, x

)
= εd−Δφ0(x)

]
. (3.22)

That is, the generating functional of the conformal field theory coincides with the generating
functional for tree level diagrams in supergravity. We refer the reader to the extensive review
[22] for more subtleties on the precise way of taking the ε → 0 limit in (3.22).

Formula (3.21) has been tested by comparing correlation functions of the N = 4
quantum field theory with classical correlation functions in AdSd. Note that the tree level
approximation on supergravity side is valid only at strong

′
t Hooft coupling and therefore the

corresponding conformal field theory is strongly coupled. This is why the correspondence
was tested in this way only for correlation functions which satisfy non-renormalization
theorems and hence are independent on the coupling [26]. In particular, it applies for the
two- and three-point functions of 1/2 BPS operators [29, 30].

Further checks of the correspondence beyond the 1/2 BPS sector were started with the
so-called plane-wave string/gauge theory duality, where one takes appropriate plane-wave
limit of the AdS5×S5 background [31]. The key point of this limit is that superstring theory on
this background can be exactly quantized. Recently a significant progress towards quantizing
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superstring theory on AdS5 × S5 has been achieved using integrable spin chain models. We
refer the reader to [32, 33] for more details on these vast subjects.

3.2. Adding Flavors to the Correspondence

Direct consequence of the confining property of QCD is the fact that the low energy
dynamics of the theory is governed by color singlets, such as mesons, baryons, and glueballs.
Mesons and baryons are bound states of quarks, the latter transform in the fundamental
representation of SU(3). The fact that at low energy QCD is strongly coupled suggests that
it is not accessible for perturbative studies. This is why it is important to come up with
an alternative nonperturbative techniques describing the strongly coupled regime of Yang-
Mills theories and in particular Yang-Mills theories containing matter in the fundamental
representation of the gauge group, such as QCD.

Further need of alternative nonperturbative techniques applicable to the properties
of the fundamental fields in the strongly coupled regime of non-abelian gauge theories is
required by the very recent discoveries of the properties of matter obtained in heavy ion
collision experiments. More precisely the fact is that the quark-gluon plasma, which is the
phase of matter of the fireballs obtained in such experiments, is not the expected weakly
coupled quark-gluon plasma predicted by the standard perturbative QCD but is classified as
a strongly coupled quark-gluon plasma, a novel phase of matter that provides challenge for
the society of theoretical physicists.

One of the purposes of the study of the AdS/CFT correspondence is to develop the
above-mentioned analytic tools for the study of strongly coupled Yang-Mills theories. The
original form of the conjecture that we described in the previous section focuses on a gauge
theory with a huge amount of symmetry, namely, the N = 4 super Yang-Mills theory. On
way to make the correspondence more applicable to realistic gauge theories, such as QCD, is
to reduce the amount of the supersymmetry of the theory by introducing additional gauge
invariant operators. This approach though fruitful still has the weakness that the matter
content of the dual gauge theory, more precisely the fermionic degrees of freedom, transforms
in the adjoint representation of the gauge group. In other words, there are no fundamental
fields in the theory. The reason is that both ends of the strings, producing the field content
of the gauge theory, are attached to the same stack of D3-branes and the corresponding
states transform in the adjoined representation of the gauge group. In order to introduce
fundamental matter, one needs to consider separate stack of D-branes.

The easiest way to introduce fundamental fields in the context of the AdS/CFT
correspondence is to consider an additional stack of Nf D7-branes [3]. (From now on we will
useNc as a notation for the number of the D3-branes sourcing the gravitational background.)
Since the D7-branes’ world volume is higher dimensional and non-compact in the transverse
to the D3-branes dimensions, the D7-branes have infinite “internal” volume and thus their
gauge coupling vanish making their gauge symmetry group a global symmetry. In this
way, we introduce a family of fundamental matter with global flavor symmetry SU(Nf).
To be more precise, let us consider two stacks of parallel Nc D3-branes and Nf D7-branes
embedded in the following way (see Table 1).

The low energy spectrum of the strings stretched between the D3- and D7-branes
directions gives rise to theN = 2 hypermultiplet containing two Weyl fermions of opposite
chirality coming from the light-cone modes of strings stretched along the NN and DD
directions (2,3,8,9) and two complex scalars coming from strings stretched along the ND
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Table 1: Embedding of the flavor D7-branes.

0 1 2 3 4 5 6 7 8 9
D3 - - · · · · · · · ·
D7 - - - - · · - - · ·

directions, namely, 4,5,6,7. Now if we consider Nf � Nc and take the large Nc limit. We
can substitute the stack of D3-branes with an AdS5 × S5 space and study the Nf D-branes
in the probe limit using their Dirac-Born-Infeld action. On gauge side, this corresponds to
working in the quenched approximation (Nf � Nc) and taking the large N

′
ct Hooft limit. If

the D3- and D7-branes are separated in their transverse (8,9)-plane, then the strings stretched
between them have a final length and hence final energy. It can be shown that [21] the mass
of the hypermultiplet is given by the energy of the string or the distance of separation L
multiplied by the string tension mq = L/(2πα′).

Let us study closer the symmetry of the set up. If the D3- and the D7-branes overlap
the hypermultiplet is massless (mq = 0). In this case, the SO(6) rotational symmetry of the
transverse R

6 space is broken to the product SO(4)×SO(2), corresponding to rotations along
the ND directions (4,5,6,7) and the DD directions (8,9), respectively. This is equivalent to an
SU(2)L × SU(2)R × U(1)R global symmetry and suggests that the gauge theory has an R-
symmetry group SO(2)R × U(1)R [34], which is indeed the case, when the hypermultiplet
is massless. If the D3- and D7-branes are separated, it is known that the R-symmetry is just
SU(2)R, which again fits the fact that the SO(2) rotational symmetry in the (8,9)-plane is
broken.

The Dictionary of the Probe Brane

Let us now focus on the precise way that the AdS/CFT dictionary is implemented. The
dynamics of the D7-brane probe is described by the Dirac-Born-Infeld action including the
Chern-Simons term [21]:

S

Nf
= −μ7

∫

M8

e−Φd8ξ

√

−det
(
P[Gab] + (2πα′)2Fab

)
+
(2πα′)2

2
μ7

∫

M8

P
[
C(4)

]
∧ F ∧ F,

(3.23)

where (2πα′)Fab = P[Bab] + (2πα′)Fab and μ7 = [(2π)7α′4]
−1

. It is convenient to introduce the
following coordinates:

ρ = u cos θ, L = u sin θ, (3.24)

and consider the ansatz:

L = L
(
ρ
)
, φ = const. (3.25)
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Then the lagrangian describing the D7-brane embedding is

L ∝ ρ3
√

1 + L′
(
ρ
)2, (3.26)

leading to the equation of motion:

L′
(
ρ
)
= − 2c

√
ρ6 − 4c2

. (3.27)

At large ρ the solution has the following behavior:

L
(
ρ
)
= m +

c

ρ2
+ · · · · (3.28)

Now if we introduce the field:

χ(u) =
L
(
ρ
)

ρ2 + L
(
ρ
)2

=
1
u
m +

1
u3
c + · · · , u2 = ρ2 + L

(
ρ
)2
, (3.29)

we can see that χ(u) has the same behavior as the field φ(u, x) from (3.18). This is quite
suggesting. The asymptotic value of L(∞) = m is exactly the separation of the D3- and D7-
branes and is thus related to the mass of the hypermultiplet via mq = m/(2πα′). Since the
hypermultiplet chiral fields are our quarks, we will call mq the bare quark mass. Therefore,
the coefficient c should be proportional to the vev of the operator that couples to the bare
quark mass but this is the quark condensate! This is an example of the how the generalized
AdS/CFT dictionary works at the level of a D7-brane probing. Let us provide the exact
relation between the quark condensate 〈Oq〉 and the coefficient c:

〈Oq〉 = −
Nf

(2πα′)3g2
YM

c. (3.30)

We refer the reader to the appendix of Chapter 2 for more details on the last calculation and
to [35] for an elegant presentation of the holographic renormalization of probe D-branes in
AdS/CFT.

Now let us go back to (3.27) and note that in order for the D7-brane to close smoothly
in the bulk of the geometry, we need to impose L′(0) = 0. This is possible only for c =
0 and thus we conclude that the condensate of the theory vanishs. But the dual gauge
theory is supersymmetric this is why it is not surprising that the quark condensate is zero.
Furthermore, since there is no potential between the D3- and D7-branes (because of the
unbroken supersymmetry), the D7-brane should not bend at infinity and this is why the
solution for the D7-brane embedding should be simply L ≡ m, as it is.

Note that the analysis that led to (3.30) requires that the gravitational background
be only asymptotically AdS5 × S5. In fact, in all cases that we are going to consider in this
work, there will be some sort of the deformation of the bulk physics, coming either from
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the gravitational background or from the introduction of external fields. This will break the
supersymmetry and will capacitate the dual gauge theory to develop a quark condensate.
In Section 4, we will use this approach to provide a holographic description of magnetic
catalysis of chiral symmetry breaking. Through the rest of this review, the study of the quark
condensate as a function of the bare quark mass will enable us to explore the phase structure
of the dual gauge theory and uncover a first-order phase transition associated to the melting
of the light mesons of the theory.

4. Magnetic Catalysis of Mass Generation in
Holographic Gauge Theories

The phenomenon of dynamical flavor symmetry breaking catalyzed by an arbitrarily
weak magnetic field is known from [5, 18, 19] and [6–8]. This effect was shown to be
model independent and therefore insensitive to the microscopic physics underlying the low
energy effective theory. In particular, the infra-red (IR) description of the Goldstone modes
associated with the dynamically broken symmetry should be universal. One therefore expects
to be able to study this phenomenon using the holographic formalism.

4.1. Mass Generation in the D3/D7 Setup

There are various ways in which one can study the breaking of the chiral symmetry
holographically. This has been studied in the past by the deformation of AdS5 × S5 by a field
corresponding to a marginally irrelevant operator on the gauge theory side [36–38]. In the
present case, however, we will stimulate the formation of a condensate by turning on the
magnetic components of the U(1) gauge field of the D7-branes Fαβ (equivalent to exciting
a pure gauge B-field in the supergravity background). This U(1) gauge field corresponds
to the diagonal U(1) of the full U(Nf) gauge symmetry of the stack of D7-branes. Since
the D7-branes wrap an infinite internal volume, the dynamics of the U(Nf) gauge field is
frozen in the four-dimensional theory and the U(Nf) gauge symmetry becomes a global
flavor symmetry U(Nf) = U(1)B ×SU(Nf). Therefore, the U(1) gauge field that we consider
corresponds to the gauged U(1)B baryon symmetry and the magnetic field that we introduce
couples to the baryon charge of the fundamental fields [39].

4.1.1. Generalities

The problem thus boils down to studying embeddings of probe D7-branes in the AdS5 × S5

background parameterized as follows:

ds2 =
ρ2 + L2

R2

[
−dx2

0 + dx
2
1 + dx

2
2 + dx

2
3

]
+

R2

ρ2 + L2

[
dρ2 + ρ2dΩ2

3 + dL
2 + L2dφ2

]
,

dΩ2
3 = dψ2 + cos2ψdβ2 + sin2ψdγ2,

gsC(4) =
u4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3, eΦ = gs, R4 = 4πgsNcα

′2,

(4.1)

where ρ, ψ, β, γ, and L, φ are polar coordinates in the transverse R
4 and R

2 planes, respectively.
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Here xa=1···3, ρ, ψ, β, γ parameterize the world volume of the D7-brane and the
following ansatz is considered for its embedding:

φ ≡ const, L ≡ L
(
ρ
)
, (4.2)

leading to the following induced metric on its worldvolume:

ds̃ =
ρ2 + L

(
ρ
)2

R2

[
−dx2

0 + dx
2
1 + dx

2
2 + dx

2
3

]
+

R2

ρ2 + L
(
ρ
)2

[(
1 + L′

(
ρ
)2

)
dρ2 + ρ2dΩ2

3

]
. (4.3)

The D7-brane probe is described by the DBI action:

SDBI = −Nfμ7

∫

M8

d8ξe−Φ
[
−det

(
Gab + Bab + 2πα′Fab

)]1/2
. (4.4)

Here μ7 = [(2π)7α′4]−1 is the D7-brane tension, Gab and Bab are the induced metric
and B-field on the D7-brane’s world volume, while Fab is its worldvolume gauge field. A
simple way to introduce a magnetic field is to consider a pure gauge B-field along the x2, x3

directions:

B(2) = H dx2 ∧ dx3. (4.5)

Since Bab and Fab appear on equal footing in the DBI action, the introduction of such a B-field
is equivalent to introducing an external magnetic field of magnitude H/(2πα′) to the dual
gauge theory.

Though the full solution of the embedding can only be calculated numerically, the
large ρ behaviour (equivalently the ultraviolet (UV) regime in the gauge theory language)
can be extracted analytically:

L
(
ρ
)
= m +

c

ρ2
+ · · · · (4.6)

As discussed in [37], the parameters m (the asymptotic separation of the D7- and D3- branes)
and c (the degree of bending of the D7-brane in the large ρ region) are related to the bare
quark mass mq = m/2πα′ and the fermionic condensate 〈ψψ〉 ∝ − c, respectively. It should
be noted that the boundary behavior of L(r) really plays the role of source and vacuum
expectation value (vev) for the full N = 2 hypermultiplet of operators. In the present case,
where supersymmetry is broken by the gauge field configuration, we are only interested
in the fermionic bilinears and this will refer only to quarks, and not their supersymmetric
counterparts.

At this point it is convenient to introduce dimensionless parameters c̃ = c/R3H3/2 and
m̃ = m/R

√
H. By performing a numerical shooting method from the infrared while varying

the small ρ boundary value, L(ρ → 0) = LIR, we recover the parametric plot presented in
Figure 2, the main result explored in [10].
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Figure 2: Parametric plot of c̃ against m̃ for fundamental matter in the presence of an external magnetic
field. The lower (black) line represents the curve 1/m̃, fitting the large m̃ behavior. It is also evident that
for the outer branch of the spiral, for m̃ = 0 the condensate, 〈ψψ〉 is non-zero. The corresponding value of
the condensate is c̃cr = 0.226.

The lower (black) curve corresponds to the analytic behavior of c̃(m̃) = 1/m̃ for large
m̃. The most important observation is that at m̃ = 0 there is a non-zero fermionic condensate:

〈
ψψ

〉
= −

NfNc

(2πα′)3λ
c = −

NfNcc̃cr

(2π2)3/4λ1/4

(
H

2πα′

)3/2

, (4.7)

Where λ = g2
YMNc is the t’Hooft coupling and c̃cr ≈ 0.226 is a numerical constant

corresponding to the y-intercept of the outer spiral from Figure 2. Equation (4.7) is telling
us that the theory has developed a negative condensate that scales as (H/2πα′)3/2. This is
not surprising, since the theory is conformal in the absence of the scale introduced by the
external magnetic field. The energy scale controlled by the magnetic field, (H/2πα′)1/2, leads
to an energy density proportional to (H/2πα′)2. In order to lower the energy, the theory
responds to the magnetic field by developing a negative fermionic condensate.

Another interesting feature of the theory is the discrete-self-similar structure of the
equation of state (c̃ versus m̃) in the vicinity of the trivial m̃ = 0 embedding, namely, the
origin of the plot from Figure 2 presented in Figure 3.

This double logarithmic structure has been analyzed in [11], where a study of the
meson spectrum revealed that only the outer branch of the spiral is tachyon free and
corresponds to a stable phase having spontaneously broken chiral symmetry. In [12] it has
been shown that an identical structure is also present for the D3/D5 system and it has been
demonstrated that this structure is a universal feature of the magnetic catalysis of mass
generation for gauge theories holographically dual to Dp/Dq intersections.

A further result of [10, 11, 13] was the detailed analysis of the light meson spectrum
of the theory. In [10] it was shown that the introduction of an external magnetic field breaks
the degeneracy of the spectrum studied in [34]. This manifests itself as Zeeman splitting of
the energy levels. In the limit of zero quark mass, the study also revealed the existence of
a massless “η′ meson” corresponding to the spontaneously broken U(1)R symmetry. In the
next subsection, we will review the study of the meson spectrum of the theory.
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Figure 3: A magnification of Figure 2 shows the spiral behavior near the origin of the (−c̃, m̃)-plane. The
second (left) spiral arm represents the (m̃,−c̃) → (−m̃, c̃) symmetry of the theory.

4.1.2. Meson Spectrum

General Properties

To study the scalar meson spectrum, one considers quadratic fluctuations [34] of the
embedding of the D7-brane in the transverse (L, φ)-plane. It can be shown that because of the
diagonal form of the metric the fluctuation modes along the φ coordinate decouple from the
one along L. However, because of the noncommutativity introduced by the B-field, we may
expect the scalar fluctuations to couple to the vector fluctuations. This has been observed in
[40], where the authors considered the geometric dual to noncommutative super Yang Mills
as well as in the studies performed in [10, 11, 13].

Let us proceed with obtaining the action for the fluctuations. To obtain the contribution
from the DBI part of the action, we consider the following expansion:

L = L0
(
ρ
)
+ 2πα′χ, φ = 0 + 2πα′, (4.8)

where L0(ρ) is the classical embedding of the D7-brane solution to the equation of motion
derived from the action (4.4). To second order in α′, we have the following expression:

Eab = E0
ab + 2πα′E1

ab +
(
2πα′

)2
E2
ab, (4.9)

where E0, E1, E2 are given by

E0
ab = Gab

(
ρ, L0

(
ρ
)
, ψ

)
+ Bab,

E1
ab =

R2L′0
ρ2 + L2

0

(
∂aχδ

ρ

b
+ ∂bχδ

ρ
a

)
+ ∂L0Gabχ + Fab,

E2
ab =

R2

ρ2 + L2
0

(
∂aχ∂bχ +L2

0∂aΦ∂bΦ
)
−

2R2L0L
′
0

(
ρ2 + L2

0

)2

(
∂aχδ

ρ

b + ∂bχδ
ρ
a

)
χ+

1
2
∂2
L0
Gabχ

2.

(4.10)
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Here Gab and Bab are the induced metric and B field on the D7-brane’s world volume. Now
we can substitute (4.11) into (4.4)) and expand to second order in α′. It is convenient [40] to
introduce the following matrices:

∥∥∥E0
ab

∥∥∥
−1

= S + J, (4.11)

where S is diagonal and J is antisymmetric:

∥∥∥Sab
∥∥∥ = diag

{

−G−1
11 , G

−1
11 ,

G11

G2
11 +H

2
,

G11

G2
11 +H

2
, G−1

ρρ, G
−1
ψψ, G

−1
αα, G

−1
ββ

}

,

Jab =
H

G2
11 +H

2

(
δa3δ

b
2 − δ

b
3δ

a
2

)
,

G11 =
ρ2 + L2

0

R2
, Gρρ = R2

(
1 + L

′2
0

)

ρ2 + L2
0

, Gψψ =
R2ρ2

ρ2 + L2
0

,

Gαα = cos2ψGψψ, Gββ = sin2ψGψψ.

(4.12)

Now it is straightforward to get the effective action. At first order in α′, the action for
the scalar fluctuations is the first variation of the classical action (4.4) and is satisfied by the
classical equations of motion. Therefore, we focus on the second-order contribution from the
DBI action.

After integrating by parts and taking advantage of the Bianchi identities for the gauge
field, we end up with the following terms [10]. For χ,

Lχ ∝
1
2

√
−E0 R2

ρ2 + L0
2

Sab

1 + L′20
∂aχ∂bχ+

[

∂2
L0

√
−E0 − ∂ρ

(

∂L0

√
−E0

L′0
1 + L′20

)]
1
2
χ2,

(4.13)

and for F:

LF ∝
1
4

√
−E0Saa

′
Sbb

′
FabFa′b′ , (4.14)

and the mixed χ-F terms:

LFχ ∝
sin 2ψ

2
fχF23, (4.15)

and for Φ,

LΦ ∝
1
2

√
−E0

R2L2
0

ρ2 + L2
0

Sab∂aΦ∂bΦ, (4.16)
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where the function f in (4.15) is given by

f
(
ρ
)
= ∂ρ

(

g
(
ρ
) L′0

1 + L′0
2
J23

)

+ J32∂L0g
(
ρ
)
+ 2g

(
ρ
)
J23S22∂L0G11,

with g
(
ρ
)
=

√
−E0

sinψ cosψ
= ρ3

√
1 + L′0

2

√√√
√1 +

R4H2

(
ρ2 + L2

0

)2
.

(4.17)

As can be seen from (4.15), the A2, A3 components of the gauge field couple to the
scalar field χ via the function f . Note that since for ρ → ∞ and L → ∞, we see that J23 → 0,
the mixing of the scalar and vector field decouples asymptotically. In order to proceed with
the analysis we need, to take into account the contribution from the Wess-Zumino part of the
action. The relevant terms to second order in α′ are [40]

SWZ =
(2πα′)2

2
μ7

∫
F(2) ∧ F(2) ∧ C(4) +

(
2πα′

)
μ7

∫
F(2) ∧ B(2) ∧ P̃

[
C(4)

]
, (4.18)

where C(4) is the background R-R potential given in (4.1) and C̃(4) is the pull back of its
magnetic dual. One can show that

C̃4 = − 1
gs

R4ρ4

(
ρ2 + L2

)2
sinψ cosψdψ ∧ dα ∧ dβ ∧ dφ. (4.19)

Writing φ = 2πα′Φ, we write for the pull back P[C̃(4)]:

P
[
C̃(4)

]
= −2πα′

gs

sin 2ψ
2

K
(
ρ
)
∂aΦdψ ∧ dα ∧ dβ ∧ dxa, (4.20)

where we have defined

K
(
ρ
)
=

R4ρ4

(
ρ2 + L2

0

)2
. (4.21)

Now note that the B-field has components only along x2 and x3; therefore, dxa in (4.20) can
be only dρ, dx0, or dx1. This will determine the components of the gauge field which can mix
with Φ. However, after integrating by parts and using the Bianchi identities, one can get the
following simple expression for the mixing term:

−
(
2πα′

)2μ7

gs

∫
d8ξ

sin 2ψ
2

H∂ρKΦF01, (4.22)
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resulting in the following contribution to the complete lagrangian:

LFΦ ∝
sin 2ψ

2
H∂ρKΦF01. (4.23)

Note that this means that only the A0 and A1 components of the gauge field couple to the
scalar field Φ. Next the contribution from the first term in (4.18) is given by

(
2πα′

)2μ7

gs

∫
d8ξ

(
ρ2 + L2

0

)2

8R4
FabFcdε

abcd, (4.24)

where the indices take values along the ρ, ψ, α, β directions of the world volume. This will
contribute to the equation of motion for Aρ,Aψ,Aα, and Aβ which does not couple to the
scalar fluctuations. In this section, we will be interested in analyzing the spectrum of the
scalar modes; therefore, we will not be interested in the components of the gauge field
transverse to the D3-branes worldvolume. However, although there are no sources for these
components from the scalar fluctuations, they still couple to the components along the D3-
branes as a result setting them to zero will impose constraints on the A0 · · ·A3. Indeed, from
the equation of motion for the gauge field along the transverse direction, one gets

3∑

a=0

Saa∂b∂aAa = 0, b = ρ, ψ, α, β. (4.25)

(Here, no summation on repeated indices is intended.) However, the nonzero B-field
explicitly breaks the Lorentz symmetry along the D3-branes’ world volume. In particular
we have

S00 = −S11, S22 = S33
/=S11 (4.26)

which suggests that we should impose

−∂0A0 + ∂1A1 = 0, ∂2A2 + ∂3A3 = 0. (4.27)

We will see that these constraints are consistent with the equations of motion for A0 · · ·A3.
Indeed, with this constraint the equations of motion for χ, Φ and Aμ, μ = 0 · · · 3 are, for χ

1 + L′0
2

g
∂ρ

⎛

⎜
⎝

g∂ρχ
(

1 + L′0
2
)2

⎞

⎟
⎠ +

ΔΩ3χ

ρ2
+

R4

(
ρ2 + L2

0

)2
W̃χ,

+
1 + L′0

2

g

(

−∂ρ

(
∂g

∂L0

L′0

1 + L′0
2

)

+
∂2g

∂L2
0

)

χ +
1 + L′0

2

g
fF23 = 0,

(4.28)
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and for Φ,

1
g
∂ρ

(
gL2

0∂ρΦ

1 + L′0
2

)

+
L2

0ΔΩ3Φ
ρ2

+
R4L2

0
(
ρ2 + L2

0

)2
W̃Φ −

H∂ρK

g
F01 = 0 , (4.29)

and finally for Aa

1
g
∂ρ

(
g∂ρA0

1 + L′0
2

)

+
ΔΩ3A0

ρ2
+

R4

(
ρ2 + L2

0

)2
W̃A0 +

H∂ρK

g
∂1Φ = 0,

1
g
∂ρ

(
g∂ρA1

1 + L′0
2

)

+
ΔΩ3A1

ρ2
+

R4

(
ρ2 + L2

0

)2
W̃A1 +

H∂ρK

g
∂0Φ = 0,

1
g
∂ρ

⎛

⎜
⎝

g∂ρA2
(

1 + L′0
2
)(

1 + R4H2/
(
ρ2 + L2

0

)2
)

⎞

⎟
⎠

+
R4

(
ρ2 + L2

0

)2 + R4H2
W̃A2 +

ΔΩ3A2

ρ2
(

1 + R4H2/
(
ρ2 + L2

0

)2
) −

f

g
∂3χ = 0,

1
g
∂ρ

⎛

⎜
⎝

g∂ρA3
(

1 + L′0
2
)(

1 + R4H2/
(
ρ2 + L2

0

)2
)

⎞

⎟
⎠

+
R4

(
ρ2 + L2

0

)2 + R4H2
W̃A3 +

ΔΩ3A3

ρ2
(

1 + R4H2/
(
ρ2 + L2

0

)2
) +

f

g
∂2χ = 0.

(4.30)

We have defined

W̃ = −∂2
0 + ∂

2
1 +

∂2
2 + ∂

2
3

1 + R4H2/
(
ρ2 + L2

0

)2 . (4.31)

As one can see the spectrum splits into two independent components, namely the vector
modes A0, A1 couple to the scalar fluctuations along Φ, while the vector modes A2, A3 couple
to the scalar modes along χ. However, it is possible to further simplify the equations of motion
for the gauge field. Focusing on the equations of motion for A0 and A1 in equation (4.30), it
is possible to rewrite them as

1
g
∂ρ

(
g∂ρF01

1 + L′0
2

)

+
ΔΩ3F01

ρ2
+

R4

(
ρ2 + L2

0

)2
W̃F01 −

H∂ρK

g

(
−∂2

0 + ∂
2
1

)
Φ = 0, (4.32)

1
g
∂ρ

(
g∂ρ(−∂0A0 + ∂1A1)

1 + L′0
2

)

+
ΔΩ3(−∂0A0 + ∂1A1)

ρ2
+

R4

(
ρ2 + L2

0

)2
W̃(−∂0A0 + ∂1A1) = 0.

(4.33)
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Note that the first constraint in (4.27) trivially satisfies the second equation in (4.32). In this
way we are left with the first equation in (4.32). Similarly, one can show that using the second
constraint in (4.27) the equations of motion in (4.30) for A2 and A3 boil down to a single
equation for F23:

1
g
∂ρ

⎛

⎜
⎝

g∂ρF23
(

1 + L′0
2
)(

1 + R4H2/
(
ρ2 + L2

0

)2
)

⎞

⎟
⎠+

R4

(
ρ2 + L2

0

)2 + R4H2
W̃F23

+
ΔΩ3F23

ρ2
(

1 + R4H2/
(
ρ2 + L2

0

)2
) +

f

g

(
∂2

2 + ∂
2
3

)
χ = 0.

(4.34)

Now let us proceed with a study of the fluctuations along Φ.

Fluctuations along Φ for a Weak Magnetic Field

To proceed, we have to take into account the F01 component of the gauge field strength and
solve the coupled equations of motion. Since the classical solution for the embedding of the
D7-brane is known only numerically, we have to rely again on numerics to study the meson
spectrum. However, if we look at equation of motion derived from (4.4), we can see that the
terms responsible for the non-trivial embedding of the D7-branes are of order H2 [10]. On
the other hand, the mixing of the scalar and vector modes due to the term (4.23) appears at
first order in H. Therefore, it is possible to extract some non-trivial properties of the meson
spectrum even at linear order in H and as it turns out [10], we can observe a Zeeman-like
effect: a splitting of states that is proportional to the magnitude of the magnetic field. Let us
review the study performed in [10].

To first order in H the classical solution for the D7-brane profile is given by

L0 = m +O
(
H2

)
, (4.35)

where m is the asymptotic separation of the D3- and D7-branes and corresponds to the bare
quark mass. In this approximation, the expressions for g(ρ) and ∂ρK(ρ) become

g
(
ρ
)
= ρ3, ∂ρK

(
ρ
)
=

4m2R4ρ3

(
ρ2 +m2

)3
, (4.36)

and the equations of motion for Φ and F01, (4.29) and (4.32), are simplified to

1
ρ3

(
ρ3m2∂ρΦ

)
+
m2ΔΩ3

ρ2
Φ +

m2R4

(
ρ2 +m2

)2
WΦ − 4H

m2R4

(
ρ2 +m2

)3
F01 = 0,

1
ρ3
∂ρ

(
ρ3∂ρF01

)
+
ΔΩ3F01

ρ2
+

R4

(
ρ2 +m2

)2
WF01 − 4H

m2R4

(
ρ2 +m2

)3
P2Φ = 0,

(4.37)
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where

W = −∂2
0 + ∂

2
1 + ∂

2
2 + ∂

2
3, P2 = −∂2

0 + ∂
2
1. (4.38)

This system has become similar to the system studied in [40] and in order to decouple it we
can define the fields:

φ± = F01 ±mPΦ, (4.39)

where P =
√
−∂2

0 + ∂
2
1. The resulting equations of motion are

1
ρ3
∂ρ

(
ρ3∂ρφ±

)
+
ΔΩ3

ρ2
φ± +

R4

(
ρ2 +m2

)2
Wφ± ∓H

4R4m
(
ρ2 +m2

)3
Pφ± = 0. (4.40)

Note thatP2 is the Casimir operator in the (x0, x1) plane only, while W is the Casimir operator
along the D3-branes’ world volume. If we consider a plane wave eix·k, then we can define

eix·k =M2eix·k, P2eix·k =M2
01e

ix·k, (4.41)

and we have the relation:

M2 =M2
01 − k

2
2 − k

2
3 . (4.42)

The corresponding spectrum of M2 is continuous in k2, k3. However, if we restrict ourselves
to motion in the (x0, x1)-plane, the spectrum is discrete. Indeed, let us consider the following
ansatz:

φ± = η±
(
ρ
)
e−ix0k0+ik1x1 . (4.43)

Then we can write

1
ρ3
∂ρ

(
ρ3∂ρη±

)
+

R4

(
ρ2 +m2

)2
M2
±η± ∓H

4R4m
(
ρ2 +m2

)3
M±η± = 0, M± ≡M01±. (4.44)

Let us analyze (4.44). It is convenient to introduce

y = −
ρ2

m2
, M± =

R2

m
M±, P±

(
y
)
=

(
1 − y

)α±η±,

2α± = 1 +
√

1 +M
2
±, ε = H

R2

m2
.

(4.45)
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With this change of variables, equation (4.44) is equivalent to

y
(
1 − y

)
P ′′± + 2

(
1 − (1 − α±)y

)
P ′ − α±(α±−1)P± ± ε

M±
(
1 − y

)2
P± = 0. (4.46)

Next we can expand

P± = P0 ± εP1 +O
(
ε2

)
, α± = α0 ± εα1 +O

(
ε2

)
,

M± =M0 ± εα1
(4α0 + 2)

M0

+O
(
ε2

)
, M0 = 2

√
α0(α0 + 1),

(4.47)

leading to the following equations for P0 and P1:

y
(
1 − y

)
P ′′0 + 2

(
1 − (1 − α0)y

)
P ′0 − α0(α0 − 1)P0 = 0,

y
(
1 − y

)
P ′′1 + 2

(
1−(1 − α0)y

)
P ′1−α0(α0−1)P1 =

(

α1(2α0 − 1)− M0
(
1 − y

)2

)

P0 −2α1yP0.
(4.48)

The first equation in (4.48) is the hypergeometric equation and corresponds to the
fluctuations in pure AdS5 × S5. It has the regular solution [34]:

P0
(
y
)
= F

(
−α0, 1 − α0, 2, y

)
. (4.49)

Furthermore, regularity of the solution for η(ρ) at infinity requires [34] that α0 be discrete,
and hence the spectrum of M0:

1 − α0 = −n, n = 0, 1, . . . ,

M0 = 2
√
(n + 1)(n + 2).

(4.50)

The second equation in (4.48) is an inhomogeneous hypergeometric equation. However, for
the ground state, namely, n = 0, P0 = F(−1, 0, 2, y) = 1 and one can easily get the solution:

P1
(
y
)
=
M0

6
ln

(
1 − y

)
+

(
6α1 −M0

)(
ln

(
−y

)
+

1
y

)
− M0

4
(
1 − y

) . (4.51)

On the other hand, using the definition of P±(y) in (4.45) to first order in ε, we can write

η± =
1

(
1 − y

)α0

(
1 ∓ εα1

α0
ln

(
1 − y

))(
1 ± εP1

(
y
))
, (4.52)
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Figure 4: Plot of M = MR2/m versus H/m for the first three states. The dashed black lines correspond to
the spectrum given by (4.50).

for the ground state α0 = 1 and we end up with the following expression for η±:

η± =
1

1 − y ± ε
M0

4
(
1 − y

)2
± ε

1 − y
(

6α1 −M0

)(

ln
(
−y

)
+

1
y
−

ln
(
1 − y

)

6

)

. (4.53)

Now if we require that our solution is regular at y = 0 and goes as 1/ρ2 ∝ 1/y at infinity, the
last term in (4.53) must vanish. Therefore, we have

α1 =
M0

6
. (4.54)

After substituting in (4.47) and (4.45), we end up with the following correction to the
ground sate [10]:

M± =M0 ±
H

m
. (4.55)

We observe how the introduction of an external magnetic field breaks the degeneracy of the
spectrum given by (4.50) and results in Zeeman splitting of the energy states, proportional
to the magnitude of H. Although (4.55) was derived using the ground state, it is natural to
expect that the same effect takes place for higher excited states. To demonstrate this, it is more
convenient to employ numerical techniques for solving (4.44) and use the methods described
in [36] to extract the spectrum. The resulting plot is presented in Figure 4. As expected, we
observe Zeeman splitting of the higher excited states. It is interesting that (4.55) describes
well not only the ground state, but also the first several excited states.

It turns out that one can easily generalize (4.55) to the case of non-zero momentum in
the (x2, x3)-plane. Indeed, if we start from (4.40) and proceed with the following ansatz:

φ± = η̃±
(
ρ
)
e−ix·k, (4.56)
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we end up with

1
ρ3
∂ρ

(
ρ3∂ρη̃±

)
+

R4

(
ρ2 +m2

)2
M2
±η̃± ∓H

4R4m
(
ρ2 +m2

)3
M01±η̃± = 0,

M01± =
√
M2
± + k

2
23, k23 ≡

√
k2

2 + k
2
3 .

(4.57)

After going through the steps described in (4.45)–(4.53), (4.54) gets modified to

α1 =
M0

6

√√√
√1 +

k2
23

M2
0

. (4.58)

Note that validity of the perturbative analysis suggests that α1 is of the order of α0 and
therefore we can trust the above expression as long as k23 is of the order of M0. Now it is
straightforward to obtain the correction to the spectrum [10]:

M± =M0 ±
H

m

√√√
√1 +

k2
23

M2
0

. (4.59)

We see that the addition of momentum along the (x2 −x3)-plane enhances the splitting of the
states. Furthermore, the spectrum depends continuously on k23.

Fluctuations along Φ for a Strong Magnetic Field

For strong magnetic field, we have to take into account terms of order H2, which means that
we no longer have an expression for L0(ρ) in a closed form and we have to rely on numerical
calculations. We consider the following ansätz:

Φ = ei(k0x
0+k1x

1)h
(
ρ
)
, F01 = ei(k0x

0+k1x
1)f

(
ρ
)
, (4.60)

and define

M2 = k2
0 − k

2
1 . (4.61)

Equations (4.29) and (4.32) are simplified to

1
g
∂ρ

(
gL2

0

1 + L′0
2
∂ρh

)

+
R4L2

0
(
ρ2 + L2

0

)2
M2h −

H∂ρK

g
f = 0,

1
g
∂ρ

(
g

1 + L′0
2
∂ρf

)

+
R4

(
ρ2 + L2

0

)2
M2f −

M2H∂ρK

g
h = 0.

(4.62)
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Note that for large bare masses m (and correspondingly large values of L), the term
proportional to the magnetic field is suppressed and the meson spectrum should approximate
to the result for the pure AdS5×S5 space-time case studied in [34], where the authors obtained
the following relation:

Mn =
2m
R2

√
(n + 1)(n + 3), (4.63)

between the eigenvalue of the nth excited state ωn and the bare mass m. If one imposes the
boundary conditions:

h(ε) = 1, h′(ε) = 0, f(ε) = 1, f ′(ε) = 0, (4.64)

the coupled system of differential equations can be solved numerically [12]. Then by
requiring the functions h(ρ) and f(ρ) to be regular at infinity, one can quantize the spectrum
of the fluctuations. It is also convenient to define the following dimensionless parameter
M̃ = MR/

√
H. The resulting plot for the first three excited states is presented in Figure 5

[12]. There is Zeeman splitting of the states due to the magnetic field. (In the absence of
the field, there are three straight lines emanating from the origin; these are split to form six
curves.) Also, at zero bare quark mass, there is indeed a massless Goldstone mode, appearing
at the end of the lowest curve. Furthermore, the plot in Figure 6 shows that for small bare
quark mass one can observe a characteristic M̃ ∝

√
m̃ dependence. In the next section, we

will review the analysis of the Goldstone mode performed in [12], where an analytic proof of
the Gell-Mann-Oakes-Renner relation [9]:

M2
π = −

2〈ψψ〉
f2
π

mq (4.65)

in the spirit of [37] has been obtained.
Furthermore we will generalize the ansätz (4.60) to consider fluctuations depending

on both the momentum along the magnetic field �k‖ = (k1, 0, 0) and the transverse momentum
�k⊥ = (0, k2, k3) [12]:

Φ = ei(ωt+�k·�x)h
(
ρ
)
, F01 = ei(ωt+�k·�x)f

(
ρ
)
. (4.66)

We also review the result of [12] that for smallω = k0 and |�k| the following dispersion relation
holds:

ω
(
�k
)2

=M2 + �k2
‖ + γ�k

2
⊥, ω = k0; �k‖ = (k1, 0, 0), �k⊥ = (0, k2, k3), (4.67)

where γ is a constant that has been determined.
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Figure 5: There is Zeeman splitting of the states due to the magnetic field. In the absence of the field,
there are three straight lines emanating from the origin; these are split to form six curves. At zero bare
quark mass (the end of the lowest curve), there is indeed a massless Goldstone mode. The straight lines
correspond to the asymptotic AdS results.
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Figure 6: There is a characteristic M̃ ∝
√
m̃ behavior at small bare quark mass.

TheM2 ∝ m Dependence

Using an approach similar to the one employed in [37], the authors of [12] define

Ψ2 =
gL2

0

1 + L′0
2
, ν = R4 1 + L′0

2

(
ρ2 + L2

0

)2
, ν̃ = R4 1 + L′0

2

(
ρ2 + L2

0

)2

1

1 + R4H2/
(
ρ2 + L2

0

)2
,

Ψ1 =
Ψ
L0
, ψ = hΨ, ; ψ1 = fΨ1.

(4.68)
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The equations of motions (4.29) and (4.32) can then be written in the following compact form:

ψ̈ − Ψ̈
Ψ
ψ = −

(
ω2 − �k2

‖

)
νψ + �k2

⊥ν̃ψ +
H∂ρK

ΨΨ1
ψ1,

ψ̈1 −
Ψ̈1

Ψ1
ψ1 = −

(
ω2 − �k2

‖

)
νψ1 + �k2

⊥ν̃ψ1 +
H∂ρK

ΨΨ1

(
ω2 − �k2

‖

)
ψ.

(4.69)

Let us remind the reader that for large ρ, L0(ρ) has the following behavior:

L0 ∝ m +
c

ρ2
+ · · · . (4.70)

Let us denote by L0 the classical embedding corresponding to (m = 0, c = ccr). It is relatively
easy to verify that at m = 0, �k⊥ = �0 and correspondingly M2 = ω2 − �k2

‖ = 0, the choice

ψ = Ψ ≡ Ψ|L0
, ψ1 = 0, (4.71)

is a solution to the system (4.69). Next we consider embeddings corresponding to a small
bare quark mass δm. This will correspond to small nonzero values of M2 and �k2

⊥. It is then
natural to consider the following variations:

ψ = Ψ + δψ,

ψ1 = 0 + δψ1,
(4.72)

where δψ and δψ1 are of order M2. Note that M corresponds to the mass of the ground
state at mq = δm/2πα′ and we are assuming that the variations of the wave functions δψ
and δψ1 are infinitesimal for infinitesimal mq. After expanding in (4.69), we get the following
equations of motion:

δψ̈ − Ψ̈

Ψ
δψ − δ

(
Ψ̈
Ψ

)

Ψ = −
(
ω2 − �k2

‖

)
νΨ + �k2

⊥ṽΨ +
H∂ρK

Ψ1Ψ
δψ1,

Ψ1δψ̈1 − Ψ̈1δψ1 = H∂ρK
(
ω2 − k2

‖

)
,

(4.73)

where ν = ν|L0
. The second equation in (4.73) can be integrated to give

Ψ1δψ̇1 − Ψ̇1δψ1 = HK
(
ω2 − k2

‖

)
+ constant. (4.74)
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From the boundary conditions that K|ρ=0 = 0 and Ψ1(0) = 0, Ψ̇1(0) = 0, we see that the
constant of integration is zero and arrive at

∂ρ

(
δψ1

Ψ1

)

=
HK

(
ω2 − k2

‖

)

Ψ
2
1

. (4.75)

Next we multiply the first equation in (4.73) by Ψ and integrate along ρ to obtain

(
ω2 − �k2

‖

)∫∞

0
dρνΨ

2
− �k2

⊥

∫∞

0
dpν̃Ψ

2

= −
∫∞

0

(
Ψδψ̈ − Ψ̈δψ

)
dρ +

∫∞

0
Ψ

2
δ

(
Ψ̈
Ψ

)

dρ +H
∫∞

0

∂ρKδψ1

Ψ1

dρ

= −
(
Ψδψ̇ − Ψ̇δψ

)∣∣∣
∞

0
+
(
ΨδΨ̇ − Ψ̇δΨ

)∣∣∣
∞

0
−H

∫∞

0
K∂ρ

(
δψ1

Ψ1

)

dρ,

(4.76)

where the last term on the right-hand side of (4.76) has been integrated by parts using the fact
that δψ1 should be regular at infinity. From the definition of Ψ, it follows that Ψ ∝ ρ3/2L0(0)
as ρ → 0 and Ψ ∝ c/ρ1/2 as ρ → ∞. This, together with the requirement that ψ1 is regular
at ρ = 0 and vanishes at infinity, suggests that the first term on the right-hand side of (4.76)
vanishes. For the next term, we use the fact that

δΨ = ρ3/2δ

⎛

⎝1 +H2R4/
(
ρ2 + L2

0

)2

1 + L′0
2

⎞

⎠

1/4

L0 + ρ3/2

⎛

⎝1 +H2R4/
(
ρ2 + L2

0

)2

1 + L′0
2

⎞

⎠

1/4

δL0, (4.77)

and therefore obtain

δΨ|0 = 0, δΨ̇|0 = 0,

δΨ|∞ ∝ ρ3/2δm, δΨ̇|∞ ∝
3
2
√
ρδm.

(4.78)

The second term in (4.76) then becomes

(
ΨδΨ̇ − Ψ̇δΨ

)∣∣∣
∞

0
= 2cδm. (4.79)

Finally using the equality in (4.75), we arrive at the following result:

(
ω2 − �k2

‖

)∫∞

0
dρ

⎧
⎨

⎩
νΨ

2
+
H2K

2

Ψ
2
1

⎫
⎬

⎭
− �k2

⊥

∫∞

0
dρṽΨ

2
= 2cδm. (4.80)



Advances in High Energy Physics 39

Now we define [12]

γ =

(∫∞
0 dρṽΨ

2)

(∫∞
0 dρ

{
νΨ

2
+H2K

2
/Ψ

2
1

}) , (4.81)

and solve for M2 from (4.67) to obtain

M2
∫∞

0
dρ

⎧
⎨

⎩
νΨ

2
+
H2K

2

Ψ
2
1

⎫
⎬

⎭
= 2cδm. (4.82)

Equation (4.82) suggests that the mass of the ”pion” associated to the softly broken global
U(1) symmetry satisfies the Gell-Mann-Oakes-Renner relation [9]:

M2
π = −

2
〈
ψψ

〉

f2
π

mq. (4.83)

In order to prove (4.83), we need to evaluate the effective coupling of the ”pion” f2
π . Noting

that δm ∝ mq and c ∝ −〈ψψ〉, we conclude that

f2
π ∝

∫∞

0
dρ

⎧
⎨

⎩
νΨ

2
+
H2K

2

Ψ
2
1

⎫
⎬

⎭
. (4.84)

To verify the consistency of their analysis, the authors of [12] compare the coefficient in (4.82)
to the numerically determined coefficient 0.64 from the plot in Figure 6. Indeed from (4.82),
it follows that

M̃√
m̃

=

⎡

⎢
⎣

1
2c̃cr

∫∞

0
dρ̃

⎧
⎨

⎩
ν̂Ψ̂

2
+
K̂

2

Ψ̂
2

1

⎫
⎬

⎭

⎤

⎥
⎦

−1/2

≈ 0.655, (4.85)

where the dimensionless quantities:

ν̂ = H2ν, Ψ̂2 =
Ψ2

R5H5/2
, Ψ̂2

1 =
Ψ2

1

R3H3/2
, K̂ =

K

R4
(4.86)

have been defined. There is an excellent agreement with the fit from Figure 6.
Next we will obtain an effective four-dimensional action for the ”pion” and from this

derive an exact expression for f2
π .

Effective Chiral Action and f2
π

In this section, we will reduce the eight-dimensional worldvolume action for the quadratic
fluctuations of the D7-brane to an effective action for the massless ”pion” associated to the
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spontaneously broken global U(1) symmetry. As rigid rotations along φ correspond to chiral
rotations, (the asymptotic value of φ at infinity corresponds to the phase of the condensate in
the dual gauge theory) the spectrum of φ at zero quark mass contains the Goldstone mode
that we are interested in. This is why we first integrate out the gauge field components A0

and A1 and then dimensionally reduce to four dimensions [12].
Furthermore, as mentioned earlier, because of the magnetic field the SO(1, 3) Lorentz

symmetry is broken down to SO(1, 1) × SO(2) symmetry. This is why in order to extract the
value of f2

π we consider excitations of Φ depending only on the x0, x1 directions and read off
the coefficient in front of the kinetic term. The resulting on-shell effective action for Φ is [12]

Seff = −N
∫
d4x

[
−(∂0Φ)2 + (∂1Φ)2

]
, (4.87)

whereN is given by

N =
(
2πα′

)2μ7

gs
Nfπ

2
∫∞

0
dρ

⎧
⎨

⎩
νΨ

2
+
H2K

2

Ψ
2
1

⎫
⎬

⎭
. (4.88)

We refer the reader to the appendix of [12] for a detailed derivation of the 4D effective action
Seff.

We have defined Φ via φ = (2πα′)Φ, where φ corresponds to rotations in the transverse
R

2 plane and is the angle of chiral rotation in the dual gauge theory. The chiral Lagrangian is
then given by

Seff = −
(
2πα′

)2 f
2
π

4

∫
d4x∂μΦ∂μΦ, μ = 0 or 1, (4.89)

and therefore,

f2
π =Nf4π2μ7

gs

∫∞

0
dρ

⎛

⎝νΨ
2
+
H2K2

Ψ
2
1

⎞

⎠. (4.90)

The D7-brane charge in (4.90) is given by μ7 = [(2π)7α′4]−1 and the overall prefactor
in (4.90) can be written as NfNc/2(2πα′)4λ. Now, recalling the expressions for the fermionic
condensate, (4.7), and the bare quark mass, mq = m/2πα′, one can easily verify that (4.82) is
indeed the Gell-Mann-Oakes-Renner relation:

M2
π = −

2〈ψψ〉
f2
π

mq. (4.91)
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It turns out that for small momenta �k‖, �k⊥ and small mass M2
π , one can obtain the

following more general effective 4D action (see Appendix A of [12] for a detailed derivation):

Seff = −N
∫
d4x

{[
−
(
∂0Φ̃

)2
+

(
∂1Φ̃

)2
]
+ γ

[(
∂2Φ̃

)2
+

(
∂3Φ̃

)2
]
−

2〈ψψ〉
f2
π

mqΦ̃2

}

+ · · · ,

(4.92)

where γ is defined in (4.81). As one can see, the action (4.92) is the most general quadratic
action consistent with the SO(1, 1) × SO(2) symmetry and suggests that pseudo-Goldstone
bosons satisfy the dispersion relation (4.67).

4.2. Mass Generation in the D3/D5 Setup

In this section, we review the results of [12] providing a holographic description of the
magnetic catalysis of chiral symmetry breaking in 1 + 3-dimensional SU(Nc)N = 4
supersymmetric Yang-Mills theory coupled to NfN = 2 fundamental hypermultiplets
confined to a 1 + 2-dimensional defect. In [12] it has been shown that the system develops
a dynamically generated mass and negative fermionic condensate leading to a spontaneous
breaking of a global SO(3) symmetry down to a U(1) symmetry. On the gravity side, this
symmetry corresponds to the rotational symmetry in the transverse R

3. The authors of [12]
had shown that the 1 + 2, dimensional nature of the defect theory leads to a coupling of
the transverse scalars corresponding to the coset generators and as a result there is only a
single Goldstone mode. It has also been shown that the characteristic Mπ ∝

√
m Gell-Mann-

Oakes-Renner relation is modified to a linear Mπ ∝ m behavior. These features have been
understood from a low-energy effective theory point of view. Indeed in 1 + 2 dimensions
the effect of the magnetic field is to break the SO(1, 2) Lorentz symmetry down to SO(2)
rotational symmetry and as a result the theory is nonrelativistic. A single time derivative
chemical potential term is allowed. It is this term that is responsible for the modified counting
rule of the number of Goldstone bosons [41] and leads to a quadratic dispersion relation as
well as to the modified linear Gell-Mann-Oakes-Renner relation.

4.2.1. Generalities

Let us consider the AdS5 × S5 supergravity background (4.1) and introduce the following
parameterization:

ds2 =
u2

R2

[
−dx2

0 + dx
2
1 + dx

2
2 + dx

2
3

]
+
R2

u2

[
dr2 + r2dΩ2

2 + dl
2 + l2dΩ̃2

2

]
,

u2 = r2 + l2, dΩ2
2 = dα2 + cos2αdβ2, dΩ̃2

2 = dψ2 + cos2ψdφ2.

(4.93)

We have split the transverse R
6 to R

3 × R
3 and introduced spherical coordinates r,Ω2 and

l, Ω̃2 in the first and second R
3 planes, respectively. Next we introduce a stack of probe Nf

D5-branes extended along the x0, x1, x2 directions, and filling the R
3 part of the geometry

parameterized by r,Ω2. As mentioned above on the gauge theory side, this corresponds to
introducing Nf fundamentalN = 2 hypermultiplets confined on a 1 + 2 dimensional defect.
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The asymptotic separation of the D3-and D5 -branes in the transverse R
3 space parameterized

by l corresponds to the mass of the hypermultiplet. In the following we will consider the
following, ansätz for a single D5-brane:

l = l(r), ψ = 0, φ = 0. (4.94)

The asymptotic separation m = l(∞) is related to the bare mass of the fundamental fields
via mq = m/2πα′. If the D3-and D5-branes overlap, the fundamental fields in the gauge
theory are massless and the theory has a global SO(3) × SO(3) symmetry. Clearly a non-
trivial profile of the D5-brane l(r) in the transverse R

3 would break the global symmetry
down to SO(3) ×U(1), where U(1) is the little group in the transverse R

3. If the asymptotic
position of the D5-brane vanishes (m = 0), this would correspond to a spontaneous symmetry
breaking, the non-zero separation l(0) on the other hand would naturally be interpreted as
the dynamically generated mass of the theory.

Note that the D3/D5 intersection is T-dual to the D3/D7 intersection from the previous
section and thus the system is supersymmetric. The D3-and D5-branes are BPS objects and
there is no attractive potential for the D5-brane, hence the D5-brane has a trivial profile
l ≡ const. However, a non-zero magnetic field will break the supersymmetry and as we are
going to demonstrate, the D5-brane will feel an effective repulsive potential that will lead to
dynamical mass generation. In order to introduce a magnetic field perpendicular to the plane
of the defect, we consider a pure gauge B-field in the x1, x2 plane given by

B = Hdx1 ∧ dx2. (4.95)

This is equivalent to turning on a non-zero value for the 0, 1 component of the gauge field
on the D5-brane. The magnetic field introduced into the dual gauge theory in this way has a
magnitude H/2πα′. The D5-brane embedding is determined by the DBI action:

SDBI = −Nfμ5

∫

M6

d6ξe−Φ
[
−det

(
Gab + Bab + 2πα′Fab

)]1/2
, (4.96)

where Gab and Bab are the pull-back of the metric and the B-field, respectively, and Fab is the
gauge field on the D5-brane.

With the ansätz (4.94), the lagrangian is given by

L ∝ r2
√

1 + l′2

√√√
√1 +

R4H2

(r2 + l2)2
. (4.97)

From this it is trivial to solve the equation of motion for l(r) numerically, imposing l(0) = lin
and l′(0) as initial conditions. Clearly, at large r the lagrangian (4.97) asymptotes to that at
zero magnetic field and hence we have the following asymptotic solution [42]:

l(r) = m +
c

r
+ · · · , (4.98)

where c ∝ 〈ψψ〉 the condensate of the fundamental fields.
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Spontaneous Symmetry Breaking

Before solving the equation of motion, it is convenient to introduce dimensionless variables:

r̃ =
r

R
√
H
, l̃ =

l

R
√
H
, m̃ =

m

R
√
H
, c̃ =

c

R2H
. (4.99)

The lagrangian (4.97) can then be written as

L ∝ r̃2

√

1 + l̃′
2

√√√√
√1 +

1
(
r̃2 + l̃2

)2
. (4.100)

The corresponding equation of motion is

∂r̃

⎛

⎜⎜
⎝

r̃2l′
√

1 + l̃′
2

√

1 +
(
r̃2 + l̃2

)2

(
r̃2 + l̃2

)

⎞

⎟⎟
⎠ = −2

r̃2 l̃

√

1 + l̃′
2

(
r̃2 + l̃2

)2
√

1 +
(
r̃2 + l̃2

)2
. (4.101)

Before solving (4.101), it will be useful to extract the asymptotic behavior of c̃(m̃) at large m̃.
To this end, we use that at large m̃ the separation l̃(r̃) ≈ m̃ = const. The equation of motion
then is simplified to

∂r̃
(
r̃2 l̃′

)
= − 2r̃2m̃

(r̃2 + m̃2)3
, (4.102)

and hence

r̃2 l̃′ = −2m̃
∫ r̃

0
dr̃

r̃2

(r̃2 + m̃2)2
. (4.103)

Using the expansion (4.98), one can verify that

lim
r̃→+∞

r̃2 l̃′ = c̃ = 2m̃
∫∞

0
dr̃

r̃2

(r̃2 + m̃2)3
=

π

8m̃2
. (4.104)

Equation (4.104) can thus be used as a check of the accuracy of our numerical results. Indeed
the numerically generated plot of −c̃ versus m̃, is presented in Figure 7. The most important
observation is that at zero bare mass m̃ the theory has developed a negative condensate
〈ψψ〉 ∝ −c̃cr ≈ −0.59. It can also be seen that for large m̃ the numerically generated plot is
in good agreement with (4.104) represented by the lower (black) curve. Another interesting
feature of the equation of state is the spiral structure near the origin of the parameter space
analogous to the one presented in Figure 3 for the case of the D3/D7 system.
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Figure 7: A plot of −c̃ versus m̃. At zero bare mass m̃ = 0, the theory has developed a negative condensate
〈ψψ〉 ∝ −c̃cr ≈ −0.59. For large m̃, there is an excellent agreement with (4.104), as represented by the lower
(blue) curve.

In order to show that the global SO(3) symmetry is indeed spontaneously broken
we need to study the free energy of the theory. Indeed the existence of the spiral structure
suggests that there is more than one phase at zero bare mass, corresponding to the different
y-intercepts of the −c̃ versus m̃ plot. We will demonstrate below that the lowest positive
branch of the curve presented in Figure 7 is the stable one.

Following [42] we will identify the regularized wick rotated on-shell action of the D5-
brane with the free energy of the theory. Let us introduce a cut-off at infinity, rmax. The wick
rotated on-shell action is given by

S =Nf
μ5

gs
4πV3R

3H3/2
∫ r̃max

0
dr̃r̃2

√

1 + l̃′
2

√√√√
√1 +

1
(
r̃2 + l̃2

)2
, (4.105)

where V3 =
∫
d3x and l̃(r̃) is the solution of (4.101). It is easy to verify, using the expansion

from (4.98), that the integral in (4.105) has the following behavior at large r̃max:

∫ r̃max

0
dr̃r̃2

√

1 + l̃′
2

√√√√
√1 +

1
(
r̃2 + l̃2

)2
=

1
3
r3

max +O
(

1
rmax

)
. (4.106)

It is important that in these coordinates the divergent term is independent of the field l̃; it is
therefore possible to regularize the on-shell action by subtracting the free energy of the l̃ ≡ 0
embedding. The resulting regularized expression for the free energy is

F = Sreg =Nf
μ5

gs
4πV3R

3H3/2ĨD5, (4.107)
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Figure 8: The states corresponding to the lowest positive branch of the plot in Figure 7 have the lowest free
energy and thus correspond to the stable phase of the theory.

where

ĨD5 =
∫∞

0
dr̃

⎡

⎢⎢
⎣r̃

2

√

1 + l̃′
2

√√√√
√1 +

1
(
r̃2 + l̃2

)2
−

√
1 + r̃4

⎤

⎥⎥
⎦. (4.108)

A plot of ĨD5 versus |m̃| is presented in Figure 8. The states from the lowest positive
branch in Figure 8 have the lowest free energy and correspond to the stable phase of the
theory. Therefore, there is a spontaneous breaking of the global SO(3) symmetry and the
theory at m̃ = 0 develops a negative condensate proportional to −c̃cr ≈ −0.59. Note that only
the absolute value of m̃ corresponds to the bare mass of the fundamental fields. The states
with negative m̃ correspond to D5-brane embeddings that intercept the l̃ = 0 line in the l̃
versus r̃ plane and as seen from Figure 8 are unstable. It is to be expected that the meson
spectrum of the theory in such a phase would contain tachyons based on an analogy with the
meson spectrum of the D3/D7 system studied in [11]. Before we proceed with the analysis of
the meson spectrum of the theory, let us write an expression for the condensate of the theory
〈ψψ〉 ∝ −ccr = R2Hc̃cr at zero bare quark mass. The coefficient of proportionality is given by
[43]

〈ψψ〉 = −8π2α′
μ5

gs
ccr = −16π3α′

2μ5

gs
c̃crR

2
(

H

2πα′

)
. (4.109)

Note that the condensate is proportional to the magnitude of the magnetic field H/2πα′.

4.2.2. Meson Spectrum and Pseudo-Goldstone Bosons

In this section, we review the analysis of [12] on the normal modes of the D5-brane. The
authors of [12] had focused on the normal modes corresponding to the Goldstone bosons of
the spontaneously broken SO(3) symmetry and studied their spectrum as a function of the
bare quark mass mq. The study shows that the external magnetic field splits the degeneracy
of the meson spectrum and gives mass to one of the pions of the theory. It also modifies
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the standard M2
π ∝ m GMOR relation for the remaining Goldstone mode to a linear relation

Mπ ∝ m. It has been shown that these results are in accordance with the behavior expected
from the effective chiral lagrangian of the theory.

In order to study the light meson spectrum of the theory, one looks for the quadratic
fluctuations of the D5-brane embedding along the transverse directions parametrized by
l, ψ, φ. To this end, one expands

l = l + 2πα′δl, ψ = 2πα′δψ, φ = 2πα′δφ, (4.110)

in the action (4.96) and leaves only terms of order (2πα′)2. Note that fluctuations of the
U(1) gauge field Fαβ of the D5-brane will also contribute to the expansion. There is also an
additional contribution from the Wess-Zumino term of the D5-brane’s action:

SWZ =Nfμ5

∫

M6

∑

p

[
Cp ∧ eF

]
; F = B + 2πα′F. (4.111)

The relevant term is

SWZ =Nfμ5

∫

M6

B ∧ P
[
C̃4

]
, (4.112)

where P[C̃4] is the pull-back of the magnetic dual, C̃4, to the background C4 R-R form. It is
given by

C̃4 =
1
gs

4r2l2

(r2 + l2)3
R4 sinψ(ldr − rdl) ∧ dΩ2 ∧ dφ. (4.113)

The action for the quadratic fluctuations along l is given by

L(2)
ll ∝

1
2

√
−EGll

Sαβ

1 + l′2
∂αδl∂βδl +

1
2

[
∂2
l

√
−E − d

dr

(
l′

1 + l′2
∂l
√
−E

)]
δl2,

L(2)
lF ∝

√
−E

1 + l′2
(
∂lJ

12 − ∂rJ12l′
)
F21δl,

L(2)
FF ∝

1
4

√
−ESαβSγλFβγFαλ,

(4.114)

and along φ and ψ:

L(2)
ψψ,φφ

∝ 1
2

√
−ESαβ

(
Gψψ∂αδψ∂βδψ +Gφφ∂αδφ∂βδφ

)
,

L(2)
ψφ
∝ (cosα)PHδψ∂0δφ.

(4.115)
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Here Eαβ is the pull-back of the generalized metric on the classical D5-brane embedding:

Eαβ = ∂αX
μ
∂βX

ν(
Gμν + Bμν

)
, (4.116)

while Sαβ and Jαβ are the symmetric and antisymmetric elements of the inverse generalized
metric Eαβ:

Eαβ = Sαβ + Jαβ. (4.117)

The determinant E and the function K = P are given by

√
−E = (cosα)r2

√
1 + l′2

√√√
√1 +

R4H2

(r2 + l2)2
≡ g(r) cosα,

P =
4R4r2l2

(r2 + l2)3

(
rl′ − l

)
.

(4.118)

As one can see, the fluctuations along ψ and φ decouple from the fluctuations along l and the
fluctuations of the gauge field Aα. To study the pseudo-Goldstone modes of the dual theory,
one should focus on the fluctuations along ψ and φ. The equations of motion derived from
the quadratic action (4.115) are the following:

∂r

(
g(r)l2

1 + l′2
∂rδψ

)

+
g(r)R4l2

(r2 + l2)2
W̃δψ +

g(r)l2

r2
Δ(2)δψ − PH∂0δφ = 0,

∂r

(
g(r)l2

1 + l′2
∂rδφ

)

+
g(r)R4l2

(r2 + l2)2
W̃δφ +

g(r)l2

r2
Δ(2)δφ + PH∂0δψ = 0,

(4.119)

where

W̃ = −∂2
0 +

∂2
1 + ∂

2
2

1 + R4H2/(r2 + l2)2
. (4.120)

Note that the background magnetic field breaks the SO(1, 2) Lorentz symmetry to SO(2),
which manifests itself in the modified laplacian (4.120). Next one considers a plane-wave
ansatz:

δφ = ei(ωt−�k�x)η1(r), δψ = ei(ωt−�k�x)η2(r). (4.121)
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Using the ansätz (4.121), one gets

∂r

(
g(r)l2

1 + l′2
η′1

)

+
g(r)R4l2

(r2 + l2)2

(

ω2 −
�k2

1 + R4H2/(r2 + l2)2

)

η1 − iωPHη2 = 0,

∂r

(
g(r)l2

1 + l′2
η′2

)

+
g(r)R4l2

(r2 + l2)2

(

ω2 −
�k2

1 + R4H2/(r2 + l2)2

)

η2 + iωPHη1 = 0.

(4.122)

The equations of motion in (4.122) can be decoupled by the definition η± = η1± iη2. The result
is

∂r

(
g(r)l2

1 + l′2
η′+

)

+
g(r)R4l2

(r2 + l2)2

(

ω2 −
�k2

1 + R4H2/(r2 + l2)2

)

η+ −ωPHη+ = 0,

∂r

(
g(r)l2

1 + l′2
η′−

)

+
g(r)R4l2

(r2 + l2)2

(

ω2 −
�k2

1 + R4H2/(r2 + l2)2

)

η− +ωPHη− = 0.

(4.123)

Because of the broken Lorentz symmetry, the 1 + 2 dimensional mass M2 = ω2 − �k2 depends
on the choice of frame. One can define the spectrum of excitations as the rest energy (consider
the frame with �k = 0). The spectrum is discrete. Furthermore, just as in the D3/D7 case there
is a Zeeman splitting of the spectrum due to the external magnetic field. Interestingly, at low
energy the splitting is breaking the degeneracy of the lowest energy state and as a result
there is only one pseudo-Goldstone boson. This is not in contradiction with the Goldstone
theorem because there is no Lorentz symmetry. This opens the possibility of having two
types of Goldstone modes: type I and type II satisfying odd and even dispersion relations
correspondingly. In this case, there is a modified counting rule ([41], see also [44]) which
states that the number of GBs of type I plus twice the number of GBs of type II is greater than or
equal to the number of broken generators. As we are going to show below the single Goldstone
mode that we see satisfies a quadratic dispersion relation (hence is type II) and the modified
counting rule is not violated. Note also that for large bare masses m (and correspondingly
large values of l), the term proportional to the magnetic field is suppressed and the meson
spectrum should approximate to the result for the pure AdS5 × S5 space-time case studied in
[45, 46], where the authors obtained the following relation:

ωn =
2m
R2

√(
n +

1
2

)(
n +

3
2

)
, (4.124)

between the eigenvalue of the nth excited state ωn and the bare mass m.
In order to obtain the meson spectrum, one solves numerically the equations of motion

(4.123) in the rest frame (�k = 0). The quantization condition for the spectrum comes from
imposing regularity at infinity. More precisely one requires that η± ∼ 1/r at infinity (r → ∞).
The results are summarized in Figure 9. It is convenient to define the dimensionless quantities
m̃ = m/R

√
H and ω̃ = ωR/

√
H. As one can see from Figure 9, for large m̃ the spectrum

asymptotes to that of pure AdS5 × S5, given by (4.124). The Zeeman splitting of the spectrum
is also evident. It is interesting that as a result of the splitting of the ground state there is only
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Figure 9: The meson spectrum of the first three excited states is plotted. There is Zeeman splitting of the
spectrum and the existence of a mass gap at m̃ = 0 as well as a single Goldstone boson mode. For large m̃
the spectrum asymptotes to that of zero magnetic field given by (4.63) (straight lines).
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Figure 10: Plot of the spectrum of the ground state from Figure 9 for small bare masses. The dashed line
corresponds to the linear behavior from (4.125).

a single pseudo-Goldstone mode. Furthermore, as can be seen from Figure 10, for small bare
masses instead of the usual Gell-Mann-Oakes-Renner relation, there is a linear dependence
ω̃ ∼ m̃. As we will review in the next subsection, the slope is given by the relation:

ω̃ =
4c̃cr

π
m̃ ≈ 0.736m̃. (4.125)

It is also interesting to study the dispersion relation of the Goldstone mode. Since
the Lorentz symmetry is broken and only one pseudo-Goldstone mode is observed, one
anticipates a quadratic dispersion relation (see [44, 47] for discussion).

In order to obtain the dispersion relation of the Goldstone mode, the authors of [12]
numerically solve (4.123) at very small bare mass m̃ ≈ 0.0007 and for a range of small



50 Advances in High Energy Physics

0.0005
0 0.005 0.01 0.015 0.02 0.025 0.03

k̃

0.00055

0.0006

0.00065

0.0007

ω̃

Figure 11: Plot of the dispersion relation of the pseudo-Goldstone mode for m̃ ≈ 0.0007. The parabolic fit
corresponds to (4.128).

momenta �̃k = �kR/
√
H. The result is presented in Figure 11. There is indeed a quadratic

dispersion relation. It has been shown [12] that the dispersion relation is given by

ω̃ = γ �̃k
2
+

4
π
c̃crm̃, (4.126)

where

γ =
4
π

∫∞

0
dr̃

r̃2 l̃2
√

1 + l̃′
2

(
r̃2 + l̃2

)√

1 +
(
r̃2 + l̃2

)2
. (4.127)

For m̃ ≈ 0.0007, the relation (4.126) is given by

ω̃ ≈ 0.232�̃k
2
+ 0.000515, (4.128)

and is represented by the fitted curve in Figure 11.

Low Energy Dispersion Relation

In order to obtain the dispersion relation for the pseudo-Goldstone mode, one considers [12]
the limit of small ω in the first equation in (4.123) thus leaving only the linear potential term
in ω̃. In view of the observed quadratic dispersion relation (4.126), one also keeps the �k2 term
in (4.123).

∂r

(
g(r)l2

1 + l′2
η′+

)

−
(

ωPH +
g(r)R4l2

(r2 + l2)2 + R4H2
�k2

)

η+ = 0. (4.129)
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It is convenient to define the following variables:

Θ2 =
g(r)l2

1 + l′2
, ξ = η+Θ. (4.130)

Then (4.129) can be written as

ξ̈ − Θ̈
Θ
ξ −

(

ωPH +
g(r)R4l2

(r2 + l2)2 + R4H2
�k2

)
ξ

Θ2
= 0, (4.131)

where the overdots represent derivatives with respect to r. Now if one takes the limit m → 0
one has that ω → 0 and k → 0 and obtains that

ξ = Θ|ω=0 ≡ Θ (4.132)

is a solution to (4.131). The next step is to consider small m and expand

ξ = Θ + δξ, Θ = Θ + δΘ, (4.133)

where the variations δξ and δΘ are vanishing in the m → 0, limit. Then, to, leading order in
m (keeping in mind that ω ∼ m and �k2 ∼ m) one obtains

δξ̈ − Θ̈

Θ
δξ − δ

(
Θ̈
Θ

)

Θ −
(

ωPH +
g(r)R4l2

(r2 + l2)2 + R4H2
�k2

)
1

Θ
= 0. (4.134)

Now one multiplies (4.134) by Θ and integrates along r. The result is

(
Θδξ̇ − Θ̇δξ

)∣∣∣
∞

0
−

(
ΘδΘ̇ − Θ̇δΘ

)∣∣∣
∞

0
−ωH

∫∞

0
drP(r) − π

4
R5
√
Hγ�k2 = 0. (4.135)

Using the definitions of Θ, P(r) and ξ and requiring regularity at infinity for η+, one can show
that the first term in (4.135) vanishes and that

(
ΘδΘ̇ − Θ̇δΘ

)∣∣∣
∞

0
= cδm,

∫∞

0
drP(r) = −R

4π

4
, (4.136)

And hence using the previous definitions, m̃ = m/R
√
H, c̃ = c/R2H, ω̃ = ωR/

√
H, and

�̃k = �kR/
√
H, one obtains (4.126).

Effective Chiral Lagrangian

In order to obtain the 1 + 2 dimensional effective action describing the pseudo-Goldstone
mode, one considers [12] the 1 + 5 dimensional action (4.115) for a classical embedding in
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the vicinity of the critical embedding, namely, that embedding corresponding to a very small
bare mass m̃. Next one takes the ansätz for the fields δφ and δψ:

δφ =
ξ1(r)
Θ(r)

χ1(x), δψ =
ξ2(r)
Θ(r)

χ2(x). (4.137)

Since one is close to the critical embedding, one considers the same expansion as in equation
(4.133):

ξi = Θ + δξi, i = 1 or 2, Θ = Θ + δΘ. (4.138)

By definition, it follows that as m̃ → 0, δξi and δΘ vanish. Then to leading order, one has
that

∂rδφ =
1

Θ
2

[(
Θδξ̇1 − Θ̇δξ1

)
+

(
Θ̇δΘ −ΘδΘ̇

)]
χ1(x), ∂μδφ = ∂μχ1(x), μ = 0, 1, 2,

∂rδψ =
1

Θ
2

[(
Θδξ̇2 − Θ̇δξ2

)
+

(
Θ̇δΘ −ΘδΘ̇

)]
χ2t(x), ∂μδψ = ∂μχ2(x), μ = 0, 1, 2.

(4.139)

Next, one integrates (4.115) along r from 0,∞ and along the internal unit sphere Ω̃2. The
interesting term is the part of the kinetic term involving derivatives along r. After integration
by parts, it boils down to a mass term for the 1 + 2 dimensional fields χ1, χ2. Explicitly

∫
dr dΩ̃2

1
2
g(r)l2

1 + l′2
∂rδφ∂rδφ = −

∫
drdΩ̃2

1
2
∂r

(
g(r)l2

1 + l′2
∂rδφ

)

δφ

= −4π
[(

Θδξ̇1 − Θ̇δξ1

)
+

(
Θ̇δΘ −ΘδΘ̇

)]∣∣∣
∞

0

1
2
χ2

1

= 4πmc
1
2
χ2

1

(4.140)

Here the same arguments as in (4.135) have been used. It is clear that one can perform
an analogous calculation for the term involving ∂rδψ. The rest of the terms are dealt with
straightforwardly by integrating along r. The resulting action is

Seff

(2πα′)2
=

∫
d3x

{
f2
π‖

4
∂0χ

∗∂0χ −
f2
π⊥
4
∂iχ

∗∂iχ − μ
i

2
(
χ∂0χ

∗ − χ∗∂0χ
)
+
mq

2

〈
ΨΨ

〉

0
χ∗χ

}

,

(4.141)
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where the complex scalar field χ = χ1 + iχ2 has been defined. The constants in the effective
action are given by

f2
π‖

4
=
N
2

∫∞

0
dr

g(r)R4l2

(r2 + l2)2
,

f2
π⊥
4

=
N
2

∫∞

0
dr

g(r)R4l2

(r2 + l2)2 + R4H2
,

μ =
N
8
πR4H,

〈
ψψ

〉
= −

(
2πα′

)
Nccr, N = 4πNf

μ5

gs
, mq =

m

2πα′
.

(4.142)

4.3. Summary

In this section, we reviewed the studies of the influence of external magnetic field on
holographic gauge theories dual to the D3/D7- and the D3/D5-intersections.

In the case of the D3/D7-system, we described the effect of mass generation realized
as a separation of the probe D7-branes and the background D3-branes in the interior of the
geometry. The review of the study of the meson spectrum revealed Zeeman splitting and
the existence of Goldstone mode associated to the spontaneously broken Chiral Symmetry.
In the limit of small bare masses, we reviewed the analytic derivation of the effective chiral
action obtained in [12] after dimensional reduction of the eight-dimensional effective action
of the probe D7-brane. As expected the mass of the pseudo-Goldstone modes satisfies the
Gell-Mann-Oaks-Renner relation. The effective action also suggests an anisotropic relativistic
dispersion relation consistent with the residual SO(1, 1) × SO(2) symmetry. An integral
expression for the parameter of anisotropy is also obtained. It would be particularly
interesting if one could obtain this parameter via alternative non-perturbative approach, such
as lattice simulation.

The D3/D5-system studied in Section 4.2 exhibit properties similar to the D3/D7
system. Again there is a mass generation realized as separation of the color and flavor branes.
The meson spectrum also has Zeeman splitting and a Goldstone mode. There is however a
crucial difference. Due to the completely broken Lorentz symmetry, the goldstone modes
satisfy nonrelativistic dispersion relation and modified counting rule. An integral expression
for the Galilean mass in terms of the parameter γ given in (4.127) has also been obtained. It
would be nice if one can compare this result with a result obtained via lattice simulation.

Overall the holographic studies that we presented in this section confirm the universal
nature of the phenomenon of magnetic catalysis of chiral symmetry breaking reviewed in
Section 2.2. It is also somewhat satisfying that some of the results (such as the Gell-Mann-
Oaks-Renner relation) presented here have been obtained in a closed form and are consistent
with the results derived via standard chiral dynamics.

5. Conclusion

In this paper, we outlined a recent application of the AdS/CFT correspondence to study
the effect of magnetic catalysis of mass generation in holographic gauge theories dual to
the D3/D5- and the D3/D7-intersections. Our goal was to illustrate the potential of the
correspondence to capture essential properties of the strongly coupled regime of non-abelian
gauge theories especially when the investigated phenomenon is of a universal nature. We
attempted to give the review a self-contained and somewhat pedagogical form.
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The purpose of Section 2 was to remind the reader about some basic properties of
flavored Yang-Mills theories as well as to provide the physical motivation for the holographic
studies subject to our investigation. We provided a brief description of the global symmetries
of the theory with emphasis on the anomalous and nonsinglet Chiral Symmetries. We also
outlined the effective chiral lagrangian description of the effect of Chiral Symmetry breaking
and provided a short derivation of the Gell-Mann-Oaks-Renner relation. The second part
of Section 2 describes the standard field theory approach to studying the phenomenon of
magnetic catalysis of mass generation.

In Section 3 of the paper, we outlined the basics of the AdS/CFT correspondence. We
started with a review of the general ideas that lead to its formulation and descried in details
the physical justification of the correspondence in the framework of string theory. We also
provided a brief description of the way the standard AdS/CFT dictionary operates. In the
second part of Section 3, we focused on the addition of flavor degrees to the correspondence.
We reviewed the standard way [3] to introduce quenched fundamental matter by adding
probe flavor branes to the dual supergravity background. We provided some basic extracts
from the generalized AdS/CFT dictionary which are implemented in the holographic set up
reviewed in Section 4.

Section 4 is the main part of the review. We reviewed the holographic study of the
influence of external magnetic field on holographic gauge theories dual to the D3/D5- and
the D3/D7-intersections. We reviewed the general properties of the holographic set up. We
described how spontaneous symmetry breaking is realized as a separation between the flavor
and color branes in the bulk of the geometry. Investigations of the meson spectrum revealed
Zeeman splitting of the energy level as well as the existence of Goldstone modes. In the case
of the D3/D7-set up, we reviewed the analytic derivation of the Gell-Mann-Oaks-Renner
relation performed in [12]. We also investigated the dispersion relations of the pseudo-
Goldosten modes and verified that they are consistent with the residual space time symmetry:
SO(1, 1)×SO(2) in the D3/D7 set up and SO(2) in the D3/D5 set up. It is intriguing that the
D3/D5 system exhibits a nonrelativistic dispersion relation.

The overall goal of the review was to review in a self-consistent way one of the many
successful applications of the AdS/CFT duality to the investigation of universal properties
of strongly coupled Yang-Mills theories. The results presented in Section 4 seem to be perfect
agreement with the proposed universal nature of the effect of chiral symmetry breaking in an
external magnetic field. We hope that future investigations using alternative nonperturbative
techniques such as lattice simulations could confirm qualitatively the results presented in
Section 4. Such studies could provide a non-trivial check of the AdS/CFT correspondence in
this essentially non-supersymmetric set up.
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