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Within the AdS/CFT correspondence, we review the studies of field theories with a large number
of adjoint and fundamental fields, in the Veneziano limit. We concentrate in set-ups where the
fundamentals are introduced by a smeared set of D-branes. We make emphasis on the general
ideas and then in subsequent chapters that can be read independently and describe particular
considerations in various different models. Some new material is presented along the various
sections.

1. Introduction, General Idea, and Outline

1.1. Introduction and Outline

The AdS/CFT conjecture originally proposed by Maldacena [1, 2], refined in [3, 4] and
reviewed in [5], has been one of the most interesting developments in theoretical physics
of the last decades. It has become one of the most powerful analytic tools to deal with
strong coupling effects of some particular gauge theories in the planar limit Nc → ∞.
The most studied and best understood case corresponds to SU(Nc)N = 4 SYM which is
a highly supersymmetric conformal theory and which only contains matter in the adjoint
representation of the gauge group. Certainly, there are many interesting field theories which
do not share these properties and this fact has lead to an enormous amount of effort devoted
to extending the duality along different paths. Consequently, people have constructed gravity
duals of nonsupersymmetric, non-conformal gauge theories, in different vacua and with
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diverse matter contents. One can mention the attempt of building a dual as close as possible
to QCD as an aim for these generalizations. However, one should keep in mind that this is
just one among many desirable motivations, since understanding gauge theories at strong
coupling (or using gauge theories to understand gravity) is a very relevant problem per se,
with both theoretical and phenomenological possible implications.

An important development of AdS/CFT has been to generalise the matter content of
the gauge theories under consideration and, in particular, to include fields which transform in
the fundamental representation of the gauge group, as the QCD quarks do. (With an abuse of
language, we will use throughout this review the words quark or flavor to refer to any field,
fermionic or bosonic, transforming in the fundamental representation of the gauge group.
Accordingly, by mesons we will mean bound states of quarks.) A first possibility is to add the
flavors in the quenched approximation. The word quenched comes from the lattice literature
and, in that context, it amounts to setting the quark fermion determinant to one. In more
physical terms, quenching corresponds to discarding the quark dynamical effects. This means
that quantum effects produced by the fundamentals are neglected; the quarks are considered
as external nondynamical objects in the sense that they do not run in the loops. (In the
lattice, usually, quenching is thought to be a good approximation for heavy quarks whereas
for the gauge-gravity examples the relevance of the quenched approximation comes from
having parametrically less fundamental than adjoint fields Nf � Nc.) From the string side,
adding quenched quarks to a given gauge theory corresponds to incorporating a set of brane
probes in the dual background, which is not modified with respect to the quark-less case. By
analysing the worldvolume physics of these flavor branes (typically using the Dirac-Born-
Infeld + Wess-Zumino action) a lot of physically interesting questions can be understood. For
instance and just to mention a few, chiral symmetry breaking can be neatly described, phase
diagrams can be constructed, and meson spectra can be exactly computed. It is hard to do
justice to the huge literature in the subject; so let us just mention the seminal papers [6, 7]
and a recent review [8].

Thus, it is fair to say that the study of quenched flavor within the gauge-gravity
correspondence has been a very fruitful program. Nonetheless, there are physical features
which are intimately related to the quantum effects of the quarks. Examples are the
consequences of the presence of fundamentals on the running couplings, which may
ultimately lead to conformal points, conformal windows [9], or Seiberg-like dualities [10].
More phenomenologically, multihadron production, the screening of the color charge, or
the large mass of the η′ meson are spin-offs of these quantum effects. Let us also mention
that the most successful application of string duals towards phenomenology has been the
construction of solutions that can be used as toy models for the experimental quark-gluon
plasma. Thus, a very interesting program is to build black hole solutions with unquenched
flavor which are really dual to quark-gluon plasmas, that is, such that the effect of the
dynamical quarks affects the plasma physics, as is expected to be the case in the real
world.

These observations largely motivate the study of theories with unquenched quarks
from the string theory dual point of view. Unquenching the flavors of the gauge theory has
a very precise implication for the dual theory: the gravity background has to be modified by
the inclusion of the quarks; namely, one needs to take into account the back-reaction on the
geometry produced by the flavor branes. The main goal in the following will be to present
methods to compute such back-reacted solutions. This will be done by presenting different
examples that, hopefully, will help the reader to gain insight in both the physical questions
and the technical tools used to address them.
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In this review, we will focus on a specific family of unquenched constructions. Namely,
we will discuss at length just solutions of type IIA or type IIB string theory in which the
fundamentals come from a smeared set of flavor branes. In Section 1.5, we will try to provide a
general understanding of this notion of smearing the flavor and argue why we find it a case of
particular interest. As we will see, by considering the case of smeared D-branes we can build
a systematic approach applicable to different situations and which typically results in large
simplifications as compared to other kinds of flavor D-brane distributions. This smearing
procedure referring to flavors was first introduced in [11] in a noncritical string framework
and in [12] in a well-controlled ten-dimensional context.

It is important to remark that this smearing is by no means the only possibility to
introduce unquenched fundamentals in gauge-gravity duals. Many important works have
followed alternative paths to construct different models. We are not able to review them here,
but we provide a survey of the literature in Section 1.6.

Outline

We will devote the rest of Section 1 to further clarifying the kind of physical problems we
want to address and to give the general methods and notions which are common to all the
constructions we will present later.

Then, Sections 2–6 will analyse different models that are ordered in increasing order of
complexity. Each section can be read mostly independently from the rest. The discussion of
each model can always be regarded as a two-step process. First, one has to solve the equations
for finding the back-reacted solutions of type II supergravity coupled to a set of D-brane
sources. Second, one can use these solutions to extract the physics of the conjectured gauge
theory duals with unquenched flavors. Readers interested in different aspects of the problem
can consult the different parts independently. We would like to stress that, even without
making any reference to the gauge-gravity correspondence, the string theory solutions and
methods developed to find them are interesting by themselves.

Section 2 deals with the backreaction of D7-branes on AdS5 × X5 spaces, where
X5 stands for a Sasaki-Einstein space. As a matter of fact, a large part of the discussion
can be carried out without specifying the X5. Notwithstanding, the two most interesting
cases correspond to X5 = S5 and X5 = T1,1. At different points during Section 2, we will
refer to these particular examples in order to explain concrete features. We will present
supersymmetric solutions for massless and massive quarks and also non-supersymmetric
black hole solutions which are dual to theories at finite temperature, in a deconfined plasma
phase. All these solutions share the property of having a singularity, associated with a UV
Landau pole in the field theory (when quarks are massless and the temperature is zero, there
is also a naked IR singularity). We will show how to make well-defined IR predictions from
the geometry, even in the presence of the UV singularity (in much the same spirit as in field
theory renormalization).

In Section 3, we will discuss a model in which both the color and flavor branes are
D5’s. It is dual to a (3+1)-dimensional N = 1 theory with a UV completion. Among several
nice features of the model that will be presented, we would like to remark here that it
incorporates a geometrical description of a Seiberg-like duality. Section 4 is also built from
a D5-D5 intersection and in fact shares several similarities with the previous model. The
construction corresponds to color D5’s wrapping a compact 3-cycle and therefore the dual
field theory is (2+1)-dimensional.



4 Advances in High Energy Physics

In Section 5 we examine the addition of D7-branes to the conspicuous Klebanov-
Strassler model [13]. From the physical point of view, how the unquenched flavors affect
a duality cascade is particularly interesting. From a technical point of view, the system is
slightly more involved than the previous ones because different RR and NSNS forms are
turned on. However, despite this complication, it is remarkable that almost all functions of
the ansatz can be integrated in a closed form.

Section 6 reviews a different class of models. The dual gauge theories are built on
wrapped supersymmetric D-branes with the peculiarity that some of the adjoint scalars
remain massless. As we will explain, it is not sensible to smear the branes in all the transverse
directions. The associated main technical difficulty will be the fact that one has to solve partial
differential equations to find the background.

Profiting from the experience gained by discussing these examples one by one, in
Section 7, we will give a more mathematical viewpoint of the constructions. In particular,
we will take some tools of differential geometry to describe in a concise and compact way the
distributions of mass and charge due to the presence of the flavor branes.

Finally, in Section 8 we will conclude by summarizing the whole topic trying to give a
general perspective of the results obtained and by also providing an outlook of the subject.

1.2. Presentation of the Problem

As anticipated in the introduction, we will discuss the addition of flavors to field theories
(mostly focusing on SUSY examples, but this is not mandatory) using AdS/CFT or, more
generally, gauge-strings duality.

We hope it is clear to the reader that the addition of flavors (fields transforming in the
fundamental representation) is a very interesting exercise from a dynamical point of view.
Indeed, in a theory with adjoint fields (let us, for the sake of this discussion, consider the
case of a confining field theory) the presence of fields transforming in the fundamental will
produce the breaking of the “QCD-string” or screening. Of course, the fundamentals will add
a new symmetry, that can be SU(Nf) or, like in massless QCD, SU(Nf) × SU(Nf); a baryonic
U(1)B symmetry should also appear. Obviously the presence of global symmetries (and their
possible spontaneous or explicit breaking) will directly reflect in the spectrum. Apart from
this, it will happen that the states before the addition of fundamentals, that is the glueballs,
will interact and mix with the mesons, giving place to new diagonal combinations that will be
the observed states. Moreover, anomalies will be modified, as fermions that transform in the
fundamental will run in the triangles. Also gauge couplings will run differently and finally
new dualities (Seiberg-like [10]) may appear. In the rest of this article, we will discuss how
all of the above mentioned features are encoded in string backgrounds.

It is clear that we need to add new objects to our string background. These new objects
are D-branes, on which a gauge field propagates, encoding the presence of a U(Nf) gauge
symmetry (in the bulk), dual to the global U(Nf) in the dual QFT. Also, it is on these D-
branes that the meson fields, represented by excitations of the branes, propagate and interact.
Following a nomenclature that by now became standard, we will call these D-branes “flavor
branes”.

It is then clear that to add flavors to a field theory whose dual we know, we should
consider the original (unflavored) string background and add flavor-branes. Now, the point
is how to proceed technically to add these new branes. It may be useful to consider two
developments of the 1970s, that will turn to illuminate on the answer to this question.
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(a) (b) (c)

Figure 1: Diagrams for a meson propagator, with two insertions of the meson operator (n = 2) shown as
thick points on the boundaries. The dashed lines are gluons that fill the diagram in the large Nc limit and
the thick lines are quarks. (a) Planar diagram with no internal quark loops (h = 0, w = 0), the scaling is
∼1. (b) Planar diagram with an internal quark loop h = 0, w = 1, the scaling is ∼ Nf/Nc. (c) Nonplanar
diagram with no internal quark loops h = 0, w = 0, b = 2, the scaling is ∼ 1/Nc.

In [14, 15] ’t Hooft and Veneziano, respectively, considered the influence of
fundamentals when the following scaling is taken:

Nc −→ ∞, λ = g2
YMNc = fixed, (1.1)

and considered the two possible cases (’t Hooft and Veneziano, resp.)

Nf = fixed, x =
Nf

Nc
−→ 0,

Nf −→ ∞, x =
Nf

Nc
= fixed.

(1.2)

It is very illuminating to see how different diagrams contributing to the same physical process
(to fix ideas, an n-point correlator of mesonic currents) scale in these two cases. In this respect,
a formula for the kinematical factor of the scattering of n mesons was produced in [16],
considering diagrams with w being internal fermion loops (windows), h nonplanar handles,
and b boundaries:

〈B1 · · ·Bn〉 ∼
(
Nf

Nc

)w

N
(2−(n/2)−2h−b)
c . (1.3)

Consider the case of scattering of two mesons n = 2. We see that diagrams like the first one
in the figure (w = h = 0, b = 1, n = 2) scale like a constant N0

c ∼ 1, the second diagram (with
w = 1, h = 0, b = 1, n = 2) scales like Nf/Nc, while the third one (with w = 0, h = 0, b = 2, n =
2, that is nonplanar) goes like N−1

c .
So, we see that from this view point, the Veneziano scaling captures more physics,

represented here by diagrams like (b) in Figure 1. Nevertheless, there may be some particular
problems for which studying things in the ’t Hooft scaling may be enough.

From the view point of a lattice theorist, working in the ’t Hooft scaling, hence
neglecting the effects of fundamentals running inside loops, is the same as working in what
they would call the “quenched approximation”. We can think of the field theory as being
quenched when the fundamental fields do not propagate inside the loops. One natural way
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of doing this is to consider the case of very massive quarks. Indeed, when quenching, one
considers an expansion of the fermionic determinant (for massive quarks) of the form:

log det
[
γμDμ +m

]
= Tr log

(
γμDμ +m

)
= Tr log

(
m

[
1 +

γμDμ

m

])
∼ Tr log(m) +O

(
1
m

)
.

(1.4)

Keeping only the constant term (or considering a very large mass) is equivalent to saying
that fundamentals are very difficult to pair-produce; hence their presence inside loops will be
very suppressed. Another way to quench in the field theory is to consider the case in which
the quotient x = Nf/Nc is very small. Notice that the quenched theory is not equivalent to
a theory with only adjoints, as fundamentals can occur in external lines, like in a correlator
of two mesonic currents as exemplified in the diagram (a) of Figure 1. Needless to say, lattice
theorists developed techniques to quench fundamental fields with arbitrary mass. Also, while
at first sight the quenching as described above is not a good operation as it breaks unitarity
(not including all possible diagrams), this kind of troubles will be avoided when working in
the ’t Hooft scaling, where unitarity problems will be suppressed in 1/Nc (but of course will
be present in a lattice version of theories with finite Nc).

The interesting point to be taken from this, by a physicist working in gauge-string
duality, is that both scalings (’t Hooft’s and Veneziano’s) can be realized with D-branes.
Indeed, in both cases we must add D-branes (to realize symmetries and new states as
discussed above), but we can add these flavor branes in two ways.

(i) We can add Nf flavor branes in such a way that we will only probe the geometry
produced by the Nc color branes. In this case the dynamics of the probe-flavor
branes (the mesons) will be influenced by the dynamics of the color branes (the
glueballs) but not viceversa. This is a good approximation if x = Nf/Nc → 0,
which immediately sets us in the ’t Hooft scaling limit. Notice, however, that when
the Nc contribution to some particular quantity vanishes, the flavor effects may be
the leading ones even when Nf �Nc.

(ii) We can add Nf flavor branes, in such a way that they will deform the already
existing geometry, in other words backreacting on the original “color” geometry.
In field theory language, we would say that the dynamics of the glueballs and that
of the mesons influence each other, leading to new states that will be a mixture of
mesons and glueballs. This is surely what we need to do if x = Nf/Nc = fixed and
doing this will set us in the Veneziano scaling limit.

More technically, in the ’t Hooft scaling limit we are studying the Born-Infeld-Wess-Zumino
dynamics for a Dk flavor brane in a background created by Nc color Dp-branes (we will
always work in Einstein frame in the following):

SBIWZ = −Tk
∫
dk+1xe((k−3)/4)φ

√
det

[
ĝab + 2πα′e−φ/2Fab

]
+ Tk

∫
C ∧ eF, (1.5)

where ĝab,Fab are fields induced by the color branes background on the (few) flavor branes.
The “shape” of the flavor branes (induced metric) will then influence the mass spectrum
and interactions of the fluctuations of the flavor branes (the mesons), explicitly realizing
the picture advocated above. This line of research was initiated by Karch and Katz [6] and
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substantially clarified in subsequent papers [7, 17–21]. This line kept on growing in the last
few years, finding numerous applications. See [8] for a comprehensive review.

On the other hand, working in the Veneziano scaling limit implies that we will need
to study the action

S = SIIA/IIB + SBIWZ. (1.6)

There will be new equations of motion, encoding explicitly the numbersNf,Nc. As discussed
above, it is now very clear that proceeding like this will be the only possibility when the
number of flavors is comparable with the number of colors. Also, it makes manifest the fact
that the dynamics of glueballs (represented on the string side by SIIA/IIB which is of order
g−2
s ∼ N2

c ) is influenced and influences back on the dynamics of fundamentals (represented
by SBIWZ, of order g−1

s Nf ∼ NcNf). The rest of this review will focus on this second scaling
(Veneziano).

Notice that (in both scalings) we are making an explicit difference between the color
SU(Nc) gauged symmetry and the flavor SU(Nf) global symmetry on the field theory side.
From the string theory construction, this qualitative difference is connected to the fact that
the volume of the flavor branes is infinite, as compared to the volume of the color branes.
Indeed, in the bulk, we only need to realize the field theory global symmetry, and we do it
with the gauge field present in the Born-Infeld-Wess-Zumino action. Searching for solutions
of Dp color branes in interaction with Dk flavor branes in pure IIA/IIB supergravity is an
interesting problem but will not represent the physical system we are after, as only flavor
singlet states would be included in the dynamics.

Before we proceed studying the formalism and examples to clarify the details, some
comments are in order.

1.3. The String Action and the Scaling Limit in Nc and Nf

Let us study a bit more the expression of (1.6), being careful about coefficients. We will
consider the case of a set of Nc “color” Dp-branes and Nf “flavor” Dk-branes. The action
for this system will be, in Einstein frame,

S =
1

2κ2
10

∫
d10x

√
g10

[
R − 1

2
(
∂φ

)2 − e
−φ

12
H2

3 −
∑
l

e((5−l)/2)φ

2 × l! F2
l

]
+
∫

CS-terms

−NfTk

∫
dk+1xe((k−3)/4)φ

√
det

[
ĝab + 2πα′e−φ/2Fab

]
+NfTk

∫
k+1

C ∧ eF,

S =
1

2κ2
10

[∫
L

(
IIA
IIB

)
− 2κ2

10NfTk

∫
LBIWZ

]
,

(1.7)

where by Fl we have denoted the various RR fields and with CS-terms the possible Chern-
Simons terms. We have taken the simplification of writing the action for the set of flavor
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branes as Nf times that of a single D-brane, which is enough for the large N counting we
want to undertake here. The gravitational constant and D-brane tension are

2κ2
10 = (2π)7g2

sα
′4, Tk =

1

(2π)kgs(α′)(k+1)/2
. (1.8)

The typical quantization condition for the color branes reads

1
2κ2

10

∫
F8−p =NcTp. (1.9)

As a consequence of (1.7), we will have equations of motion, that generically will read for the
metric and dilaton:

Rμν −
1
2
gμνR = Tμν

[
IIA
B

]
− 2κ2

10NfTkTμν[brane],

∇2φ =
∂

∂φ

[
L

[
IIA
B

]
− 2κ2

10NfTkL[BIWZ]
]
,

(1.10)

together with the modified (by the CS-terms) Maxwell equations and, importantly, the
Bianchi identity for the (magnetic) Ramond-Ramond field F8−k that couples to the flavor
Dk-branes:

dF8−k = 2κ2
10NfTkδ

9−k(�r), (1.11)

indicating that the flavor branes are localized (all together) at the position �r = 0. Similarly
the Tμν[brane] contains delta functions with support on the position of the flavor branes. In
principle, one will need to solve second-order, nonlinear, partial differential equations.

Instead of directly dealing with the above equations, we want to present here an
argument to understand which parameter controls the size of the flavor effects on the action
and, therefore, on the solution. We remark that the reasoning below is qualitative and in
particular we will just write a background for flat Dp-branes as considered, for instance, in
[22]. This will be enough for understanding the scaling with the parameters, at least in the
cases studied in this review. In the following, we just focus on the behaviour with respect to
Nf , Nc, g2

YM and do not care about numerical prefactors. We will use notation similar to [22].
Consider the background associated to a stack of Dp color branes (in Einstein frame):

ds2 = e−φ/2α′

⎡
⎢⎣

(√
α′U

)(7−p)/2

α′cp
√
gsNc

dx2
1,p +

α′cp
√
gsNc(√

α′U
)(7−p)/2

dU2 + cp
√
gsNc

(√
α′U

)(p−3)/2
dΩ2

8−p

⎤
⎥⎦,

eφ ∼

⎛
⎜⎝ gsNc(√

α′U
)7−p

⎞
⎟⎠

(3−p)/4

,

(1.12)
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where cp is a known numerical constant and U is an energy scale. On a background of this
kind, we want to introduceNf Dk-flavor branes and to know which is the relative importance
of the associated terms in the action (1.7) and equations of motion (1.10). With that aim, let us
start by computing the coefficient in front of the term coming from the RR-form sourced by
the color branes in (1.7), namely, (2κ2

10)
−1√g10e

((p−3)/2)φF2
8−p. Using (1.9) and (1.12), we find

that the Lagrangian density associated to the color branes goes as:

Lcolor ∼
(

2κ2
10

)−1√
g10e

5φ/2
(
α′
−1
)(
gsNc

)(p−4)/2
(√

α′U
)(p−3)(p−8)/2

. (1.13)

Let us now look at the DBI term. We assume that the flavor Dk-branes are extended along the
Minkowski directions, the radial direction U, and k − p − 1 directions within the sphere. We
find

Lflavor,DBI ∼NfTke
((k−3)/4)φ

√
ĝk+1 ∼

Nf

Nc
g
(k−p)/2
eff Lcolor, (1.14)

where in order to get the last expression we have used (1.8), (1.12), and (1.13) and defined a
dimensionless effective coupling as in [22]:

g2
eff ∼ g

2
YMNcU

p−3 ∼ gsNc

(√
α′U

)p−3
. (1.15)

Thus, parametrically, the action from the flavor branes as compared with that from the color
background is weighed by (Nf/Nc)g

(k−p)/2
eff . We now want to take a low-energy decoupling

limit as in [22] (see also [23]); namely, the dimensionless effective coupling geff and U are
fixed as α′ → 0. Thus, the Veneziano scaling limit in this framework amounts to

Nc,Nf −→ ∞, geff fixed,
Nf

Nc
g
(k−p)/2
eff fixed, (1.16)

where the last relation comes from demanding that the flavor effects are also fixed. Staying
in the supergravity limit requires

1� g2
eff �N

4/(7−p)
c , (1.17)

a constraint that limits the range of energy scales U for which the supergravity description
is valid [22]. Notice that if we further require that the flavor terms do not parametrically
dominate over the color ones, this can further restrict U, depending on p and k.

The probe limit, in which the flavor action is negligible as compared to the gravity
action, comes from making the last quantity in (1.16) vanishingly small. (In the literature, it
is usually written that the probe limit is good when Nf �Nc. That is not strictly correct. For
instance, in the D3–D7 case, the probe approximation is valid when, parametrically, λ Nf �
Nc.) As expected, that term is strictly zero in the ’t Hooft limit. We now comment on the
values of p, k that will appear in the following sections.

For the D3–D7 case of Section 2, the parameter weighing the flavor effects is
(g2

YMNc)(Nf/Nc) ∼ λ(Nf/Nc). For the cascading case of Section 5, the result is similar but
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one has to replace Nc by the number of fractional branes M. Getting ahead of the discussion
of upcoming sections we notice that, in these cases, it is not enough to take this parameter
fixed, but it should also be small. This will be due to positive beta functions, as will be
thoroughly discussed.

From (1.16), we see that k = p (Sections 3, 4 and 6) is particularly interesting since it
is really Nf/Nc what has to be taken fixed. (Even if in all these sections we will deal with
wrapped branes and therefore the backgrounds are not that similar to (1.12), the argument
above still yields the correct result.) For this reason, only in these cases one can hope to
describe—within gravity—phenomena as Seiberg-like dualities (see Section 3.6.2). Loosely
speaking, the Klebanov-Strassler duality cascade [13] lies in this class of k = p theories, since
it can be understood as the interplay between two sets of D5-branes wrapping vanishing
two-cycles.

We close this section by mentioning other brane intersections that will not be discussed
further in later sections. In a D2–D6 system, the effective coupling (1.15) decreases at large
U and therefore the flavor backreaction on the glue fades away in the UV—see (1.16)—
as expected in a superrenormalizable theory. This was observed in [24] when studying a
solution with localized D6-branes. In a D4–D8 intersection, the opposite happens. The probe
brane approach can be valid in an intermediate regime 1 � g2

eff � Nc/Nf but at a given U
the fundamentals eventually take over and dominate. Notice that the value ofU for which the
D4-D8 theory loses its validity is parametrically smaller than that for which the unflavored
D4-brane theory becomes pathological, which is set by (1.17).

1.4. The Method

Looking back at (1.7), one can appreciate that in general finding the solution describing the
backreaction between the type II closed strings and the open strings described by the Born-
Infeld action is quite a challenging problem. Indeed, the fact that the flavor branes (BIWZ)
are localized in the ten-dimensional space implies that we will have to solve second-order,
nonlinear, coupled, and partial differential equations with localized sources. Basically what
makes things so difficult are the presence of delta function sources and the fact that the
differential equations describing the dynamics are “partial” (in principle depending on all
the variables describing the space transverse to the flavor branes). In order to get some
intuition of the answer, we may consider the case in which we will “erase” the dependence on
these transverse coordinates (this is like considering the “s-wave” of the putative multipole
decomposition of the full solution in this transverse space) and delocalize the sources. To
achieve this, we will propose to smear the flavor branes over their perpendicular space.

On the field theory side, this will amount to considering systems where the addition
of the degrees of freedom transforming in the fundamental does not break any of the global
symmetries of the unflavored QFT. Also, it may happen that the original U(Nf) is explicitly
broken to U(1)Nf as we are separating the flavor branes—see the discussion in [25, Section
7] and in [26, Section 2]. An intuitive understanding of the smearing procedure will be
discussed in Section 1.5, while a more formal approach will be treated in Section 7. For
technical reasons, this procedure is cleaner in examples preserving some amount of SUSY,
since the force between flavor branes is cancelled and the smearing is at no cost of energy.

In the examples described in the following sections, we will proceed like this.

(i) Consider an unflavored string background and find the embedding of flavor branes
that will preserve some SUSY, or (in non-SUSY examples) that will be stable and
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solve the equations of motion for the brane. In the SUSY cases, this can be achieved
by considering kappa-symmetric embeddings, that we review generically below.

(ii) Consider now Nf flavor branes in that particular embedding and smear them,
getting an action in ten dimensions, as will be explained with all generality in
Section 7.

(iii) Solve the equations derived from (1.7), that will now contain smeared branes and
will be ordinary differential equations. In SUSY cases, there will be a set of BPS
equations to be solved. In non-SUSY examples one might manage to get a fake
superpotential and fake-BPS equations [27].

Moreover, one has to check that the flavor embeddings considered are still a solution in the
backreacted geometry.

Let us review briefly the main technical points collected above.

1.4.1. BPS Equations, Kappa Symmetry (SUSY Probes), and Smearing

Let us consider the case of a supersymmetric background, namely, a solution of type II sugra
for which the supersymmetry variations of the gravitino and the dilatino vanish δψμ = δλ = 0.
We will not give here details on the form of these expressions, which can be found elsewhere.
For instance, the string frame SUSY transformations of both type IIA and type IIB are written
down in [28, Appendix A].

Given a background that preserves some amount of SUSY, the idea is to find the hyper-
surfaces in which to extend the flavor branes (in other words, finding the embeddings for
flavor branes) so that these will preserve all (or a fraction) of the SUSY of the background.

One then writes an eigenvalue problem, imposing that the preserved spinors of the
background are eigenspinors of the kappa-symmetry matrix:

Γκε = ε. (1.18)

See [29, 30] for the definition of Γκ.
Once we have the kappa-symmetric embeddings as described above, we now proceed

to write an action describing the dynamics of the closed and open strings, as in (1.7). We then
realize that the problem will lead (unless we are adding D9-branes) to a system of partial
differential equations. As discussed above, we then proceed to smear these flavor branes.
For this we propose an ansatz for the metric, where the embedding of the flavor branes is
clear and distribute them along the directions of their transverse space. This distribution of
the flavor branes can be done in a uniform way. In some sense, we are “deconstructing” the
transverse space to the flavor branes by adding at each point one of the many Nf flavor
branes.

The key point is that once the BPS equations and kappa-symmetry conditions are
simultaneously satisfied, the problem is solved. In fact, it is a general result [31] that the SUSY
equations δψμ = δλ = 0, together with the Bianchi identities—and equations of motion—for
the different forms modified by calibrated (namely, kappa-symmetric) sources imply the full
set of equations of motion.

In the following, we will discuss first an intuitive way of understanding this smearing.
Then we will apply this to different examples in Sections 2–6. Finally, in Section 7, we will
present a formal way of implementing the backreaction from smeared sources.
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(a) (b)

Figure 2: (a) A point-like charge (in red) and two lines of charge at different angles. (b) A configuration
with many lines of charge. In the asymptotic limit of an infinite number of lines, they just correspond to a
radial charge density. This picture depicts an analogous situation to the case of smeared flavored branes,
when the fundamental fields are massless.

1.5. A Heuristic Viewpoint

In the following sections, we will introduce the necessary mathematical machinery to
consistently compute solutions of string theory in which smeared backreacting flavor branes
are present. Before that, it is worth to make a digression in order to explain the general set-up
in simple, heuristic terms.

Let us make an analogy with electrostatics. Suppose that we want to compute the
electric field generated by a point-like charge and a couple of lines of charge, as depicted
on Figure 2(a). In order to depict the situation, we show dimension 1 lines of charge in a
total space of dimension 2, but clearly the situation can be generalized by changing such
dimensions. Since in the left plot there is no particular symmetry in the configuration, the
resulting electric field will have a not so simple expression. But let us imagine that we
consider a huge number of lines of charge as in the plot of the right and homogeneously
distribute them in the angle they form with the horizontal axis. In the limit of many lines,
radial symmetry is recovered, and the charge density is “smeared” and will be just given by
a single (monotonically decreasing) function ρ(r). The electric field, accordingly, will also be
radially symmetric. Notice that this process of describing a large number of discrete objects
by a continuous distribution is ubiquitous in physics: for instance, a “homogeneous” gas is
a collection of atoms or the “homogeneous” Universe considered in cosmological models
contains a collection of galaxy clusters. Also, solutions with different kinds of smeared
sources have been considered many times in string theory contexts not necessarily related
to gauge-gravity duality; see, for instance, [32, 33].

When comparing to the string theory set-up, the point-like charge in the center
corresponds to the color branes and the lines to the flavor branes (which have to extend to
infinity). The limiting radially symmetric configuration corresponds to the kind of smeared
situations that we will discuss in this review. (More precisely, it corresponds to the situations
analysed in Sections 2–5. For the cohomogeneity 2 cases analysed in Section 6, the different
functions depend on two radial variables. A heuristic picture for such situations is presented
in Section 6.) All functions of the ansatz can then be considered to depend on a single radial
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(a) (b)

Figure 3: These pictures depict analogous situations to the case of flavored branes, when the fundamental
fields are massive. (b) Again, we add a large number of lines, such that in the limit radial symmetry is
recovered.

variable. For flavor branes, the different “angles” correspond to adding fundamental matter
which couples differently to the rest of the fields. In some of the cases discussed in the
following, we will see how this is reflected in the field theory superpotential (Section 2.3.1).

We can still get further intuition from this simple analogy. In Figure 2(b), we see that all
lines intersect at the center. From the string point of view, that means that the flavor branes are
stretched down to the bottom of the geometry and the quarks are massless. In this situation,
the charge density ρ(r) is highly peaked at r = 0. Essentially, that is the reason why for
the solutions with massless quarks described in the following sections there is a curvature
singularity at the origin, where all flavor branes meet.

Then, a simple way of getting rid of such a singularity is to displace the lines of charge
from the origin, while still keeping the radial symmetry. This is depicted in Figure 3. If we dub
the distance from any of the lines to the center as rq, the density of charge ρ(r) will vanish
for 0 < r < rq, while it will asymptote to the “massless” rq = 0 one as r � rq. From the brane
construction, this displacement typically corresponds to giving a mass to the fundamentals
(or, in particular cases, it could correspond to a nontrivial vacuum expectation value). The
solution of Section 2.3.2, which indeed is regular in the IR, is a neat example of this notion.
Another possibility is to add temperature and to hide the singularity behind a horizon; see
Section 2.5.

Going back to electrostatics for Figure 3(b), we know from Gauss’ law that the charge
density outside does not affect the central region. The corresponding statement in the field
theory is that the massive fields decouple from the IR physics below the scale given by their
mass. We find it interesting that, through this heuristic reasoning, Gauss’ law is connected to
the decoupling of heavy particles (or holomorphic decoupling in the SUSY cases).

Even if the example of electrostatics is useful to qualitatively picture what we will
do in the following, the analogy is by no means perfect. We note two differences: first, we
will be working with gravity, which is nonlinear and, thus, one cannot find the final solution
by superposing the fields generated by different sources (which in the case of electrostatics
would make it rather trivial to find the electric field for the configurations depicted on Figures
2(a) and 3(a)). Second, our “lines of charge” (the flavor branes) are dynamical. This means
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that is it not enough to compute the background fields generated from the sources but one
also has to check that the sources are stably embedded in the geometry.

We end this section by summarizing the pros and cons of looking for duals of
unquenched theories for which the string solutions include smeared flavor branes, many of
which can be inferred from the heuristic discussion above. On the positive side, one has the
following.

(i) The smearing simplifies the situation allowing us to write ansätze depending on a
single radial coordinate, and therefore the problem is eventually reduced to a set of
ODEs. (For the cases of Section 6, they depend on two radial coordinates and thus
one finds PDEs in terms of two independent variables, but again, without delta-
function localized sources.)

(ii) Possible issues related to singularities and strong coupling are ameliorated in the
same sense as they are washed out in electrostatics when considering a smooth
charge density rather than a sum of delta-functions over a large number of
electrons.

(iii) It allows a simple application of the powerful mathematical tools of calibrated
geometry [34]; see Section 7.

On the negative side, one has the following.

(i) Obviously, if we require the flavor branes to be smeared, we are limiting ourselves
to considering a very particular subset of all the possible flavored theories. In
particular, we require the superpotentials to effectively recover (some of) the global
symmetries of the theory without flavors.

(ii) Related to the previous point, one cannot realize, in general, theories with U(Nf)
flavor groups. Since the flavor branes are required to sit at different points in the
internal space, the typical string connecting different flavor branes is heavy and the
flavor symmetry is typically broken to U(1)Nf (one may also interpret the solutions
as having flavor symmetry U(k)Nf/k for some k � Nf). From the point of view of
the field theory, this amounts to having a Veneziano expansion with “one window
graphs”, as pointed out in [26]. In principle, this fact can hinder the realization of
some interesting physical features in the dual set-ups considered.

1.6. Localized Sources and Other Approaches

As already remarked, this review focuses on solutions of string theory for which there are
D-brane sources homogeneously smeared over a given family of possible embeddings and
that can be interpreted as duals of strongly coupled gauge theories in the Veneziano limit. As
stressed above, this is a very particular subset of all the possible duals of theories with flavor.
In a generic case, one should consider the sources to be localized at certain positions, such
that the density of charge is given by a sum over Dirac delta functions. Such generic case is
technically more challenging. However, remarkable works along these lines have appeared,
pursuing solutions with the flavor branes localized at a single point of space (notice this is
not the most general case either). We will not review them in any detail here, but the goal of
this section is to provide a brief guide to the literature on the subject.

The main ingredient of this approach consists of finding solutions of supergravity
which can be interpreted as intersections of branes of different dimension, with each stack
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of branes localized at a fixed position of space-time. In the context of gauge-gravity duality,
the search for such solutions was initiated in [35, 36]. These papers discussed D3-D7
intersections, which have been the most studied in the literature (see below for different set-
ups). A lot of progress was reported in subsequent years [37–39]. Among other aspects, these
papers presented a better understanding of the D3-D7 solutions, the inclusion of fractional
branes, and clear matching with field theory issues such as the running of couplings and
anomalies. Further work on the D3-D7 localized system was performed in [40] (where the
conifold was also addressed) [41] (where D7 brane backreaction on bubbling geometries
was considered), and [42], where the solution corresponding to D3-D7 in flat space was
completed by providing an expression for the warp factor in closed form. It is also worth
mentioning [43] where a flavor D7-brane in a cascading theory was considered and its
backreaction introduced as a perturbation. The finite temperature generalization of the
background of [43] was discussed in [44, 45].

Let us now outline the literature on D2-D6 localized intersections, which can be
interpreted as duals of 2+1 supersymmetric gauge theories coupled to fundamentals
introduced by the D6-branes. The construction of the type IIA solutions (and their relation
to M-theory) was carried out in [24, 46, 47]. In [48], meson excitations of this background
were discussed and, in particular, the holographic dictionary relating meson-like operators
to certain (closed string) supergravity modes was presented. On the other hand, the authors
of [49] found a finite temperature version of the solution, which was used to discuss the
thermodynamics of the system. Very recent progress in the D2-D6 systems, their M-theory
uplifts, and the detailed relation to Chern-Simons theories with flavor has been reported in
[50, 51].

Regarding D4-D8 intersections, localized solutions in that set-up were constructed in
[52] in an early attempt to build a QCD dual. In the context of the Sakai-Sugimoto model
[20], backreaction from localized D8-D8 branes was analysed in [53].

It is also worth mentioning recent solutions in heterotic string theory which were
argued to be related to flavored theories [54].

Interestingly, there are a few papers in which similar situations were considered in
subcritical string theory and therefore defined in dimensions lower than ten. In many of these
cases, each flavor brane fills the whole space-time (therefore they are not localized, neither
smeared). Some physics can then be extracted by using exact string theory methods but what
these models have in common is that it is not possible to handle them within a well-controlled
gravity description: gravity-like actions with just two derivatives suffer curvature corrections
which cannot be neglected, nor consistently computed. However, there is the hope that the
two-derivative actions can nevertheless provide additional nontrivial insights in the physics
of the system. This idea was put forward by Klebanov and Maldacena in [55], who considered
a D3-D5 system in a six-dimensional background (the cigar). Such a system is dual to 4DN =
1 SQCD as was shown using exact worldsheet methods in [56, 57]. For a recent discussion on
the dual to the flavor singlet sector of N = 2 superconformal QCD in a subcritical string
framework, see [58]. The set-up of [55] was generalized to different situations in [11, 59, 60].
The finite temperature physics of a model in [11] was analysed in [61]. Bottom-up approaches
(in which a high-dimensional gravity theory is proposed to describe some specific features
of QCD) with space-time filling flavor branes have been discussed in [62, 63]. Recently, a
bottom-up approach to the conformal window along these lines has appeared [64].

Finally, let us mention a recent contribution by Armoni [65], in which a way of
departing from the quenched approximation was proposed. The fermion determinant is
expanded in terms of Wilson loops. It then turns out that a sum of correlators of an observable
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with the Wilson loops boils down to an expansion in Nf/Nc, which can in principle be
computed. It would be nice to further develop possible implications of this observation in
holographic set-ups.

2. Flavor Deformations of AdS5 ×X5

Our first concrete application of the procedure described will be the flavor deformation
of AdS5 × S5. This is the simplest possible case and, hopefully, it will neatly illustrate the
comments of Section 1.2. In fact, for most of the discussion, the formalism applies to any
AdS5 × X5 geometry, X5 being a five-dimensional compact Sasaki-Einstein (SE) space so we
will refer to this more general case during this whole section. At some points, we will use the
two notable examples X5 = S5 or T1,1 to clarify particular issues.

Let us start with a general comment. Since the AdS5 × S5 theories without flavor are
conformal, we expect that once we include extra matter, a positive beta function is generated.
This is in fact the case and leads to the appearance of a Landau pole. Nevertheless, as in QED,
the theory renders meaningful IR physics even if the UV is ill-defined as long as the IR and
UV are well-separated scales. However, this separation does not allow to have Nf and Nc of
the same order. As we will see, one can define a parameter ε ∼ λNf/Nc which weighs the
internal flavor loops and that has to be kept small. The effect of the unquenched quarks can
then be computed as an expansion in ε.

After introducing the framework in Sections 2.1 and 2.2, we present the unquenched
supersymmetric (N = 1 in 4d) solutions in Section 2.3. In Section 2.4, we present an instance
of the effects of the unquenched flavors on a physical quantity, namely, on the mass of
a particular meson tower. Then, in Section 2.5, we break supersymmetry by turning on
temperature and analyse the physics of the dual quark-gluon plasma. We end in Section 2.6
by discussing the range of validity for the solutions and approximations used.

2.1. The Geometries and Field Theories without Flavors

The models we discuss here are obtained by placing a stack of Nc D3-branes at the origin of
the six-dimensional cone over X5. The corresponding type IIB background reads

ds2 = [h(r)]−1/2dx2
1,3 + [h(r)]1/2

[
dr2 + r2ds2

X5

]
,

F5 = dh−1dx0 ∧ · · · ∧ dx3 + Hodge dual,

h(r) =
Qc

4r4
, Qc ≡

(2π)4gsα
′2Nc

Vol(X5)
,

(2.1)

where we have taken the near horizon limit. The dilaton is constant and all the other fields
of type IIB supergravity vanish. In general the metric of the SE space X5 can be written as a
Hopf fibration over a four-dimensional Kähler-Einstein (KE) manifold:

ds2
X5 = ds2

KE + (dτ +AKE)
2, (2.2)



Advances in High Energy Physics 17

where τ is the fiber and AKE is the connection one-form whose exterior derivative gives the
Kähler form JKE of the KE base:

dAKE = 2JKE. (2.3)

Let us first consider the particular case in whichX5 is the five-sphere S5. In this case the
KE base is the manifold CP 2 (with the Fubini-Study metric) and the space transverse to the
color branes, with metric dr2 + r2ds2

S5 , is just R
6. When X5 = S5, the coefficient Qc appearing

in (2.1) is just Qc = 16πgsα′
2Nc. Moreover, as is well known, the field theory dual to the

AdS5 ×S5 background isN = 4 SYM in 4d, which, inN = 1 language, can be written in terms
of a vector multiplet and of three chiral superfields Φi (i = 1, 2, 3) transforming in the adjoint
representation of the gauge group and interacting by means of the cubic superpotential:

WN=4 = Tr[Φ1[Φ2,Φ3]]. (2.4)

If we represent the transverse R
6 of the AdS5×S5 solution in terms of three complex variables

Zi (i = 1, 2, 3), one can regard the Zi’s as the geometric realization of the adjoint superfields
Φi.

The second prominent example which we will analyze in detail is the one in which X5

is the T1,1 space with metric:

ds2
T1,1 =

1
6

2∑
i=1

[
dθ2

i + sin2θidϕ
2
i

]
+

1
9

[
dψ +

2∑
i=1

cos θidϕi

]2

, (2.5)

where the range of the angles is ψ ∈ [0, 4π), ϕi ∈ [0, 2π), θi ∈ [0, π]. Since Vol(T1,1) = 16π3/27,
the coefficient Qc for this solution is Qc = 27πgsα′

2Nc. In this case the space transverse to the
color branes is the conifold, which is a 6d Calabi-Yau cone which can also be described as the
locus of the solutions of the algebraic equation:

z1z2 = z3z4, (2.6)

where the zi are four complex coordinates. The relation between these variables and the
coordinates used in (2.5) is the following:

z1 = r3/2e(i/2)(ψ−ϕ1−ϕ2) sin
θ1

2
sin

θ2

2
, z2 = r3/2e(i/2)(ψ+ϕ1+ϕ2) cos

θ1

2
cos

θ2

2
,

z3 = r3/2e(i/2)(ψ+ϕ1−ϕ2) cos
θ1

2
sin

θ2

2
, z4 = r3/2e(i/2)(ψ−ϕ1+ϕ2) sin

θ1

2
cos

θ2

2
.

(2.7)
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Notice also that the metric written in (2.5) is of the form (2.2) where the KE base is just
the S2 × S2 space parameterized by the angles (θi, ϕi) and one should make the following
identifications:

τ =
ψ

3
, AT1,1 =

1
3
(
cos θ1dϕ1 + cos θ2dϕ2

)
,

JT1,1 =
dAT1,1

2
= −1

6
(
sin θ1dθ1 ∧ dϕ1 + sin θ2dθ2 ∧ dϕ2

)
.

(2.8)

The field theory dual to the AdS5×T1,1 background is theN = 1 superconformal quiver gauge
theory with gauge group SU(Nc)×SU(Nc) and bifundamental matter fieldsA1, A2 and B1, B2

transforming, respectively, in the (Nc,Nc) and in the (Nc,Nc) representations of the gauge
group [66], that is, the so-called Klebanov-Witten (KW) model. The matter fields form two
SU(2) doublets and interact through a quartic superpotential:

WKW = ĥεijεkl Tr
[
AiBkAjBl

]
. (2.9)

For a single brane the fields Ai and Bi can be related to the coordinates zi by means of the
following relations:

z1 = A1B1, z2 = A2B2, z3 = A1B2, z4 = A2B1, (2.10)

which automatically solve the defining conifold equation (2.6).

2.2. Flavor Branes and Smeared Charge Distribution

The flavor branes for the AdS5×X5 backgrounds just described are D7-branes extended along
the four Minkowski directions as well as along a noncompact submanifold of the cone over
X5. The type of flavor that the D7-branes add depends both on the space X5 and on the
submanifold they wrap in the transverse space. We first illustrate the situation with the two
examples of X5 = S5 and T1,1 and at the end display the general expressions.

The first instance is the case in which X5 = S5. In this case a simple kappa symmetry
analysis shows that, in order to preserve eight supersymmetries, the D7-branes must be
extended along a codimension two hyperplane in R

6 which, in terms of the complex
coordinates Zi, can be written as

a1Z
1 + a2Z

2 + a3Z
3 = μ, (2.11)

with the ai and μ being complex constants satisfying
∑3

1 |ai|2 = 1. On the field theory side
these flavor branes introduceN = 2 fundamental hypermultiplets (Qr, Q̃r) (r = 1, . . . ,Nf)—
nonetheless, a generic collection of branes within the family (2.11) retains just N = 1 susy.
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The corresponding superpotential for an embedding such as the one in (2.11) can be written
as

W =WN=4 + Q̃r

⎡
⎣∑

j

ajΦj +m

⎤
⎦Qr, (2.12)

where the mass m is related to the constant μ in (2.11). Notice that since the embeddings are
holomorphic, it is not possible to smear them in a way in which the full SO(6) isometry is
realised. After smearing over the embeddings (2.11), one can recover, at most, SU(3) ×U(1),
as will be seen directly from the dual solution.

In the case of the AdS5 × T1,1 background there are two classes of holomorphic
embeddings which correspond to different types of flavors in the KW theory. In terms of
the zi coordinates of (2.7) the representative embedding of the first class is given by the
equation z1 = μ. This is the so-called Ouyang embedding [43], which has two branches in
the massless limit μ = 0. In each of these branches the D7-brane adds fundamental matter
to one of the two nodes of the KW quiver and antifundamental matter to the second. The
corresponding superpotential contains cubic couplings between the quark fields qi and q̃i
(i = 1, 2) and the bifundamental fields Ai and Bi. For example, for the massless embedding
z1 = 0 the superpotential (2.9) is modified as

Wz1=0 =WKW + h1q̃1A1q2 + h2q̃2B1q1, (2.13)

where, here and in the following, traces over color indices and sums over the Nf flavor
indices are implied. The second class of D7-brane embeddings is the one giving rise to
nonchiral flavors, whose representative element is given by the equation z1 − z2 = μ. In this
case every D7-brane adds fundamental and antifundamental flavor to one node of the KW
quiver and the flavor mass terms do not break the classical symmetry of the massless theory.
The corresponding superpotential contains only mass terms and quartic couplings, namely,

W =WKW + ĥ1q̃1[A1B1 −A2B2]q1 + ĥ2q̃2[B1A1 − B2A2]q2 + ki
(
q̃iqi

)2 +m
(
q̃iqi

)
. (2.14)

In order to develop our program and construct backreacted gravity solutions for
smeared distributions of flavor branes following [67], we should be able to find a family
of equivalent embeddings for each type of configuration described above. In the case of the
AdS5 × S5 background (2.11) provides such a family. Notice that, even if each individual
embedding of the form (2.11) preserves N = 2, which supersymmetries are preserved
depends on the ai’s. Nevertheless, one can check that all the holomorphic embeddings of
the type (2.11) are mutually supersymmetric and, due to the holomorphic nature of the linear
equation (2.11), they preserve the same common four supersymmetries (N = 1) for all values
of the constants ai. Thus, we can use these constants to parameterize the family of different
planes that constitute our continuous distribution of flavor branes.
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In the case of the AdS5 × T1,1 background one can generalize the chiral embedding
z1 = μ by acting with the SU(2) × SU(2) symmetry of the conifold. The corresponding family
of embeddings takes the following form:

4∑
i=1

αizi = μ, (2.15)

with the complex constants αi spanning a conifold (up to overall complex rescalings):

α1α2 − α3α4 = 0. (2.16)

Notice that embeddings like z1 − z2 = μ are not in this family. Indeed, the nonchiral
embeddings z1 − z2 = μ can be generalized as

pz1 − pz2 + qz3 + qz4 = μ, (2.17)

where p, q span a unit 3-sphere; that is, they satisfy |p|2 + |q|2 = 1.
In spite of the differences among the cases presented above, the charge distribution

generated by these families of embeddings can be written in a common form. The reason for
this universality is the underlying Sasaki-Einstein structure. In order to illustrate this fact, let
us consider the chiral embeddings (2.15) in the case in which the mass parameter μ is zero.
Without loss of generality we can rescale the αi coefficients and fix α1 = 1. Then, (2.16) fixes
α2 = α3α4 and, after using (2.7), the massless embedding equation

z1 + α3α4z2 + α3z3 + α4z4 = 0 (2.18)

nicely factorizes as

(
sin

θ1

2
+ α3e

iϕ1 cos
θ1

2

)(
sin

θ2

2
+ α4e

iϕ2 cos
θ2

2

)
= 0. (2.19)

Notice that the vanishing of each of the factors in (2.19) determines a branch in which the
branes sit at a fixed point of one of the two two-spheres parameterized by the angles (θi, ϕi).
The constants α3 and α4 determine the particular point at which each brane is sitting in each
S2. Indeed, if ξα1 and ξα2 are systems of worldvolume coordinates for the D7-branes, these two
branches can be written as

ξα1 =
{
x0, x1, x2, x3, r, θ2, ϕ2, ψ

}
, θ1 = θ∗1 = const., ϕ1 = ϕ∗1 = const.,

ξα2 =
{
x0, x1, x2, x3, r, θ1, ϕ1, ψ

}
, θ2 = θ∗2 = const., ϕ2 = ϕ∗2 = const.

(2.20)

In Figure 4 we have represented the two branches for the embedding (2.18). From the
field theory side, which particular embedding we choose determines the coupling between
the associated quarks and the bifundamentals. Roughly speaking, the contribution to
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S2(θ1, ϕ1) S2(θ2, ϕ2)

Nf D7 Nf D7

ψ

U(Nf ) U(Nf ) U(1)Nf U(1)Nf

Figure 4: We see on the left side the two stacks of Nf flavor-branes localized on each of their respective
S2’s (they wrap the other S2). The flavor group is clearly U(Nf ) ×U(Nf ). After the smearing on the right
side of the figure, this global symmetry is broken to U(1)Nf−1 ×U(1)Nf−1 ×U(1)B ×U(1)A.

the superpotential of an embedding determined by some α3, α4 is h1q̃1(A1+α4A2)q2+h2q̃2(B1+
α3B2)q1. Thus, when we smear and sum over all the possible α3 and α4, both SU(2)’s (the
one rotating the Ai’s and the one rotating the Bi’s) are effectively recovered. Figure 4 is the
geometric interpretation of this effect.

It is straightforward to compute the charge density produced by this localized D7-
brane configuration. Indeed, taking into account the contribution of the two branches, one
gets

Ωloc = δ(2)
(
θ1 − θ∗1, ϕ1 − ϕ∗1

)
dθ1 ∧ dϕ1 + δ(2)

(
θ2 − θ∗2, ϕ2 − ϕ∗2

)
dθ2 ∧ dϕ2. (2.21)

To produce a homogeneous configuration of Nf D7-branes we should distribute in every
branch the branes homogeneously along their transverse two-sphere. In the continuum limit
Nf → ∞ this procedure amounts to performing an integration over each S2 with the
corresponding volume element, namely,

Ω =
[∫

Nf

4π
sin θ∗1δ

(2)(θ1 − θ∗1, ϕ1 − ϕ∗1
)
dθ∗1dϕ

∗
1

]
dθ1 ∧ dϕ1

+
[∫

Nf

4π
sin θ∗2δ

(2)(θ2 − θ∗2, ϕ2 − ϕ∗2
)
dθ∗2dϕ

∗
2

]
dθ2 ∧ dϕ2.

(2.22)

The integrations over θ∗i and ϕ∗i in (2.22) can be immediately performed, yielding the
following expression for the smeared charge distribution of D7-branes:

Ω =
Nf

4π
(
sin θ1dθ1 ∧ dϕ1 + sin θ2dθ2 ∧ dϕ2

)
. (2.23)

Notice that in (2.22) we have included the normalization factor Nf/4π in such a way that the
resulting distribution densities sin θ∗i Nf/4π are normalized toNf when they are integrated
over S2. Notice that, as already pointed out above, the flavor symmetry of the smeared
configuration is U(1)Nf rather than U(Nf), since the branes are not placed on top of each
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other. Interestingly, a similar calculation for the embeddings (2.17) in the massless case μ = 0
gives rise to the same charge density for the smeared configuration as in (2.23) [68, 69]. This
is because the form of Ω in (2.23) is determined by the SU(2) × SU(2) × Z2 global symmetry
which we want to recover after smearing.

Actually, one can rewrite (2.23) in a form which can be easily generalized to any
continuous family of equivalent D7-brane massless embeddings in an arbitrary Sasaki-
Einstein manifold. Indeed, by using (2.8) one can rewrite the right-hand side of (2.23) in
terms of the Kähler form of T1,1 as

Ω = −
3Nf

2π
JT1,1 . (2.24)

For an arbitrary Sasaki-Einstein space X5, the expression (2.24) generalizes to

gsΩ = −2QfJKE, (2.25)

where Qf is the following constant coefficient

Qf =
Vol

(
X3)gsNf

4Vol(X5)
. (2.26)

In (2.26) X3 is the compact submanifold of X5 wrapped by the D7-brane in a massless
embedding. Notice that in this case the D7-brane worldvolume along the space transverse
to the color branes is always of the form I × X3, where I is a noncompact interval along the
holographic radial direction. It is worth noticing that the factor Vol(X5)/Vol(X3) appearing
on the right-hand side of (2.26) is just the volume transverse to any individual flavor brane,
over which we are distributing the D7-branes. For the massless chiral embeddings in the
conifold one can readily check, after taking into account the contribution of both branches
in (2.20), that Vol(X3) = 16π2/9. Since Vol(T1,1) = 16π3/27, one can easily prove that (2.25)
reduces to (2.24). In the caseX5 = S5 the three-manifoldX3 is just a unit S3 and Vol(X3) = 2π2.
Therefore, we obtain the following values of Qf for X5 = S5, T1,1:

Qf =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gsNf

2π
for X5 = S5,

3gsNf

4π
for X5 = T1,1.

(2.27)

The charge density Ω determines the ansatz of F1 in the backreacted geometry. Indeed, the
WZ part of the D7-brane action contains a term in which the RR eight-form potential C8

is coupled to the D7-brane worldvolume. The continuous limit for this term amounts to
performing the following substitution:

SWZ = T7

∑
Nf

∫
M8

Ĉ8 −→ T7

∫
M10

Ω ∧ C8, (2.28)
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which leads to the following violation of the Bianchi identity for F1:

dF1 = −2κ2
(10)T7Ω = −gsΩ. (2.29)

Taking into account the general expression of Ω for a massless embedding written in (2.25)
as well as the relation (2.3) between the one-form AKE and the Sasaki-Einstein Kähler form
JKE, one is led to adopt [67] the following ansatz for F1:

F1 = Qf(dτ +AKE). (2.30)

A simple modification of (2.30) for F1 allows us to extend the ansatz to the case in which the
quarks are massive [67]. This modification corresponds to introducing a function p(ρ) of the
holographic coordinate ρ and performing the substitution Qf → Qfp(ρ) in (2.30). The radial
coordinate ρ will be conveniently chosen and, in general, will be different from the one we
used so far. The function p(ρ) encodes the effects of the nontrivial profile of the D7-branes.
Indeed, when the quarks are massive, the brane does not extend along the full range of the
radial coordinate ρ and, accordingly, p(ρ) must vanish for ρ < ρq, where ρ = ρq is the radial
location of the tip of the D7-brane. Moreover, the function p(ρ) should approach the value
p = 1 when ρ � ρq since in this region the quarks are effectively massless. The form of the
function p(ρ) is not universal and depends on the particular embedding of the D7-brane. For
the three embeddings in the cases X5 = S5 and T1,1 discussed above, the expressions for p(ρ)
are given below. At this point let us simply notice that the charge density Ω is modified with
respect to the massless case as

gsΩ = −2p
(
ρ
)
QfJKE −Qfṗ

(
ρ
)
dρ ∧ (dτ +AKE), (2.31)

where the dot denotes derivative with respect to the radial variable ρ.

2.3. Backreacted Ansatz and Solution

Let us now write an ansatz for the backreacted D3-D7 background for a generic Sasaki-
Einstein space X5 [67]. It is clear from the discussion of the previous subsection that, after
performing the smearing, the resulting RR one-form F1 introduces a distinction between the
directions of the U(1) fiber and of the KE base of X5. Therefore, it seems clear that the effect
of the smeared flavor branes on the metric should be an internal deformation of the X5 in
the form of a relative squashing between the KE space and the Hopf fiber. (Just in the case
when X5 is the sphere S5, this squashing breaks part of the isometry SO(6) → SU(3) ×U(1),
where SU(3) is the isometry of the Kähler-Einstein base CP 2.) Accordingly, let us adopt the
following ansatz for the metric in Einstein frame:

ds2 =
[
h
(
ρ
)]−1/2

dx2
1,3 +

[
h
(
ρ
)]1/2

[
e2f(ρ)dρ2 + e2g(ρ)ds2

KE + e2f(ρ)(dτ +AKE)
2
]
, (2.32)

where g(ρ) and f(ρ) are the functions that implement the squashing mentioned above and
the function multiplying dρ2 amounts to choosing a particular radial variable ρ which is
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convenient for our purposes. Moreover, the dilaton will depend on ρ and the RR forms F5

and F1 have the following form:

φ = φ
(
ρ
)
, F5 = Qc(1 + ∗)ε

(
X5

)
, F1 = Qfp

(
ρ
)
(dτ +AKE), (2.33)

where ε(X5) is the volume element of X5 and Qc and Qf are written in (2.1) and (2.26),
respectively. The function p(ρ), whose form depends on the D7-brane embedding, takes into
account the effects of massive quarks, as explained above.

Given the ansatz (2.32)-(2.33) one can easily study the supersymmetric variations of
the dilatino and gravitino in type IIB supergravity and find the corresponding first-order BPS
equations, which ensure the preservation of four supersymmetries. The resulting equations
are [67]

∂ρg = e2f−2g, ∂ρf = 3 − 2e2f−2g −
Qf

2
p
(
ρ
)
eφ,

∂ρφ = Qfp
(
ρ
)
eφ, ∂ρh = −Qce

−4g.

(2.34)

Remarkably, the system (2.34) can be integrated analytically for any function p(ρ). In order
to present this solution, let us define the function η(ρ) as follows:

η
(
ρ
)
= Qfe

φ

∫ρ

ρq

e6ξp(ξ)dξ, (2.35)

where ρq is the value of the radial coordinate at the tip of the flavor brane (p(ρ < ρq) = 0).
Then, we can write down quite simple expressions for f, g, φ, namely,

e−φ = e−φ∗ −Qf

∫ρ

ρ∗

p(ξ)dξ,

eg = c2e
ρe−φ/6

(
1 + e−6ρ

(
c1e

φ + η
))1/6

,

ef = c2e
ρe−φ/6

(
1 + e−6ρ

(
c1e

φ + η
))−1/3

,

(2.36)

where we have introduced a reference scale ρ∗ and we have defined φ∗ = φ(ρ = ρ∗). Notice
that the warp factor h can be obtained as the integral of e−4g as follows from the last equation
in the BPS system (2.34). In (2.36) c1 and c2 are integration constants that we now fix. First,
if we demand IR regularity of the solution, we need g = f when ρ ≤ ρq. Since η vanishes at
ρ = ρq, we need c1 = 0. Moreover, the constant c2 is just some overall scale and has no physical
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meaning. It is natural to fix it to α′1/2eφ∗/6 in order to give appropriate dimensions and to
recover the usual expression for the metric when Qf = 0. Therefore, we find

eφ−φ∗ =
1

1 − eφ∗Qf

∫ρ
ρ∗
p(ξ)dξ

,

eg =
√
α′eρe−(φ−φ∗)/6

(
1 + e−6ρη

)1/6
,

ef =
√
α′eρe−(φ−φ∗)/6

(
1 + e−6ρη

)−1/3
.

(2.37)

Notice that when Qf = 0, we recover the unflavored AdS5 × X5 background. Indeed, in this
case φ = φ∗ and η = 0 and, after performing the change of the radial variable r =

√
α′eρ, we

get that eg = ef = r and the background (2.32)-(2.33) coincides with the one written in (2.1).
Let us now introduce the following parameter:

ε∗ ≡ Qfe
φ∗ , (2.38)

which, as we will see in a while, controls the effects of quark loops in the backreacted
supergravity solution. Indeed, the gauge/gravity dictionary for the type of theories we
are studying relates the exponential of the dilaton to the Yang-Mills coupling constant. For
example, for the (flavored)N = 4 SU(Nc) theory, dual to the deformed AdS5×S5 background,
the gauge coupling is g2

YM = 4πgseφ and, thus, the ’t Hooft coupling at the scale ρ∗ is given
by

λ∗ = 4πgsNce
φ∗ . (2.39)

For the quiver theories that correspond to different X5 geometries, the gauge groups are of
the form SU(Nc)

n. Let us generalize a relation from the orbifold constructions
∑n

i 4πg−2
YM,i =

(gseφ)
−1 [66, 70, 71] and consider all the gauge couplings gYM,i to be equal. Then 4π gsNce

φ,
strictly speaking, gives the ’t Hooft coupling at each node of the quiver, divided by n.
However, with an abuse of language we will simply refer to it as the ’t Hooft coupling.
Therefore, by using (2.39) and the definition of Qf in (2.26) in (2.38), we get

ε∗ =
Vol

(
X3)

16πVol(X5)
λ∗
Nf

Nc
. (2.40)

In particular, when X5 = S5, this relation becomes

ε∗ (X5=S5) =
1

8π2
λ∗
Nf

Nc
. (2.41)

Notice that the fact that φ is not constant in the backreacted solution is simply a reflection,
in the gauge theory dual, of the running of the Yang-Mills coupling constant when matter is
added to a conformal theory.
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In terms of ε∗ the dilaton and the function η of (2.35) take the following form:

eφ−φ∗ =
1

1 − ε∗
∫ρ
ρ∗
p(ξ)dξ

, η = ε∗ eφ−φ∗
∫ρ

ρq

e6ξp(ξ)dξ. (2.42)

One of the prominent features of our solution is the fact that, for Nf /= 0, the dilaton blows up
at some UV scale ρ = ρLP, determined by the following condition:

∫ρLP

ρ∗

p(ξ)dξ = ε−1
∗ . (2.43)

Clearly, in order to have a well-defined solution, we should restrict the value of the radial
coordinate ρ to the range ρ < ρLP. In view of the relation between the Yang-Mills coupling
gYM and the dilaton (g2

YM ∼ eφ), the divergence of φ implies that gYM blows up at some
UV scale, that is, that the gauge theory develops a Landau pole. This UV pathology of our
solution was expected on physical grounds since the flavored gauge theory has positive beta
function. Indeed, we will check below in some particular case that our solution reproduces
the running of the coupling constant of the dual field theory.

2.3.1. The Supersymmetric Solution with Massless Quarks

We now consider the particular case of massless quarks, which corresponds to taking the
charge distribution given by (2.25) or simply p(ρ) = 1 and ρq → −∞. In this case (2.42)
simply gives

eφ−φ∗ =
1

1 + ε∗
(
ρ∗ − ρ

) , e−6ρη =
ε∗
6
eφ−φ∗ , (2.44)

and the solution written in (2.37) reduces to

eg =
√
α′eρ

(
1 + ε∗

(
1
6
+ ρ∗ − ρ

))1/6

,

ef =
√
α′eρ

(
1 + ε∗

(
ρ∗ − ρ

))1/2
(

1 + ε∗
(

1
6
+ ρ∗ − ρ

))−1/3

,

dh

dρ
= −Qc

α′2
e−4ρ

(
1 + ε∗

(
1
6
+ ρ∗ − ρ

))−2/3

.

(2.45)

Notice that the location of the Landau pole in this case is just ρLP = ρ∗ + ε−1
∗ and that the

range of ρ for which the solution (2.45) makes sense is ρ ∈ (−∞, ρLP). Moreover, by using the
definition of ε∗ in (2.38) one can immediately show that the dilaton can be written as

eφ(ρ) =
1

Qf

(
ρLP − ρ

) . (2.46)
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Let us now verify that the dependence on ρ of φ in (2.46) matches the expectations from field
theory. For concreteness we will consider the case ofN = 4 SYM with matter. Similar checks
can be done in other cases (see [67] for the case of the Klebanov-Witten theory). By using
the relation between the Yang-Mills coupling and the dilaton discussed above as well as the
value of Qf for X5 = S5 written in (2.27), one gets

8π2

g2
YM

=Nf

(
ρLP − ρ

)
. (2.47)

In order to read the running of the coupling constant from (2.47) we must convert the
dependence on the coordinate ρ in (2.47) into a dependence on the energy scale of the
corresponding dual field theory. At an energy scale μ much lower than the Landau pole scale
ΛUV (i.e., for ρ � ρLP) the scaling dimensions of the adjoints and fundamentals take their
canonical values and the natural radius/energy relation is

ρLP − ρ = log
ΛUV

μ
. (2.48)

Plugging this relation in (2.47) we get

8π2

g2
YM

=Nf log
ΛUV

μ
. (2.49)

Therefore, we get a logarithmic scaling of the coupling of the type 8π2/g2
YM = b logE, with b =

−Nf , which matches the one-loop field theory result in which one has that b = 3Nc−3Nc−Nf

(see, e.g., [72]). (In principle, one could object that, being strongly coupled, the matter fields
could get large anomalous dimensions making this result suspicious. However, since we
are performing a small perturbative (in ε∗) deformation of the unflavored backgrounds,
the anomalous dimensions for the fundamental multiplets cannot differ much from their
quenched values. For the X5 = S5 case, those anomalous dimensions vanish. We thank F.
Bigazzi for stressing this point to us.)

In order to have a clearer understanding of the deformation of the AdS5 × S5 metric
introduced by the flavor, it is very convenient to change to a new radial variable r, which is
defined by requiring that the warp factor takes the same form as in the unflavored case (see
(2.1)):

h =
R4

r4
, R4 =

Qc

4
. (2.50)
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By integrating the last equation in (2.45) we can get h(ρ) and thus r(ρ). We will perform
this integration order by order in a series expansion in powers of ε∗. The additive integration
constant will be fixed by requiring that r(ρ∗) ≡ r∗ =

√
α′eρ∗ . One gets

r = α′1/2
eρ

[
1 +

ε∗
72

(
e4ρ−4ρ∗ − 1 + 12

(
ρ∗ − ρ

))
+

5ε2
∗

10368

×
(
e8ρ−8ρ∗ + 6e4ρ−4ρ∗

(
3 + 4

(
ρ∗ − ρ

))
−
(

19 − 24
(
ρ∗ − ρ

)
+ 144

(
ρ∗ − ρ

)2
))

+O
(
ε3
∗

)]
.

(2.51)

It is now straightforward to obtain the functions f(r), g(r) and the dilaton φ(r) as expansions
in powers of ε∗. Up to second order we have

ef = r

[
1 − ε∗

24

(
1 +

1
3
r4

r4
∗

)
+

ε2
∗

1152

(
17 − 94

9
r4

r4
∗
+

5
9
r8

r8
∗
− 48 log

(
r

r∗

))
+O

(
ε3
∗

)]
,

eg = r

[
1 +

ε∗
24

(
1 − 1

3
r4

r4
∗

)
+

ε2
∗

1152

(
9 − 106

9
r4

r4
∗
+

5
9
r8

r8
∗
+ 48 log

(
r

r∗

))
+O

(
ε3
∗

)]
,

φ = φ∗ + ε∗ log
r

r∗
+
ε2
∗

72

(
1 − r

4

r4
∗
+ 12 log

r

r∗
+ 36log2 r

r∗

)
+O

(
ε3
∗

)
.

(2.52)

Equation (2.52) neatly displays the effects of quark loops in the deformation of the geometry
and in the running of the dilaton (the latter is related to the running of the gauge coupling,
as argued above). It is important to point out that the deformed geometry has a curvature
singularity at the origin r = 0 (or ρ = −∞) (this singularity is similar to the one that appears
at r = 0 in a 2-dimensional manifold with metric ds2 = dr2 + r2(1 + r)dϕ2). In the same
IR limit, eφ runs to 0. As argued in Section 1.5, the appearance of this singularity can be
intuitively understood as due to the fact that, in this massless case, all branes of our smeared
distribution pass through the origin and the charge density is highly peaked at that point.
From the field theory side, one can think of the singularity as appearing because the theory
becomes IR free, as first pointed out in [36]. Consistently with these interpretations and with
the heuristic picture of Section 1.5, the IR singularity can be easily cured by giving a mass to
the quarks (it is a “good” singularity according to the criteria of [73, 74]). We will explicitly
verify this fact in the next subsection.

2.3.2. The Supersymmetric Solution with Massive Quarks

Let us now find the backreacted supergravity solution for massive quarks. As mentioned
above, the function p(ρ) entering the ansatz for F1 in this case is not universal and depends
on the particular Sasaki-Einstein spaceX5 and on the family of D7-brane embeddings chosen.
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For concreteness we first concentrate in discussing the case in which X5 = S5. The calculation
of the function p(ρ) in this case was performed in [75, Appendix C]. If |μ| = eρq , one has

p
(
ρ
)
=

[
1 − e2(ρq−ρ)

]2
Θ
(
ρ − ρq

)
. (2.53)

When ρ ≥ ρq the function p(ρ) is nonvanishing and one has to perform the integrals
appearing in (2.42). These integrals can be straightforwardly done in analytic form and yield
the following result:

eg =
√
α′eρ

(
1 + ε∗

(
1
6
+ ρ∗ − ρ −

1
6
e6ρq−6ρ − 3

2
e2ρq−2ρ +

3
4
e4ρq−4ρ − 1

4
e4ρq−4ρ∗ + e2ρq−2ρ∗

))1/6

,

ef =
√
α′eρ

×
(
1 + ε∗

(
ρ∗ − ρ − e2ρq−2ρ + (1/4)e4ρq−4ρ + e2ρq−2ρ∗ − (1/4)e4ρq−4ρ∗

))1/2

(
1+ε∗

(
1/6+ρ∗−ρ−(1/6)e6ρq−6ρ−(3/2)e2ρq−2ρ+(3/4)e4ρq−4ρ−(1/4)e4ρq−4ρ∗+e2ρq−2ρ∗

))1/3
,

φ = φ∗ − log
[

1 + ε∗
(
ρ∗ − ρ − e2ρq−2ρ +

1
4
e4ρq−4ρ + e2ρq−2ρ∗ − 1

4
e4ρq−4ρ∗

)]
.

(2.54)

As a check, notice that setting ρq → −∞ one recovers the massless solution of (2.44) and
(2.45). We still have to write the solution for ρ < ρq. In this case p(ρ) vanishes and the dilaton
is constant and, by continuity, it has the value that can be read from (2.54) inserting ρ = ρq:

φIR = φq = φ∗ − log
(

1 + ε∗
(
ρ∗ − ρq −

3
4
+ e2ρq−2ρ∗ − 1

4
e4ρq−4ρ∗

))
. (2.55)

The functions f and g are equal and given by

ef = eg = α′(1/2)
eρe−(1/6)(ΦIR−Φ∗) (

ρ < ρq
)
. (2.56)

It follows straightforwardly from these results that the IR singularity at ρ = −∞ of the
massless case disappears when μ/= 0 since the background reduces to AdS5 × S5 for ρ < ρq.
Moreover, one can verify that the metric is also regular at ρ = ρq. Thus, as stressed in
Section 1.5, the smearing of massive flavors allows one to smooth out IR singularities.

Similar calculations can be done for the conifold theories. In this case we redefine
the parameter μ of the embedding equations (2.15) and (2.17) as |μ| = e3ρq/2. The charge
distribution for the family (2.15) of chiral embeddings was obtained in [26], with the
following result:

p
(
ρ
)
=

[
1 − e3(ρq−ρ)(1 + 3ρ − 3ρq

)]
Θ
(
ρ − ρq

)
. (2.57)
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Similarly, for the nonchiral embeddings (2.17) the function p(ρ) is given by [76]

p
(
ρ
)
=

[
1 − e3(ρq−ρ)

]
Θ
(
ρ − ρq

)
. (2.58)

The corresponding supergravity solutions have been written down in [26, 76]. They are
regular in the IR, much in the same way as in the X5 = S5 case detailed above.

2.4. Screening Effects on the Meson Spectrum

The holographic theories with flavors present mesonic excitations, meaning that there exists
a spectrum of colorless physical states created by operators which are bilinears in the
fundamental fields. They are associated to normalizable excitations of the flavor branes as
was neatly explained in the seminal paper [7]. For a review of this broad subject, see [8].
Notice that the notion of “meson” we use here generalizes that used in QCD. For instance,
the “mesons” of [7] are excitations of a nonconfining theory and in this case the dimensionful
quantity that sets the meson masses is just the quark mass (divided by a power of the ’t Hooft
coupling), not a dynamically generated scale.

In the present section, we review how the presence of unquenched flavors can affect
the discrete mesonic spectrum. Again, we will restrict ourselves to the smeared set-up and
follow [77]. For discussions about screening effects on the spectrum in cases with localized
rather than smeared backreacting flavor branes, we refer the reader to [8, 42]. The effect of the
smeared flavors on the hydrodynamical transport coefficients (in a finite temperature setting)
was studied in [75, 78]. It is also worth mentioning that, within the model we will introduce
in Section 3, the screening effects on the glueball spectrum have been recently analyzed in
[79].

For the sake of briefness, we will just focus on an example and discuss a particular
mesonic excitation in the backreacted Klebanov-Witten model. The analysis and conclusions
for different modes and/or different models should be similar; see [77] for some other
examples. In particular, we will consider oscillations of a D7-brane which introduces massive
nonchiral flavor [80] and just look at the oscillation of the gauge field that gives rise to a vector
mode in the dual field theory. Thus, we discuss the physics of a meson whose “constituent
quarks” are massive in the presence of many dynamical massless flavors.

We write the gauge field along the Minkowski directions as Aμ = av(ρ)ξμeikx, where
ξμ is a constant transverse vector. The equation describing this oscillation was found in [77],
building on the formalism introduced in [80]. It reads

0 = ∂ρ
(
e2g−3ρ

(
e3ρ − e3ρQ

)
∂ρav

)
+M2

vhe
2g+2f

(
1 + e3ρQ−3ρ

(
3
4
e2g−2f − 1

))
av, (2.59)

where M2
v = −k2, the constant ρQ is the minimal value of ρ reached by the D7-brane (related

to the quark mass), and f, g, h are given in (2.45).
Notice that for the meson excitation, we just use a D-brane probe; namely, we consider

the oscillation of a single brane in a fixed background. At first sight, this could look
contradictory, since our aim is always to take into account the effect of the flavor branes
on the geometry. Then, one may think about considering coupled fluctuations of brane and
background fields. Nevertheless, this is not necessary: there are Nf � 1 flavor branes which
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are affecting the background, but when we consider a meson, only one (or two) out of this
Nf is fluctuating. Therefore, the effect of this oscillation on the background is suppressed by
N−1

f
with respect to the contribution of the whole set of branes and therefore is consistently

negligible. On the other hand, the existence of the rest of flavors and the associated quantum
effects on the spectrum are taken into account through the deformation they have produced
in the background geometry.

Following the standard procedure [7, 8], a discrete tower of values for Mv should
be found when selecting solutions of (2.59) which are regular and normalizable. Since the
background has a Landau pole, some prescription is needed for dealing with the UV limit
(large ρ). Technically, we will just require that the fluctuation av vanishes at ρ∗. Physically,
one can check that this is a consistent procedure if ρQ � ρ∗: we are interested in some IR
physics which should be independent of the UV completion of the theory at ρ > ρ∗, up to
corrections suppressed by powers of the UV scale. Namely, we neglect contributions of order
eρQ−ρ∗ ∼ ΛIR/ΛUV and check that the spectrum can be written in terms of IR quantities. The
value ρ∗ disappears from the final result, apart from the quoted negligible corrections. See
[77] for further discussions on the issue. In Section 2.5, we will see similar examples of how
to deal with the Landau pole. In that case, the IR scale, which has to be much smaller than
the arbitrary UV scale at ρ∗, is set by the temperature rather than by the quark mass.

In order to estimate the spectrum from (2.59), we can use a WKB approximation. In
[77], using a formalism developed in [81], an expression for the mass tower in terms of the
principal quantum number n was found. Adapting notation to the one we are using here,

M
(n)
v ≈ π

Σv
n, Σv ≡

∫ρ∗

ρQ

h1/2ef

√
1 + e3ρQ−3ρ((3/4)e2g−2f − 1

)
1 − e3ρQ−3ρ

dρ. (2.60)

Let us evaluate this integral at first order in ε∗, by inserting (2.45). We still have to fix the
additive constant for h, which we can do by requiring h(ρ∗) = 0 (in [77] h(ρLP) = 0 was
used. It is crucial that both prescriptions give the same result, up to quantities in eρQ−ρ∗ ∼
ΛIR/ΛUV). We shift to a coordinate u such that u ≡ eρ−ρQ , u∗ ≡ eρ∗−ρQ . Defining λQ as the ’t
Hooft coupling (2.39) at the quark mass scale, inserting the value of Qc in (2.1), and defining
TQ ≡ (eφ/2√−gttgxx)|ρ=ρQ as the tension of a hypothetical fundamental string stretched at
constant ρ = ρQ, we can write the estimate for the meson masses as

M
(n)
v ≈

T1/2
Q

λ1/4
Q

(
πn

33/4/4
√

2π

∫u∗

1

( √
4u3 − 1

u2
√
u3 − 1

+ εQ
7 − 4u3 + 4

(
4u3 − 1

)
logu

24u2
√

4u3 − 1
√
u3 − 1

)
du

)
. (2.61)

It is important to stress once again that this expression is written only in terms of IR quantities,
once we discard terms of order u−1

∗ = eρQ−ρ∗ ; namely, contributions like logu∗ have cancelled
out. Notice that the upper limit of the integrals can be taken to infinity if we again insist in
discarding O(u−1

∗ ) contributions. The expression (2.61) is a neat example of how, even having
a Landau pole, the holographic set-up is able to consistently obtain IR predictions, in exactly
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the same spirit as in field theory. We can perform numerically the integration in (2.61), and
we get [77]

M
(n)
v ≈

T1/2
Q

λ1/4
Q

n

(
5.2 − 6 × 10−3NfλQ

Nc
+ · · ·

)
, (2.62)

where in order to substitute εQ as in (2.40) we have used Vol(X3) = (16/9)π2, Vol(X5) =
(16/27)π3. The expression (2.62) is the result quoted in [77], apart from a different factor of
2 in the definition of λQ.

The lesson we want to take from this section is that there is a well-defined method
to obtain the shift produced by the flavor quantum effects on the meson spectrum (or,
eventually, on any physical observable) as an expansion in the parameter ε ∼ λNf/Nc which
weighs the flavor loops. Heuristically, it may be useful to think of the computation leading to
(2.62) as (partially) a strong coupling analogue of the Lamb shift corrections of QED.

2.5. Black Hole Solutions: D3-D7 Quark-Gluon Plasmas

In this subsection we will review the results in [75]. We start by showing how one can find
a black hole solution which includes the backreaction effects due to massless quarks. To
perform this analysis it is more convenient to work with a new radial variable σ such that
the metric takes the following form:

ds2 = h−1/2
[
−bdt2 + d �x 2

3

]
+ h1/2

[
be8g+2fdσ2 + e2gds2

KE + e2f(dτ +AKE)
2
]
. (2.63)

Notice that we have introduced a new function b which parameterizes the breaking of
Lorentz invariance induced by the nonzero temperature T . All functions appearing in the
metric (2.63), as well as the dilaton φ, depend on σ. Moreover, the RR field strengths F5 and F1

are given by the ansatz (2.33) with the function p = 1. We remind the reader that fixing p = 1
corresponds to taking massless quarks. (In [75], the more involved case of massive quarks
p /= 1 was also discussed. An extra complication is the necessity of finding the nontrivial D7-
brane embeddings in the backreacted geometry.)

In this non-supersymmetric case we will not have the first-order BPS equations at
our disposal and we will have to deal directly with the second-order equations of motion.
Actually, since all the functions we need to compute depend only on the radial coordinate σ,
it is possible to describe the system in terms of a one-dimensional effective action. One can
find this effective action by directly substituting the ansatz in the gravity plus branes action
(1.7). One gets

Seff =
Vol

(
X5)V1,3

2κ2
10

×
∫
dσ

(
−1

2
(∂σh)

2

h2
+ 12

(
∂σg

)2 + 8∂σg∂σf −
1
2
(
∂σφ

)2 +
(∂σb)

2b

(
∂σh

h
+ 8∂σg + 2∂σf

)

+24be2f+6g − 4be4f+4g −
Q2
c

2
b

h2
−
Q2
f

2
be2φ+8g − 4Qfbe

φ+6g+2f

⎞
⎠.

(2.64)
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In (2.64) V1,3 denotes the (infinite) integral over the Minkowski coordinates. The second
derivatives coming from the Ricci scalar have been integrated by parts and, as is customary,
only the angular part of F5 is inserted in the F2

5 term (otherwise the Qc would not enter the
effective action since, on-shell, F2

5 = 0 due to the self-duality condition). The last term in
(2.64), proportional to Qf , comes from the DBI contribution in (1.5). Notice also that the WZ
term does not enter (2.64) because it does not depend on the metric or the dilaton.

The equations of motion stemming from the effective action (2.64) are

∂2
σ

(
log b

)
= 0,

∂2
σ

(
logh

)
= −Q2

c

b

h2
,

∂2
σg = −2be4g+4f + 6be6g+2f −Qfbe

φ+6g+2f ,

∂2
σf = 4be4g+4f −

Q2
f

2
be2φ+8g,

∂2
σφ = Q2

fbe
2φ+8g + 4Qfbe

φ+6g+2f .

(2.65)

It is straightforward to check that these equations solve the full set of Einstein equations
provided that the following “zero-energy” constraint is also satisfied:

0 = −1
2
(∂σh)

2

h2
+ 12

(
∂σg

)2 + 8∂σg∂σf −
1
2
(
∂σφ

)2 +
(∂σb)

2b

(
∂σh

h
+ 8∂σg + 2∂σf

)
− 24be2f+6g

+ 4be4f+4g +
Q2
c

2
b

h2
+
Q2
f

2
be2φ+8g + 4Qfbe

φ+6g+2f .

(2.66)

This constraint can be thought of as the σσ component of the Einstein equations or,
alternatively, as the Gauss law from the gauge fixing of gσσ in the ansatz (2.63).

Let us now find a solution of the system of equations (2.65) and of the “zero-energy”
constraint (2.66) that corresponds to a black hole for the backreacted D3-D7 system. We
will require that such a solution is regular at the horizon and tends to the supersymmetric
one at energy scales much higher than the black hole temperature T . Actually, the biggest
advantage of the radial variable σ introduced above is that the equations of motion of b and
h in (2.65) are decoupled from the ones corresponding to the other functions of the ansatz.
These decoupled equations can be easily integrated in terms of an integration constant rh as
follows:

b = e4r4
h
σ , h =

Qc

4r4
h

(
1 − e4r4

h
σ
)
, (2.67)

where σ ∈ (−∞, 0). We now define a new radial coordinate r by means of the following
relation:

e4r4
h
σ = 1 −

r4
h

r4
, r ∈ (rh,+∞). (2.68)
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Then, b and h take the following form:

b = 1 −
r4
h

r4
, h =

R4

r4
, (2.69)

withR4 = Qc/4. Notice that h is given by the same expression as in (2.50). Moreover, it is clear
from (2.69) that r = rh is the position of the horizon and, thus, the extremal limit is attained
by sending rh to zero. In terms of r the metric takes the following form:

ds2 =
r2

R2

[(
1 −

r4
h

r4

)
dt2 + d�x2

3

]
+
R2

r2

e8ĝ+2f̂

1 − r4
h
/r4

(dr)2 + R2
[
e2ĝds2

KE + e2f̂(dτ +AKE)
2
]
,

(2.70)

where we have defined the functions f̂ and ĝ as follows:

ef̂ ≡ e
f

r
, eĝ ≡ e

g

r
. (2.71)

In order to determine completely the background we still have to solve (2.65) and (2.66) for
f , g, and the dilaton φ. We will find this solution by introducing a reference UV scale r∗ and
by expanding the functions in terms of the parameter ε∗ defined in (2.38). We will impose that
the functions f , g, and φ are equal to the SUSY ones of (2.52) when the extremality parameter
rh vanishes. Moreover, we will also require that these functions coincide with those in (2.52)
at the UV scale r∗. These conditions fix uniquely a solution of (2.65) and (2.66). Up to second
order in ε∗ this solution is given by

ef̂ = 1 − ε∗
24

(
1 +

2r4 − r4
h

6r4
∗ − 3r4

h

)

+
ε2
∗

1152

⎛
⎝17 − 94

9
2r4 − r4

h

2r4
∗ − r4

h

+
5
9

(
2r4 − r4

h

)2

(
2r4
∗ − r4

h

)2
− 8

9
r8
h

(
r4
∗ − r4)

(
2r4
∗ − r4

h

)3
− 48 log

(
r

r∗

)⎞
⎠ +O

(
ε3
∗

)
,

eĝ = 1 +
ε∗
24

(
1 −

2r4 − r4
h

6r4
∗ − 3r4

h

)

+
ε2
∗

1152

⎛
⎝9 − 106

9
2r4 − r4

h

2r4
∗ − r4

h

+
5
9

(
2r4 − r4

h

)2

(
2r4
∗ − r4

h

)2
− 8

9
r8
h

(
r4
∗ − r4)

(
2r4
∗ − r4

h

)3
+ 48 log

(
r

r∗

)⎞
⎠ +O

(
ε3
∗

)
,

φ = φ∗ + ε∗ log
r

r∗

+
ε2
∗

72

(
1 −

2r4 − r4
h

2r4
∗ − r4

h

+12 log
r

r∗
+36log2 r

r∗
+

9
2

(
Li2

(
1 −

r4
h

r4

)
−Li2

(
1 −

r4
h

r4
∗

)))
+O

(
ε3
∗

)
,

(2.72)
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where Li2(u) ≡
∑∞

n=1 u
n/n2 is a polylogarithmic function. The functions written in (2.72)

determine a geometry that is regular at the horizon r = rh. In the next subsection we will
study its thermodynamics and we will extract some consequences for the dual field theory
with dynamical quarks at nonzero temperature.

Let us conclude this section with some comments on the stability of our perturbative
non-extremal solutions. A possible way to check for the latter is to consider worldvolume
fluctuations of a D7-brane in the setup. If, as in our cases, the brane corresponds to massless
flavors, the related quasinormal modes on the unflavored background all have frequencies
with a negative imaginary part of the order of the temperature, signaling stability [82–84].
This result cannot be changed in the flavored case when a perturbative expansion in ε∗ is
done. Thus, in our regime of approximations, stability with respect to those fluctuations is
guaranteed.

2.5.1. Thermodynamics of the Solution

In the previous subsections we have defined the backreacted background in terms of an
arbitrary UV scale r∗ as an expansion in powers of the parameter ε∗ written in (2.40). This
scale r∗ should be well separated from the Landau pole scale in order to avoid having the
pathologies of the latter. Moreover, we are interested in analyzing the physical consequences
of this background at energies much lower than the UV scale r∗. In a black hole background
dual to a quark gluon plasma the natural IR scale is the location rh of the horizon, which
should be related to temperature T of the plasma. Accordingly, we define εh as

εh =
λhVol

(
X3)

16πVol(X5)

Nf

Nc
, (2.73)

where, in what follows, the subscript h means that the quantities are evaluated at the horizon
r = rh. Thus, λh is naturally identified with the ’t Hooft coupling at the scale of the plasma
temperature. We therefore have

εh = ε∗
eΦh

eΦ∗
= ε∗ + ε2

∗ log
rh
r∗

+O
(
ε3
∗

)
. (2.74)

We will use this relation to recast the expansions in powers of ε∗ as series in εh. We will
assume in what follows that rh is well below the reference UV scale r∗ to ensure that the
IR physics does not depend on the UV completion of the theory. In a Wilsonian sense of
the renormalization group flow, the UV details of the theory should not affect the IR physics.
Moreover, since, as we will see below, rh is proportional to the temperature (at leading order),
we have

dεh
dT

=
ε2
h

T
+O

(
ε3
h

)
, (2.75)

and T(dλh/dT) = εhλh at leading order. These relations reflect the running of the gauge
coupling induced by the dynamical flavors.
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The thermodynamic properties of the black hole solution are determined by the metric
functions at the horizon. After neglecting terms suppressed in powers of r4

h
/r4
∗ , the values of

the functions f̂ and ĝ at r = rh can be obtained from (2.72). One gets

ef̂h = 1 − εh
24

+
17

1152
ε2
h + O

(
ε3
h

)
, eĝh = 1 +

εh
24

+
1

128
ε2
h +O

(
ε3
h

)
. (2.76)

The black hole temperature can be obtained by requiring regularity of the
euclideanized metric and by identifying the temperature with the inverse of the period of
the euclideanized time. A simple computation yields

T =
2rh

2πR2e4ĝh+f̂h
=

rh
πR2

[
1 − 1

8
εh −

13
384

ε2
h +O

(
ε3
h

)]
, (2.77)

where in the last step we have used the values of f̂h and ĝh written in (2.76).
The entropy density s is proportional to A8, the volume at the horizon of the eight-

dimensional part of the space orthogonal to the t̂, r plane (where t̂ is the Euclidean time),
divided by the infinite constant volume of the 3D space directions V3. From the general form
of the metric we get that

s =
2πA8

κ2
10V3

=
r3
h
R2e4ĝh+f̂hVol

(
X5)

25π6g2
sα′

4
=

π5

2Vol(X5)
N2

c

r3
h

π3R6

[
1 +

1
8
εh +

19
384

ε2
h +O

(
ε3
h

)]
, (2.78)

which in terms of the temperature reads

s =
π5

2Vol(X5)
N2

cT
3
[

1 +
1
2
εh +

7
24
ε2
h +O

(
ε3
h

)]
. (2.79)

As for the other thermodynamic quantities which will follow, the leading term of this
formula is the well-known unflavored result. The O(εh) term was already calculated in [84]
with the probe brane technique, in the X5 = S5 case. Here we have reobtained this result
in a quite standard way, by computing the increase of the horizon area produced by the
flavor branes. This can be considered as a crosscheck of the validity of the whole construction.
Finally, the order ε2

h was first obtained in [75].
The ADM energy of the solution can be computed as an integral of the extrinsic

curvature of the eight-dimensional hypersurface of constant time and radius. This calculation
is straightforward and has been done in the [75, Appendix B], with the following result:

ε =
EADM

V3
=

3
8

π5

Vol(X5)
N2

c T
4
[

1 +
1
2
εh(T) +

1
3
εh(T)2 +O

(
εh(T)3

)]
. (2.80)

Again, terms suppressed as powers of rh/r∗ have been neglected. Moreover, since in the
following derivatives with respect to T are going to be taken, we find it convenient to make
explicit that εh depends on T (see (2.75)). Equation (2.80) yields the energy density of the
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plasma and, thus, it allows us to study the full thermodynamics. Indeed, from (2.75) and
(2.80) we get immediately the heat capacity (density):

cV = ∂Tε =
3
2

π5

Vol(X5)
N2

c T
3
[

1 +
1
2
εh(T) +

11
24
εh(T)2 + O

(
εh(T)3

)]
. (2.81)

The free energy density, and so (minus) the pressure, reads

F

V3
= −p = ε − Ts = −1

8
π5

Vol(X5)
N2

cT
4
[

1 +
1
2
εh(T) +

1
6
εh(T)2 +O

(
εh(T)3

)]
. (2.82)

Notice that, consistently, this satisfies the relation s = ∂Tp (where it is crucial to take (2.75)
into account). This result is confirmed by the direct computation of F from the renormalized
Euclidean action (see, again, [75, Appendix B]) and also by the calculation in [78] of the
correlator of the tensorial mode in the hydrodynamical approximation.

The speed of sound vs is obtained by combining (2.79) and (2.81), namely,

v2
s =

s

cV
=

1
3

[
1 − 1

6
εh(T)2 +O

(
εh(T)3

)]
. (2.83)

Note that the correction to the speed of sound, which measures the deviation from
conformality, only appears at second order and that the sign of the correction is consistent
with the bound v2

s ≤ 1/3 conjectured in [85]. It is also interesting to point out that the solution
provides a direct measure of the breaking of conformality at second order, namely, the so-
called interaction measure, given by

ε − 3p
T4

=
π5N2

c

16 Vol(X5)
εh(T)2. (2.84)

Let us now analyze the viscosity of the plasma predicted by the flavored black hole.
Since we are not introducing higher derivatives of the metric in the action, the usual theorems
apply and the shear viscosity η saturates the Kovtun-Son-Starinets bound [86], that is, η/s =
1/4π . Therefore, the shear viscosity η can be obtained by dividing by 4π the entropy density
written in (2.79). Again, the first-order term coincides with the one calculated in the probe
approach in [87] while the second-order result was first computed in [75]. On the other hand,
one can also compute the bulk viscosity ζ for this model, with the following result [78]:

ζ =
π4

72 Vol(X5)
N2

cT
3
[
εh(T)2 +O

(
εh(T)3

)]
. (2.85)

Interestingly, the value of ζ written in (2.85) saturates the bound proposed in [88]:

ζ

η
≥ 2

(
1
3
− v2

s

)
. (2.86)

For the computation of other transport coefficients, we refer the reader to [78].
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2.5.2. Energy Loss of Partons

One of the main phenomenological applications of holography is the analysis of the energy
loss of a parton that moves through a quark-gluon plasma. One of the measures of this
energy degradation is the so-called jet quenching parameter q̂, which is a transport coefficient
that measures the bremsstrahlung experienced by a parton probe due to its interactions
with the quarks and gluons of the plasma [89]. At very high energy, and using the eikonal
approximation, the authors of [90] found a nonperturbative prescription for calculating q̂ as
the coefficient of L2 in an almost light-like Wilson loop with dimensions L− � L. By using the
generic formula in [91] (and cutting the integral at r∗), we can write

q̂−1 = πα′
∫ r∗

rh

e−φ/2
√
grr

gxx
√
gxx + gtt

dr =
πα′R4

r2
h

e−φh/2
∫ r∗

rh

e−(φ−φh)/2 e4ĝ+f̂√
r4 − r4

h

dr. (2.87)

The dilaton enters the formula because we are considering the Einstein frame metric. By
plugging in (2.87) the expressions of f̂ , ĝ, and φ written in (2.72), and by performing the
corresponding integrals in r, one gets q̂ as a power series expansion in ε∗. In the course of this
calculation we will neglect terms that are suppressed by powers of rh/r∗ and we will write
the result in a series in εh rather than in ε∗. In terms of gauge theory quantities one gets [75]

q̂ =
π3

√
λhΓ(3/4)√

Vol(X5) Γ(5/4)
T3

[
1 +

1
8
(2 + π)εh + γε2

h +O
(
ε3
h

)]
, (2.88)

where we have introduced a constant γ :

γ =
11
96

+
π

48
+

3π2

128
+

1
8
C +

1
48 4F3

(
1, 1, 1,

3
2

;
7
4
, 2, 2; 1

)
≈ 0.5565, (2.89)

with C ∼ 0.91597 being the Catalan constant. Notice that the flavor correction to q̂ is positive;
that is, fundamentals enhance the jet quenching. Actually, (2.88) can be used to estimate this
enhancement in the extrapolation to the realistic RHIC regime. Let us take X5 = S5, Nc =
Nf = 3, and αs = g2

YM/4π ∼ 1/2. Then, λh ∼ 6π and εh ∼ Nf/4π ∼ 0.24. Using this
value in (2.88) we have that q̂ is increased by 20%. For example, at T = 300 MeV we obtain
q̂ ∼ 5.3 (Gev)2/fm, to be compared with the value [90] q̂ ∼ 4.5 (Gev)2/fm of the unflavored
plasma (the RHIC values are q̂ ∼ 5–15 (Gev)2/fm). It is also interesting to rewrite (2.88) in
terms of the entropy density s. One gets

q̂ = c
√
λh

√
s

N2
c

T3/2
[

1 +
π

8
εh +

(
γ − 11

96
− π

32

)
ε2
h +O

(
ε3
h

)]
, c =

√
2π

Γ(3/4)
Γ(5/4)

, (2.90)

which shows a deviation (driven by εh) from the general expression put forward in [92]. In
this setting, the presence of fundamentals and the breaking of conformality are inevitably
mingled. It would be interesting to have the dual of a conformal theory with fundamentals
to check whether the conjecture [92] holds in such situation. That was analyzed in [61] in
a noncritical string framework and, interestingly, the result differs from [92]. The caveat is
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that the model studied in [61] suffers from the usual problem of gravity-like approaches to
noncritical strings; namely there are uncontrolled approximations.

Another way of characterizing the energy loss of a parton probe in the plasma is by
modeling it as a macroscopic string attached to a probe flavor brane. The string is dragged
by a constant force f which keeps its velocity v fixed and transfers to the parton energy and
momentum, which is then lost in the plasma at a constant rate. This energy loss is measured
by the drag coefficient μ, which relates the force f and the parton momentum p: f = μp. To
compute this drag force one can apply the general procedure of [93–95]. By using the Nambu-
Goto action for a string in the black hole background one gets that the rate of momentum
transferred to the medium is given by [95]

dp

dt
= − 1

2πα′
C = −

r2
h

2πα′R2
eΦ(rc)/2 v√

1 − v2
= −μMkin

v√
1 − v2

, (2.91)

where C is the constant determined from the equation gxx(rc)gtt(rc) + C2 = 0 with the point
rc given by gtt(rc) + gxx(rc)v2 = 0, namely, rc = rh(1 − v2)−1/4. In (2.91) we have introduced,
following [93], the kinematical mass Mkin such that p =Mkin(v/

√
1 − v2). From (2.91), using

(2.72), (2.74), and (2.77), we find

μMkin =
π5/2

2

√
λh√

Vol(X5)

× T2
[

1 +
1
8

(
2 − log

(
1 − v2

))
εh

+
1

384

[
44 − 20 log

(
1 − v2

)
+ 9 log2

(
1 − v2

)
+ 12Li2

(
v2

)]
ε2
h +O

(
ε3
h

)]
.

(2.92)

As happens with the jet quenching, the energy loss (at fixed v) is enhanced by the presence
of fundamental matter. The quantity μ Mkin grows when increasing the velocity. From (2.92),
formally, it would diverge as v → 1. However, (2.92) is not applicable in that limit since we
have to require εh log(1 − v2)� 1 for the expansions to be valid.

2.6. A Discussion on the Range of Validity

We now discuss, following [75], the restriction on the physical parameters needed for the
deconfined flavored plasma solution to be physically meaningful. Before we go on, two
comments are in order: first, notice that, even if we will use here the plasma temperature
as the IR scale at which the relevant physics takes place, this can be substituted by any other
IR scale, depending on what one wants to study. Thus, for instance, when computing meson
masses at zero temperature as in Section 2.4, the discussion below holds; just taking into
account the IR scale there is set by the quark mass. Second, notice that the restriction of small
ε∗ (which leads to Nf �Nc) of the D3-D7 case at hand comes from the existence of a Landau
pole. In holographic theories in which there is no Landau pole in the geometry (Sections 3,
and 4), there is in principle no restriction toNf . In particular, it is possible to consider in those
theories Nf to be of the same order as Nc.
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As we have already remarked, having a pathological UV means that there must exist
a separation of scales between IR and UV. Concretely, there must exist a hierarchy, which in
terms of the r radial coordinate reads

rh � r∗ � ra < rLP. (2.93)

The quantity rh sets the scale of the plasma temperature rh/R
2 ∼ ΛIR ∼ T , which is the

scale at which we want to analyze the physics. The point rLP is where the dilaton diverges,
signaling a Landau pole in the dual theory. At a scale ra the string solution starts presenting
subtler pathologies, whose discussion we delay until the end of this section. Finally, r∗ sets
an (arbitrary) UV cutoff scale r∗/R2 ∼ ΛUV. The solution (2.72) will only be used for r < r∗.
In a Wilsonian sense of a renormalization group flow, the UV details should not affect the
IR physical predictions. This feature is reflected in the fact that physical quantities do not
depend (up to suppressed contributions) on r∗ or functions evaluated at that point, but only
on IR parameters. Even if the precise value of r∗ is arbitrary, we have to make sure that it is
possible to choose it such that it is well above the IR scale (so that the UV completion only
has negligible effects on the IR physics) and well below the pathological ra, rLP scales (so that
the solution we use is meaningful and the expansions do not break down). To this we turn
now.

Let us start by computing the hierarchy between r∗ and rLP. Since at r∗ we can
approximate the solution by the supersymmetric one, we can read the position of the Landau
pole from (2.45). If we insert the approximate relation between radial coordinates r ≈

√
α′eρ,

we find

r∗
rLP
≈ e−1/ε∗ � 1 (2.94)

as long as ε∗ � 1.
Moreover, one has to make sure that the Taylor expansions (2.72) are valid in the region

rh < r < r∗. This of course requires ε∗ � 1, but also that ε∗| log(rh/r∗)| � 1 (notice that the
absolute value of the logarithm can be big because rh � r∗). This means that rh/r∗ � e−1/ε∗ .
On the other hand, when computing physical quantities in the previous sections, we always
neglect quantities suppressed as powers of rh/r∗ ∼ T/ΛUV. This is the order of magnitude of
the corrections due to the eventual UV completion of the theory at r∗. One has to make sure
that the corrections in ε∗ we are keeping are much larger than the neglected ones, namely,
ε∗ � rh/r∗. In summary, we have the following hierarchy of parameters (in the following,
in order to avoid overly messy expressions, we insert the value of ε∗ for the X5 = S5 case,
remembering that for a generic X5, its value is given by (2.40)):

e−1/ε∗ ∼ e−8π2Nc/λ∗Nf � rh
r∗
∼ T

ΛUV
� ε∗ ∼

λ∗ Nf

8π2 Nc
� 1. (2.95)

As long as ε∗ ∼ λ∗ Nf/8π2Nc � 1, there always exists a range of r∗ such that this inequality is
satisfied. Since we focus on the IR physics of the plasmas, at the scale set by their temperature,
the actual physical constraint on the parameters will be (λh/8π2)(Nf/Nc) � 1, which we
have written in terms of the coupling at the scale of the horizon, λh = λ∗(1 +O(ε∗)).
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On top of this, we have to make sure that the SUGRA + DBI + WZ action we are
using is valid. As usual, the suppression of closed string loops requires Nc � 1 whereas
the suppression of α′-corrections is guaranteed by λh � 1. We have written the D7-brane
worldvolume contribution to the action as a sum of Nf single brane contributions. This is
justified if the typical energy of a string connecting two different branes is large (in α′ units).
Since the branes are distributed on a space whose size is controlled by R ∼ λ1/4

h

√
α′, we again

need λh � 1. The smearing approximation will be good if the distribution of D7-branes on
the transverse space is dense, that is, Nf � 1. The discussion up to now is summarized in the
following validity regime:

Nc � 1, λh � 1, Nf � 1, εh =
λh

8π2

Nf

Nc
� 1. (2.96)

Finally, we want to find the regime of parameters in which the flavor corrections are not only
valid but are also the leading ones. With this aim, we ought to demand that the leading α′-
corrections to the supergravity action (which typically scale as λ−3/2

h due to terms of the type
α′3R4) are smaller than the flavor ones, controlled by εh, namely,

λ−3/2
h � εh. (2.97)

Demanding that corrections to the D7-branes contributions (e.g., curvature corrections to the
worldvolume action itself or corrections produced by possible modifications of the brane
embeddings due to curvature corrections to the background metric) are subleading does not
impose any further restriction. The reason is that their contribution is typically of order εhλ−ch
for some c > 0 which is always subleading with respect to εh as long as (2.96) is satisfied.

The Holographic a-Function

As discussed in [77] and mentioned above, the string solution starts presenting pathologies
at a scale ra < rLP, where the holographic a-function is singular. The utility of the solution for
r > ra is doubtful, but since we have only used the solutions up to r∗ � ra in order to derive
the IR physics, this subtlety does not affect the physical results. We now briefly review the
argument in [77], which used the backreacted Klebanov-Witten solution at zero temperature.
The qualitative picture holds for the rest of the cases addressed in the present section and for
the case of Section 5 too.

Let us start by considering the metric of a generic dimensional reduction to five
dimensions, giving a 5d Einstein frame metric of the form (the u here is, obviously, a redefined
holographic coordinate, namely, u = u(r)):

ds2
5 = H(u)1/3

[
dx2

1,3 + β(u)du
2
]
. (2.98)

In standard set-ups, the function H(u)1/6, which can be roughly identified with the dual field
theory energy scale, monotonically varies with the radial coordinate. This is also required in
order for the “holographic a-function” [96, 97]

a(u) ∼ β(u)3/2H(u)7/2[H ′(u)]−3
, (2.99)
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Figure 5: The function H in the massless-flavored KW model at zero temperature.

to be finite. (The monotonicity of H(u) also plays a crucial role in holographic computations
of the entanglement entropy; see [98]. The notations of that paper are used in the equations
above.) Instead, the functionH(u) is not monotonic here: it increases with u from zero up to a
maximum at a point ua and then it decreases back to zero where h vanishes. (For the present
discussion and in particular for Figure 5 we will choose the additive integration constant of
h such that h is zero at the Landau pole. The specific point ua (namely ra) at which this UV
pathology sets in depends on this choice. Again, we stress that the important point is the IR
results do not depend on this choice (modulo suppressed contributions) as long as ra � r∗.
What we show here is that the integration constant can be naturally chosen such that this
condition is satisfied.) In the flavored supersymmetric KW case, the H and a functions read:

H
(
ρ
)
∼ he2f+8g, a

(
ρ
)
∼ h3/2e3fH7/2[∂ρH]−3

, (2.100)

where we have not written unimportant overall factors. A representative plot is given in
Figure 5. The nonmonotonic behavior ofH implies that the holographic a-function is singular
and discontinuous at the “a-scale”. From the plot, we see that ra ∼ eρa is below, but not
parametrically separated from rLP.

3. A Dual toN = 1 SQCD-Like Theories

In the following section, we will study a system that in some sense is qualitatively different
from those of the previous sections, though the procedure to deal with the addition of flavors
is identical. The main qualitative difference will be that there need not be a hierarchical
difference between the number of flavors and the number of colors. The case treated here will
represent the addition of fundamental matter to a field theory that is originally confining and
four dimensional at low energies, but that gets some higher-dimensional completion in the
UV (in principle this allows one to extend the range of the radial coordinate to arbitrarily large
values). Some of the qualitative changes that observables of a confining theory undergo when
fundamentals are added will be discussed. The developments described in the present section
were applied to model possible aspects that could appear in physics beyond the standard
model, as we will briefly mention below.
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More concretely, in this section, we will study a dual to a version of N = 1 SQCD.
The model is based on D5-branes wrapped on two-cycles inside the resolved conifold—
leading to a geometry related to the deformed conifold. We will first briefly present the model
without flavors, then study the addition of flavors following the ideas described in the first
sections of this paper: kappa symmetric embeddings, smearing, backreaction, system of BPS
equations, and particular solutions to this system, and finally present a set of checks that the
correspondence we are proposing is valid and robust; we also explain some predictions about
the field theory obtained with the string background.

3.1. The Model without Flavors

The proposal is to construct a dual to a field theory with minimal SUSY in four dimensions
using wrapped branes. Ideas of this kind were first explored by Witten in the early days of
AdS/CFT. In [99], Witten presented a model dual to a version of Yang-Mills theory (with an
extra massive scalar that gets mass due to loop corrections and UV-completed by an infinite
tower of massive vectors, scalars, and fermions), by wrapping a set of Nc D4 branes on a
circle with SUSY-breaking boundary conditions.

The idea here is very similar, only that we will work with D5-branes and we will
preserve some amount of SUSY. We will compactify the five branes in a very subtle way
(involving a twisting of the 6-d theory) so that only four supercharges will be preserved in
the compactified theory for all energies [100] in other words, the partial SUSY breaking is not
due to the presence of relevant operators, like mass terms. (The fact that a twisting procedure
(see [101] for a very nice presentation of this idea) is at work implies that even in the far
UV, the theory is still preserving only four supercharges.) This kind of compactification of
the six-dimensional theory living on a stack of D5-branes (when the D5’s wrap a two-cycle
inside the resolved conifold) was well studied in various papers; see [102–104] for various
reviews. We will follow mostly the detailed study of [105, 106].

One can show that a very generic string background describing a stack of Nc D5-
branes wrapping a two cycle and preserving four supercharges includes a metric, RR-three
form F3 = dC2, and a dilaton φ(ρ) and is given by

ds2 = α′gse(φ(ρ))/2

[
dx2

1,3 + e
2k(ρ)dρ2 + e2h(ρ)

(
dθ2 + sin2θdϕ2

)
+
e2g(ρ)

4

×
((
ω̃1 + a

(
ρ
)
dθ

)2 +
(
ω̃2 − a

(
ρ
)

sin θdϕ
)2

)
+
e2k(ρ)

4
(
ω̃3 + cos θdϕ

)2

]
,

F(3) =
gsα

′Nc

4
[
−
(
ω̃1 + b

(
ρ
)
dθ

)
∧
(
ω̃2 − b

(
ρ
)

sin θdϕ
)
∧
(
ω̃3 + cos θdϕ

)

+b′dρ ∧
(
−dθ ∧ ω̃1 + sin θdϕ ∧ ω̃2

)
+
(

1 − b
(
ρ
)2

)
sin θdθ ∧ dϕ ∧ ω̃3

]
,

(3.1)

where ω̃i are the left-invariant forms of SU(2):

ω̃1 = cosψdθ̃ + sinψ sin θ̃dϕ̃,

ω̃2 = − sinψdθ̃ + cosψ sin θ̃dϕ̃,

ω̃3 = dψ + cos θ̃dϕ̃.

(3.2)
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For convenience, below we will set the parameters gs = α′ = 1. The presence of the Nc color
D5-branes is indicated in F3 that satisfies the quantization condition:

1
2κ2

(10)

∫
S3
F(3) =NcT5. (3.3)

The S3 on which we integrate is parameterized by θ̃, ϕ̃, and ψ.
We then impose that a fraction of SUSY is preserved; hence we need to impose some

projections on the Type IIB spinors and a set of BPS equations reflecting this arise (see [12,
Appendix B] for generous details). The BPS equations are nonlinear, first order, and coupled
for the functions of the background in (3.1)-for details see [12, Appendix B]. Certainly, solving
first-order equations is simpler than solving the second order Einstein equations; nevertheless
the BPS equations for the functions (φ, h, g, k, a, b) are nonlinear and coupled, rendering the
problem complicated.

It is technically convenient to make a “change of basis” to another set of functions,
so that the BPS equations become first order and nonlinear (of course) but can be decoupled,
and then solved independently. A change of variables that does the job partially was obtained
in [25]. The change of basis is from the set of functions [φ, h, g, k, a, b] into the functions
[P,Q, τ,Φ, Y, σ]. The map reads [25]

e2h =
1
4

(
P 2 −Q2

P cosh τ −Q

)
, e2g = P cosh τ −Q, e2k = 4Y, a =

P sinh τ
P cosh τ −Q, b =

σ

Nc
,

(3.4)

Φ =
(
P 2 −Q2

)√
Ye2φ. (3.5)

As explained in detail in [25] (see Section 3 of that paper), the BPS equations can be solved
one by one for these new functions, obtaining

Q
(
ρ
)
= (Qo +Nc) cosh τ +Nc

(
2ρ cosh τ − 1

)
,

sinh τ
(
ρ
)
=

1
sinh

(
2ρ − 2ρo

) , cosh τ
(
ρ
)
= coth

(
2ρ − 2ρo

)
,

Y
(
ρ
)
=
P ′

8
,

e4φ =
e4φo cosh

(
2ρo

)2

(P 2 −Q2)Ysinh2τ
,

σ = tanh τ(Q +Nc) =

(
2Ncρ +Qo +Nc

)
sinh

(
2ρ − 2ρo

) .

(3.6)

Note that both Q and the dilaton are given algebraically in terms of the rest of the functions
parametrizing the backgrounds. Here Qo and φo are constants of integration and we have
chosen the integration constant in the dilaton field equation φo such that it admits a smooth
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limit as ρo → −∞ (this limit gives τ = σ = 0 and so corresponds to what in [107] were called
type A backgrounds).

The function P satisfies the following second-order equation:

P ′′ + P ′
(
P ′ +Q′

P −Q +
P ′ −Q′
P +Q

− 4 coth
(
2ρ − 2ρo

))
= 0. (3.7)

We will refer to this equation as the “master” equation, since once we have a solution of (3.7)
all other functions are determined via (3.6).

3.2. Some Solutions

There are many solutions to the master equation (3.7). A very simple one is given by

P = 2Ncρ, Qo = −Nc. (3.8)

Once processed back, one computes the functions in the original background of (3.1) and one
recovers an old solution [108]. To avoid nasty singular behaviors, in the following, we will
choose the value of the integration constant Qo = −Nc, so that the first term in the expression
for Q(ρ), namely, (Qo +Nc), vanishes. (If we do not make this choice, the space ends before
ρ = ρo, since Q > P possibly giving place to geodesically incomplete spaces and a divergent
dilaton. Hence, we will choose the term proportional to cosh τ(ρ) in Q(ρ) to vanish.)

Aside from the simple solution presented above, there are a variety of very interesting
solutions. For example, the function P(ρ) near ρ = 0 has the following Taylor series:

P = h1ρ +
4h1

15

(
1 −

4N2
c

h2
1

)
ρ3 +

16h1

525

(
1 −

4N2
c

3h2
1

−
32N4

c

3h4
1

)
ρ5 +O

(
ρ7

)
, (3.9)

where h1 is again an arbitrary constant (notice that for h1 = 2Nc we get back to the solution in
(3.8); we will also assume that h1 > 2Nc). It is interesting that this solution can be numerically
connected in a smooth way with a solution for large values of the radial coordinate (ρ → ∞)
that differs greatly from the linear behavior of the solution in (3.8). In this case, it is given by

P ∼ e(4/3)ρ
[
c

(
1 − 8

3
ρe−4ρ

)
+

1
64c

(
256ρ2 + 256Qoρ + 144N2

c + 64Q2
o

)
e−(8/3)ρ +O

(
e−4ρ

)]
.

(3.10)

These solutions were studied explicitly in [12, Section 8] and have a variety of interesting
applications that we will briefly mention in the following sections.
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3.2.1. An Exact Recursive Solution

There is one recursive way of obtaining solutions, described in [109], that basically uses the
fact that the master equation (3.7) can be written as (we choose here and in the following
ρo = 0)

∂ρ
(
s
(
P 2 −Q2

)
P ′

)
+ 4sP ′QQ′ = 0, s

(
ρ
)
= sinh2τ =

1

sinh2(2ρ
) . (3.11)

Integrating (3.11) twice we obtain

P 3 − 3Q2P + 6
∫ρ

ρ2

dρ′QQ′P + 12
∫ρ

ρ2

dρ′s−1
∫ρ′

ρ1

dρ′′sP ′QQ′ = c3R
(
ρ
)3
, (3.12)

where

R
(
ρ
)
≡

(
cos3α + sin3α

(
sinh

(
4ρ

)
− 4ρ

))1/3
, (3.13)

being (c, α) the two integration constants of the master equation.
Following [25] we write P in a formal expansion in inverse powers of c—the

integration constant encountered above—as

P =
∞∑
n=0

c1−nP1−n. (3.14)

Inserting this expansion in (3.12) we obtain recursively

P1 = R,

P0 = 0,

P−1 = −1
3
P−2

1

(
−3Q2P1 + 6

∫ρ

ρ2

dρ′QQ′P1 + 12
∫ρ

ρ2

dρ′s−1
∫ρ′

ρ1

dρ′′sQQ′P ′1

)
,

P−2 = 0,

P−n−2 = −1
3
P−2

1

{
n+2∑
m=1

(
2P1P1−mPm−n−2 +

n−m+3∑
k=1

P1−mP1−kPm+k−n−2

)
− 3Q2P−n

+6
∫ρ

ρ2

dρ′QQ′P−n + 12
∫ρ

ρ2

dρ′s−1
∫ρ′

ρ1

dρ′′sQQ′P ′−n

}
, n ≥ 1.

(3.15)

It follows by induction that Pk = 0 for all even k. The large ρ expansion of these solutions
coincides with that described in (3.10) Once again, solutions written in this form have
interesting applications to the physics of cascading quivers on the baryonic branch [110, 111].
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We will not study the physics encoded in the solutions described above, suggesting the
interested reader to consult the papers [12, 102–104, 109].

There is another set of solutions, proposed in [109] and whose physics content was
developed in [112–114] that correspond to what are called “walking solutions”. The idea
here is to construct string backgrounds such that the dual QFT has a gauge coupling with
very slow running (or “walking” coupling). See [109, 112–114] for detailed explanations on
the physical implications of these solutions.

3.2.2. A Comment about the Dual Field Theory

The unflavored system of wrapped D5-branes has a field theory realized on its worldvolume,
whose dual background and various solutions were described above. The field theory is
a version of minimally SUSY Yang-Mills. Again, some UV completion takes over at high
energies. (We are not saying that Super-Yang-Mills needs a UV completion, just that the
system of D5-branes realizes a theory with these characteristics.) The field theory is minimally
SUSY (N = 1) and its perturbative spectrum, aside from a massless vector multiplet, contains
a tower of massive vector and chiral multiplets. A careful study of the perturbative dual field
theory obtained by compactification and twisting of the six-dimensional theory living on
(unwrapped) D5-branes was done in [105, 106]. In that paper, the degeneracies and masses
of the (perturbative) states in the tower mentioned above are given. More interestingly, the
authors of [105, 106] showed that the theory is equivalent toN = 1∗ Yang-Mills in a particular
Higgs vacuum, where the extra dimensions appear by deconstruction. In this sense, we will
think of the theory without flavors either as a six-dimensional theory compactified or as a
four-dimensional theory with an infinite set of fields.

For our purposes, it will be enough to use the fact that the Lagrangian of the field
theory reads

L = Tr
[
−1

4
F2
μν − iλγμDμλ + L(Φk,Wk,W)

]
, (3.16)

where Φk and Wk represent the infinite number of massive chiral and vector multiplets and
W denotes the massless vector multiplet. The term L(Φk,Wk,W), represents all the kinetic
terms and interactions that can be deduced from [105, 106]. More comments about this field
theory can be found in [25, Appendix A].

In what follows, we will summarize the procedure of adding flavors to this field theory.
The flavor branes in this particular case are D5-branes.

3.3. Addition of Flavors

The study of supersymmetric embeddings in backgrounds of the form of (3.1), more precisely
for the solution given in (3.8), was initiated in [19]. There the eigenspinors of the kappa
symmetry matrix were found to be the spinors preserved by the background for a variety
of D5-brane embeddings. For the purposes of this review, we will focus on the “cylinder
embeddings” described in [19, Section 6.3] and in more detail in Section 6.5.3 of the third
paper in [102–104]. In this case the flavor D5-branes are extended along the R1,3 Minkowski
directions, on the radial direction ρ, and also wrap the R-symmetry direction ψ. Intuitively,
the flavor branes are localized in the directions (θ, θ̃, ϕ, ϕ̃), but interestingly enough, any
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constant value of these coordinates ensures that we have a kappa symmetric configuration.
This is a very important fact, as we can put one flavor brane “at each point” of the four
manifold Σ[θ, θ̃, ϕ, ϕ̃] and still have a SUSY configuration.

This is precisely what we will take advantage of when smearing. Let us see this in
more detail: if, as discussed in the first section, we write the action describing the closed
strings (IIB) and the open strings (BIWZ), we will have

S =
1

2κ2
(10)

∫
d10x

√
−g

[
R − 1

2
(
∂μφ

)(
∂μφ

)
− 1

12
eφF2

(3)

]

− T5

Nf∑∫
M6

d6xeφ/2
√
−ĝ(6) + T5

Nf∑∫
M6

P[C6],

(3.17)

where the integrals are taken over the six-dimensional worldvolume of the flavor branesM6,
and ĝ(6) stands for the determinant of the pull-back of the metric in such a worldvolume.

As discussed in previous sections, we then think of the Nf → ∞ branes as
being homogeneously smeared along the four transverse directions parameterized by the
coordinates θ, ϕ and θ̃, ϕ̃. The smearing erases the dependence on the angular coordinates
and makes it possible to consider an ansatz with functions only depending on r, enormously
simplifying computations. One has

−T5

Nf∑∫
M6

d6xeφ/2
√
−ĝ(6) −→ −

T5Nf

(4π)2

∫
d10x sin θ sin θ̃eφ/2

√
−ĝ(6),

T5

Nf∑∫
M6

P[C6] −→
T5Nf

(4π)2

∫
Vol(Y4) ∧ C(6),

(3.18)

where we have defined Vol(Y4) = sin θ sin θ̃dθ ∧ dϕ ∧ dθ̃ ∧ dϕ̃ and the new integrals span
the full space-time. We will need the following expressions (with the choice explained above
α′ = gs = 1):

T5 =
1

(2π)5
, 2κ2

(10) = (2π)7. (3.19)

From here, we will have a set of BPS equations describing the dynamics of this open-closed
string system. The same change of basis with the purposes described around (3.4) can be
performed—see [25] for details. The solution in this case is dependent on the number of
flavor branes Nf and reads (reinstating momentarily the integration constant ρo)

sinh τ =
1

sinh
(
2
(
ρ − ρo

)) , (3.20)
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for the function τ , while for Q,Φ we have

Q =
(
Qo +

2Nc −Nf

2

)
cosh τ +

2Nc −Nf

2
(
2ρ cosh τ − 1

)
, (3.21)

e4(φ−φo) =
cosh2(2ρo

)
(P 2 −Q2)Y sinh2τ

. (3.22)

In the case with flavors, like in the unflavored case previously discussed, both Q and
the dilaton are given algebraically in terms of the rest of the functions parametrizing the
backgrounds. As before, ρo, Qo, and φo are constants of integration and we have chosen the
integration constant in (3.22) such that it admits a smooth limit as ρo → −∞ (this limit gives
τ = σ = 0 and so corresponds to the type A backgrounds). The function Y is determined in
terms of P as

Y =
1
8
(
P ′ +Nf

)
, (3.23)

while the only remaining unknown, the function P , then satisfies the new decoupled second-
order master equation:

P ′′ +
(
P ′ +Nf

)(P ′ +Q′ + 2Nf

P −Q +
P ′ −Q′ + 2Nf

P +Q
− 4 coth

(
2ρ − 2ρo

))
= 0. (3.24)

One can redefine P(ρ) = Ncp(ρ) and factor out Nc from the master equation. We will
mention some solutions to (3.24), that explicitly include the quotient x = Nf/Nc; hence the
solutions will capture the nontrivial physics of the fields transforming in the fundamental
representation of the gauge group.

3.4. Study of Solutions

We now describe various solutions to the “flavored” master equation (3.24). Some solutions
were found exactly, for the particular relation Nf = 2Nc while some other are known as
asymptotic expansions, near the UV (large ρ) and the IR (small ρ). In these latter cases, a
smooth numerical interpolation can be found.

3.4.1. Exact Solutions forNf = 2Nc

One can find some exact solutions for the case Nf = 2Nc or x = 2. They were first discussed
in the papers [12, 25].

For Nf = 2Nc an exact type A (ρo → −∞) solution of (3.24) is

P =Nc +
√
N2

c +Q2
o, Q = Qo ≡ 4Nc

(2 − ξ)
ξ(4 − ξ) , 0 < ξ < 4. (3.25)
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Another solution with a qualitatively different UV behavior is

P =
9Nc

4
+ ce4ρ/3, c > 0, Q = ±3Nc

4
. (3.26)

One can check that in these solutions the radial coordinate moves all over the real axis
and that for ρ → −∞ the solutions take the same form but, as anticipated above, differ
substantially in the far UV, for ρ → ∞. Also, for the case Nf = 2Nc, [115, 116] discuss some
extra solutions apart from the ones mentioned, including, interestingly, the generalization to
near-extremal solutions. (The metric for the simplest nonextremal solution can be written in
terms of a constant ξ and a function F = 1 − (zh/z)4 as:

ds2 = eφo/2 z

[
−Fdt2 + dx2

1 + dx
2
2 + dx

2
3 +Nc

(
4
z2
F−1dz2 +

1
ξ

(
dθ2 + sin2θdϕ2

)

+
1

4 − ξ
(
dθ̃2 + sin2θ̃dϕ̃2

)
+

1
4

(
dψ + cos θdϕ + cos θ̃dϕ̃

)2
)]

.

(3.27)

The solution also contains nontrivial RR F(3) and dilaton; see [12] for details. Different
features of this black hole solution have been analysed in [61, 117, 118]. An important
remark is that the theory is in a Hagedorn phase and, indeed, the temperature coincides
with the Hagedorn temperature of Little String Theory. For this reason, this solution is a
bit problematic for studying the effect of quarks in a field theory plasma, unlike the finite
temperature solution of Section 2.5.)

3.4.2. Asymptotic Expansions of Generic Solutions

Other solutions of interest have been discussed in [12, 25, 107]. We will summarize the results
but suggest to the interested reader to go over those papers for details of all the metric
functions.

In the UV (for ρ → ∞), two possible asymptotics were found, that were called Class I
and Class II in [25]. Table 1 summarizes the situation.

In the IR (ρ → 0), three types of solutions were found, called Types I, II, and III (there
exist other, qualitatively different solutions reported in [111]). The function P(ρ) in these
cases is

P = −Nfρ + Po +
4
3
c3
+P

2
oρ

3 − 2c3
+NfPoρ

4 +
4
5
c3
+

(
4
3
P 2
o +N

2
f

)
ρ5 +O

(
ρ6

)
, (3.28)

for Type I. For the Type II asymptotics, we assume that this behavior occurs when the IR is
located at ρIR > ρo. Without loss of generality we can choose ρIR = 0. With this choice we then
necessarily have ρo < 0. Expanding Q in (3.21) around ρ = 0 we obtain

Q = b0 + b1ρ +O
(
ρ2

)
, (3.29)
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Table 1: The two classes of leading UV behaviors.

Nf I II
< 2Nc P ∼ Q ∼ |2Nc −Nf |ρ

e2h ∼ 1
2
(2Nc −Nf )ρ

e2g ∼Nc

Y ∼ Nc

4

e4(φ−φo) ∼
e4(ρ−ρo)sinh2(2ρo)

2N2
c (2Nc −Nf )ρ

a ∼ 2
Nc

(2Nc −Nf )e−2(ρ−ρo)ρ

> 2Nc P ∼ −Q ∼ |2Nc −Nf |ρ P ∼ c+e4ρ/3

e2h ∼ 1
4
(Nf −Nc) e2h ∼ 1

4
c+e

4ρ/3

e2g ∼ 1
2
(Nf − 2Nc)ρ e2g ∼ c+e4ρ/3

Y ∼ 1
4
(Nf −Nc) Y ∼ 1

6
c+e

4ρ/3

e4(φ−φo) ∼
e4(ρ−ρo)sinh2(2ρo)

2(Nc −Nf )
2(Nf − 2Nc)ρ

e4(φ−φo) ∼ 1

a ∼ e−2(ρ−ρo)ρ a ∼ 2e−2(ρ−ρo)

= 2Nc P ∼Nc +
√
N2

c +Q2
o ∼

8Nc

(4 − ξ)ξ

e2h ∼ Nc

ξ

e2g ∼ 4Nc

4 − ξ

Y ∼ Nc

4

e4(φ−φo) ∼ e4(ρ−ρo)sinh2(2ρo)
(4 − ξ)ξ
16N3

c

a ∼ 4
ξ
e−2(ρ−ρo)
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where

b0 = − coth
(
2ρo

)(
Qo +

2Nc −Nf

2

)
−

2Nc −Nf

2
,

b1 = − 2

sinh2(2ρo
)
(
Qo +

2Nc −Nf

2

)
−
(
2Nc −Nf

)
coth

(
2ρo

)
.

(3.30)

Looking for IR solutions of (3.24) we find that we must require that b0 > 0. The corresponding
asymptotic solution then takes the following form:

P = Q + h1ρ
1/2 − 1

6b0

(
h2

1 + 12b0
(
b1 +Nf

))
ρ

+
h1

72b2
0

(
5h2

1 + 6
(
5b1 + 2Nf

)
b0 − 72b2

0 coth
(
2ρo

))
ρ3/2 +O

(
ρ2

)
,

(3.31)

where h1 is an arbitrary constant. Note that this expansion for P admits a smooth limit when
ρo → −∞ and so it is valid for both solutions of type A (ρo → −∞).

Finally, for Type III asymptotics we consider ρIR > ρo and we take ρIR = 0. In terms of
the expansion (3.29) this requires that b0 = 0. We then find

P = h1ρ
1/3 −

9Nf

5
ρ − 2h1

3
coth

(
2ρo

)
ρ4/3 − 1

175h1

(
50b2

1 − 18N2
f

)
ρ5/3 +O

(
ρ2

)
, (3.32)

where h1 /= 0 is an arbitrary constant.
To leading order the solutions for large ρ—UV solutions—are quoted in Table 1. It is

the presence of subleading terms that allow the smooth numerical interpolation with three
possible IR behaviors discussed.

The physics of the dual field theory encoded in these solutions was discussed in detail
in [12, 25, 107] by computing various observables using the string solution of (3.1) evaluated
on the solutions above. (Finding a numerical interpolation between the IR solutions and the
solutions of Class I in the far UV is (numerically) delicate. One can see some plots in [112,
Section 5].) We move now to discuss general features of the dual field theory.

3.5. The Dual Field Theory

The proposal here is the following: without the addition of the flavor branes, the field theory
is known to be a twisted version of six-dimensional Yang-Mills, or as we discussed above, a
four-dimensional QFT with an infinite number of massive fields. See Section 3.2.2. To get an
intuitive understanding of the modifications of the dynamics produced by the “quark” fields
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(that feature below), we will consider that all the infinite massive fields are chiral multiplets
and then argue that the dynamics is ruled by a lagrangian of the following form:

L = Tr
[
−1

4
F2
μν − iλγμDμλ + L(Φk,W)

]
∼

∫
d2θWαW

α

+
∑
k

∫
d4θΦ†ke

VΦk +
∫
d2θμk|Φk|2 + · · · .

(3.33)

When the flavor branes come into play, we are adding “quark superfields” that are realized
as the open strings going from the noncompact flavor branes to the compact (or wrapped)
color branes (as usual, the open strings that begin and end on a flavor brane decouple and
do not contribute to the four dimensional dynamics). More concretely, we add the quark and
antiquark superfields (Q, Q̃) and propose that we have a Lagrangian for the massive fields
interacting with the quark-antiquark superfields Q, Q̃ schematically of the following form
(for more details, see [25, Appendix A]):

L
(
Φk,W, Q, Q̃

)
=

∑
k

∫
d4θΦ†

k
eVΦk + κk

∫
d2θQ̃ΦkQ + μk|Φk|2 + · · · , (3.34)

and canonical kinetic terms for (Q, Q̃). In this system, the SU(Nf)L × SU(Nf)R symmetry is
explicitly broken to the diagonal SU(Nf)D by the presence of the coupling Q̃ΦkQ. In this
respect, the theory is qualitatively different fromN = 1 SQCD.

One may be interested in the theory at low energies and hence integrate out the
massive fields (either massive vectors or massive chirals) and after some algebra end with
a theory of the following form (again schematically):

L =
∫
d4θ

(
Q†eVQ + Q̃†e−V Q̃

)
+
∫
d2θWαW

α + κ
∫
d2θ

(
Q̃Q

)2
, (3.35)

where we have a (naively irrelevant) deformation ofN = 1 SQCD.
We emphasize that this is an intuitive way of understanding the field theory dual to the

flavored system described above. As we will summarize below there are various observables
that can be computed that match the predicted (or expected) result. So, the precise dual QFT
should be something similar to what we described above, or at least with the same qualitative
physics.

3.6. Checks and Predictions

This subsection summarizes results developed in [12, 25, 107]. There is a point that should
be emphasized here. All the solutions to the BPS equations or the master equation (3.24) that
have been found up to the time of writing this review present a singularity in the IR (typically
at ρ = 0). In spite of this being a “good singularity” according to some criteria developed in
the literature [73], the presence of the singularity makes the interpretation of IR observables
a bit unclear. In other words, though one gets the “correct or expected” result, one should
perhaps handle those particular computations with care.
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Let us then concentrate on various quantities computed in the UV and then we will
specify some that are mostly influenced by the IR of the geometry.

3.6.1. Beta Function and Anomalies

The gauge coupling and the theta angle of the dual QFT can be defined as explained in
various places; see, for example, [107, Section 4.1] or [25, Section 5]. One gets, after some
algebra, that the gauge coupling is related to the functions of the background as

8π2

g2
= e−τP. (3.36)

Choosing a particular radius-energy relation, that was discussed in [119–121], one can
compute the variation of the coupling with respect to energy. Using the solutions where the
dilaton asymptotes to a linear function (e4φ ∼ e4ρ/ρ) and working to leading order in an
expansion in inverse powers of the radial coordinate, we get

β8π2/g2 =
3
2
(
2Nc −Nf

)
, (3.37)

that coincides with the result predicted by the NSVZ result, once we assign anomalous
dimensions to the quark superfields γQ = γQ̃ = −1/2.

Similarly, one can define a geometrical quantity that can be associated with the quartic
coupling. See [107, Section 4.2]. The beta function can be computed using the anomalous
dimensions discussed above and again get matching with the interesting fact that for Nf >
2Nc the quartic coupling is irrelevant, for Nf < 2Nc the coupling is relevant, while for Nf =
2Nc the coupling is not running. See [72] for a nice explanation of this fact.

One can also assign a value of the R-charge to the quark superfields to get the correct
R-symmetry transformation properties of the quartic superpotential of (3.35), that is, R[Q] =
R[Q̃] = 1/2. This predicts that the R-symmetry anomaly, the triangle with one R-current and
two gauge currents, is proportional to the quantity (2Nc −Nf) times the phase by which we
are rotating the fermions. This is the precise result that the string background gives. Indeed,
if we compute the Θ-angle as explained in [107, Section 4.1] or in [25, Section 5], we will get

Θ =
ψ − ψ0

2
(
2Nc −Nf

)
, (3.38)

where we associated (ψ − ψ0)/2 with the change in phase of the fermions in the quark
multiplet and the gauge multiplet to get perfect matching. In the same vein, it is possible to
attempt a ’t Hooft matching of anomalies, that is of triangles involving three global currents.
The reader will find it quite instructive to go over [107, Section 4.7]. There, a detailed study
of the matching of the correlator of three global currents—some of them corresponding
to discrete symmetries, some of them being continuous symmetries—is presented. The
treatment is performed in the case of Type A backgrounds, that are characterized by the
fact that the functions are a = b = 0 in (3.1). This translates to the fact that the R-symmetry is
broken to Z2Nc−Nf without the further (spontaneous) breaking to Z2.
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3.6.2. Seiberg Duality

It is known that Seiberg duality manifests beautifully in a QFT like the one of (3.35). This
is explained in [72, Section 1.10]. The backgrounds discussed here show this in a very nice
way. Indeed, as discussed, for example, in [25], we can see that the master equation (and the
whole system) is invariant under the following change:

P −→ P, Q −→ −Q, σ −→ −σ, Nc −→Nf −Nc, Nf −→Nf, (3.39)

while all other functions are invariant. Geometrically, this change amounts to swapping the
two S2 in the background, namely, those parameterized by θ, ϕ and θ̃, ϕ̃ in (3.1). This should
be interpreted as follows: suppose that we are presented with a background, representing
the dynamics of a field theory with Nc colors and Nf flavors. This implies that we have a
particular solution to the master equation (3.24) for the function P . With this solution, and
applying the changes of (3.39), we can construct another solution, that will be related to
the first one by a differomorphism and that will describe the physics of a field theory with
Nf −Nc colors andNf flavors. Various aspects of this interesting duality have been discussed
in [25, 79, 107] and probably elsewhere.

The implementation of Seiberg duality in N = 1 subcritical string models was
discussed in [57, 122]. One can think of the sphere exchange mentioned above as being
the geometrical version of the mechanism described in these papers. Interestingly, similar
methods were used to propose a non-supersymmetric Seiberg duality in [123].

3.7. IR Physics: Domain Walls and Some Comments on Wilson/’t Hooft Loops

One observable that can be computed and that strongly depends on the ρ → 0 region of
the solution (the IR) is the tension of domain walls. Indeed, domain walls can be thought
of as D5-branes that wrap a three cycle inside the internal six-dimensional manifold and that
extend on two of the Minkowski directions (and time, of course). We can compute the tension
of a wall by considering a probe D5-brane that sits on the manifold Σ6 = [t, x1, x2, θ̃, ϕ̃, ψ], at
constant ρ = 0, constant θ, ϕ. The Born-Infeld action for this probe can be computed and one
reads that the effective tension is given by (see, e.g., [12, Section 5.6]):

TDW = 4π2e2φ+2g+kTD5, (3.40)

which, when evaluated at ρ = 0, gives a constant proportional to 2Nc − Nf. (This would
indicate that the walls are tensionless for Nf = 2Nc, a particular point of the QFT previously
discussed, where it was argued that conformal symmetry is developed.) This is a good
example for an observable, since even when a singularity is present (this typically reflects
in some of the functions of the background being divergent), the combination above is finite.
This is typical of “good singularities”. There are other observables that can be computed using
D-branes or fundamental strings; examples of these are Wilson or ’t Hooft loops. A similar
conspiracy of functions that avoids an infinite result occurs here. Nevertheless, one should
be quite careful with these quantities as noted above. Indeed, it was found in [112, Section 5]
that for the particular case of the backgrounds studied in this section, the Nambu-Goto action
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for the fundamental string might cease to be a good approximation as the string develops a
cusp when approaching the singularity.

In other words, we believe that the solutions presented in this section surely capture
correctly many UV aspects of the field theory, together with some IR observables. Probably,
we could think of the presence of the singularity in the same way as we think about the
singularity in the Klebanov-Tseytlin background that captures some of the physics, but some
is lost and the singularity must be resolved. (In contrast to what happens for the solutions
discussed here, the Klebanov-Tseytlin background presents a bad singularity and the IR
physics computed with that solution is not trustable.) There are different ways of attempting
a resolution of the singularity, for example, considering massive quarks. This is under present
study.

3.7.1. Wilson Loops and First-Order Phase Transitions

One can consider the situation (of course, this is an idealized situation) in which all the
flavors are massive and with a fixed sharp mass M0 (corresponding to a given value of the
radial coordinate, that we call ρ = m0). The way to model this in a first approximation is to
consider Nf(ρ) =NfΘ(ρ−m0), where Θ(ρ) is a Heaviside step function. Once again, there is
some dynamics that is being lost in doing this, for example, the matching of the derivatives
of the solutions is not smooth at the point ρ = m0 and the curvature of the background
is not well defined at that point. Nevertheless, it is possible (within this approximately
correct way of proceeding) to find a solution that for energies below the scale set by m0

corresponds to the theory without flavors, say those discussed around (3.9), and far in the
UV corresponds to the flavored theory, as represented by solutions of the Class I in Table 1.
One can then compute the Wilson loop following the well-known prescription [124, 125].
This was done explicitly in [126]. The qualitative result is the following: for a range of
ratios between the mass of the quarks M0 and the value of the gaugino condensate set by
the function a(ρ) one observes that the relation between the quark-antiquark potential VQQ
and their separation LQQ presents a first-order transition. (Notice that we should talk of a
“Quantum” phase transition, as the system is at zero temperature.) In other words, a point
where dVQQ/dLQQ is discontinuous. The same kind of behavior was observed in systems
where a more careful study is possible. Indeed, in the backreacted Klebanov-Witten (see
Section 2) and Klebanov-Strassler (see Section 5) models, it was possible to find the precise
form for the function p(ρ)—that shows that the “Heaviside approximation” described above
is not a bad one. The same qualitative behavior for the first-order phase transition was found
in [26, 127, 128].

This kind of first-order transitions for the Wilson loop string configurations is by
no means particular of systems with dynamical fundamental fields. In fact, they were first
found in a different context in [129], where a nice connection between these Wilson loops
computations and the Van der Waals gas (paradigm of the first order transition) was put
forward (further discussions can be found, e.g., in [112, 127]). Different examples of such
phase transitions in systems without flavors have been worked out in [130, 131].

The “morale” seems to be the following: when we have a physical system that has two
independent scales (i.e., two scales that can be tuned independently, in the present example,
the mass of the quarks M0 and the gaugino condensate Λ3) the first-order phase transition
for the quantity VQQ(LQQ) will be present. Of course, like in any other first-order transition,
it will happen that the discontinuity in the derivative will disappear for some ratio between
the scales mentioned above.
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4. A Dual to a (2+1)-DimensionalN = 1 SQCD-Like Model

In this section we will study gravity duals to minimal supersymmetric theories in 2+1
dimensions. These backgrounds can be obtained by wrapping D5-branes along three cycles
of manifolds with G2 holonomy [132–134]. The corresponding field theory dual is a (2+1)-
dimensional N = 1 supersymmetric U(Nc) Yang-Mills theory with a level k Chern-Simons
interaction. Such a theory coupled to an adjoint massive scalar field should arise on the
domain walls separating the different vacua of pure N = 1 super-Yang-Mills in 3+1
dimensions. The corresponding unflavored background was studied in [133], where it was
argued to be dual to a U(Nc) gauge theory with Chern-Simons level k = Nc/2. In what
follows we will review a generalization of these results, following closely [135]. We will
present the deformation of the background of [132–134] induced by a smeared distribution of
massless flavors. In order to formulate these generalized backgrounds, let σi andωi(i = 1, 2, 3)
be two sets of SU(2) left-invariant one forms, obeying

dσi = −1
2
εijkσ

j ∧ σk, dωi = −1
2
εijkω

j ∧ωk. (4.1)

The forms σi and ωi parameterize two three-spheres. In the geometries we will be dealing
with, these spheres are fibered by a one-form Ai. The corresponding ten-dimensional metric
of the type IIB theory in the Einstein frame is given by

ds2 = eφ/2

[
dx2

1,2 + dr
2 +

e2h

4

(
σi

)2
+
e2g

4

(
ωi −Ai

)2
]
, (4.2)

where φ(r) is the dilaton of type IIB supergravity and g and h are functions of the radial
variable r. In addition, the one-form Ai will be taken as

Ai =
1 +w(r)

2
σi, (4.3)

with w(r) being a new function of r. For convenience in this section we will take gs = α′ = 1,
as we did in Section 3. The backgrounds considered here are also endowed with an RR three-
form F3. We will represent F3 as the sum of two contributions:

F3 = F3 + f3, (4.4)

where dF3 = 0 and f3 is the part of the RR three-form which is responsible for the violation
of the Bianchi identity (df3 /= 0) and which is sourced by the flavor D5-branes. Let us first
parametrize the component F3 as

F3

Nc
= −1

4

(
ω1 − B1

)
∧
(
ω2 − B2

)
∧
(
ω3 − B3

)
+

1
4
Fi ∧

(
ωi − Bi

)
+H, (4.5)
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where Bi is a new one-form and Fi are the components of its field strength, given by

Fi = dBi +
1
2
εijkB

j ∧ Bk. (4.6)

In (4.5)H is a three-form that is determined by imposing the Bianchi identity for F3, namely

dF3 = 0. (4.7)

By using (4.1) one can easily check from the explicit expression written in (4.5) that, in order
to fulfill (4.7), the three-form H must satisfy the following equation:

dH =
1
4
Fi ∧ Fi. (4.8)

In what follows we shall adopt the following ansatz for Bi:

Bi =
1 + γ(r)

2
σi, (4.9)

where γ(r) is a new function. After plugging the ansatz of Bi written in (4.9) into (4.6), one
gets the expression for Fi in terms of γ(r):

Fi =
γ ′

2
dr ∧ σi +

γ2 − 1
8

εijkσ
j ∧ σk, (4.10)

where the prime denotes the derivative with respect to the radial variable r. Using this result
for Fi in (4.8) one can easily determine the three-form H in terms of γ . Let us parameterize
H as

H =
1

32
1
3!
H(r)εijkσi ∧ σj ∧ σk. (4.11)

Then, by solving (4.8) for H, one can verify thatH(r) is the following function of the radial
variable:

H = 2γ3 − 6γ + 8κ, (4.12)

with κ being an integration constant.
Let us now consider the contribution f3 to the RR three-form F3. As explained above,

this contribution violates the Bianchi identity and is nonzero when flavor branes are present.
Indeed, let us write the WZ term of the action of a system of flavor D5-branes as

SWZ
flavor = T5

∫
M10

Ω ∧ C6, (4.13)
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with Ω being a four-form with components along the space transverse to the worldvolume
of the branes. Then, the coupling to the RR potential C6 written in (4.13) gives rise to the
following modified Bianchi identity:

dF3 = df3 = 4π2Ω. (4.14)

To write a specific ansatz for Ω and f3 we have to select some family of supersymmetric
embeddings for the flavor branes. As explained above, this can be done by using kappa
symmetry. In the simplest case one looks for massless embeddings, which extend along the
full range of the radial coordinate r. Those are the configurations considered in [135], in
which the D5-brane is extended along the three Minkowski directions xμ as well as along a
three-dimensional cylinder spanned by r and two other angular directions. Actually, it was
shown in [135] that these two angular directions could be the ones corresponding to σ3 and
ω3. The corresponding transverse volume for this configuration is just

Vol
(
Y1,2

4

)
= σ1 ∧ σ2 ∧ω1 ∧ω2. (4.15)

However, there is nothing special in our background about these directions. Indeed, both
in the metric and in the RR three-form F3, we are adopting a round ansatz which does not
distinguish among the directions of the two three-spheres. Thus we could as well consider
supersymmetric cylinder embeddings that span the σ1, ω1 or σ2, ω2 directions. The volume
forms of the spaces transverse to these embeddings are clearly

Vol
(
Y2,3

4

)
= σ2 ∧ σ3 ∧ω2 ∧ω3, Vol

(
Y1,3

4

)
= σ1 ∧ σ3 ∧ω1 ∧ω3. (4.16)

To construct a backreacted supergravity solution with the same type of ansatz as in (4.2)
we should consider a brane configuration that combines these three possible types of
embeddings in an isotropic way. The corresponding transverse volume form Vol(Y4) of this
three-branch brane system would be just the sum of the three four-forms written in (4.15)
and (4.16). The corresponding smearing form Ω is obtained by multiplying by the suitable
normalization factor, namely,

Ω = −
Nf

16π2
Vol(Y4) = −

Nf

64π2
εijkεilmσ

j ∧ σk ∧ωl ∧ωm, (4.17)

where the minus sign has its origin in the different orientation (required in the kappa
symmetry analysis of [135]) of the D5-brane worldvolume with respect to the ten-
dimensional space. It is now straightforward to use the Ω written in (4.17) and get an
expression of f3 whose modified Bianchi identity is the one of (4.14). One has

f3 =
Nf

8
εijk

(
ωi − σ

i

2

)
∧ σj ∧ σk. (4.18)

Equation (4.18) completes our ansatz for the general flavored case. Using these expressions of
the metric and RR three-form in the supersymmetry variations of the dilatino and gravitino
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of type IIB supergravity, after imposing that the background preserves two supersymmetries,
we arrive at a system of first-order BPS equations. These equations, which are rather involved,
have been derived and analyzed in detail in [135]. They admit several consistent truncations
which lead to simpler solutions. One can, for example, first consider the unflavored caseNf =
0. If, in addition, we require that the function g is constant and that the fibering functions w
and γ are equal, our ansatz reduces to the one considered in [132–134]. Actually, in this case
the BPS equations fix the value of g to be e2g = Nc and, in order to have a regular solution,
one should take the constant κ of (4.12) to be equal to 1/2 (κ is related to the Chern-Simons
level k of the dual field theory). Other unflavored solutions exist and have been studied in
detail in [135]. Here we will concentrate on reviewing the case in which Nf /= 0, starting from
a particular truncation of the BPS system which is very interesting and serves to classify the
different more involved solutions in the UV.

4.1. The Truncated System

In this section we will analyze the truncation of the general system of BPS equations that
corresponds to taking w = γ = κ = 0. In this case the BPS equations of [135] for the remaining
functions h and g of the metric and for the dilaton φ consistently reduce to the following
simple system of differential equations:

φ′ =Nce
−3g − 3

4
(
Nc − 4Nf

)
e−g−2h,

h′ =
1
2
eg−2h +

Nc − 4Nf

2
e−g−2h,

g ′ = e−g − 1
4
eg−2h −Nce

−3g +
Nc − 4Nf

4
e−g−2h.

(4.19)

By inspecting the system (4.19) one readily realizes that there is a special solution for which
the metric functions h and g are constant. Actually this solution only exists when Nc < 2Nf

and the corresponding expressions for g and h are the following:

e2g = 4Nf −Nc, e2h =
1
4

(
4Nf −Nc

)2

2Nf −Nc

(
Nc < 2Nf

)
, (4.20)

while the dilaton grows linearly with the holographic coordinate r, namely,

φ =
2
(
3Nf −Nc

)
[
4Nf −Nc

]3/2
r + φ0. (4.21)

Let us next consider solutions for which the function h is not constant. In this case we
can use ρ = e2h as a radial variable and one can define a new function F(ρ) as F(ρ) = e2g . It
follows from (4.19) that the BPS equation for F(ρ) is now,

dF

dρ
=

(F −Nc)
(
2 − F/2ρ

)
−
(
2Nf/ρ

)
F

F +Nc − 4Nf
, (4.22)
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while the equation for the dilaton as a function of ρ can be written as,

dφ

dρ
=

Nc

F
(
F +Nc − 4Nf

)
[

1 − 3
4ρ

(
1 −

4Nf

Nc

)
F

]
. (4.23)

Moreover, from the second equation in (4.19) we can obtain the relation between the two
radial variables r and ρ, namely,

dr

dρ
=

√
F
(
ρ
)

F
(
ρ
)
+Nc − 4Nf

. (4.24)

Notice that the sign of the right-hand side of (4.24) could be negative when Nf /= 0. This
means that we have to be careful in identifying the UV and IR domains in terms of the new
radial variable ρ. We can use the result of integrating (4.22)–(4.24) to obtain the metric in
terms of the new variable ρ, which takes the following form:

ds2 = eφ/2

[
dx2

1,2 +
(
dr

dρ

)2(
dρ

)2 +
ρ

4

(
σi

)2
+
F

4

(
ωi −Ai

)2
]
. (4.25)

Let us now study the different solutions of (4.22)-(4.23).

4.1.1. Linear Dilaton Backgrounds

When Nf = 0, (4.22) can be simply solved by taking F = Nc. However, it is clear from (4.22)
that in the flavored case F = Nc is no longer a solution of the equations. Nevertheless, there
are solutions for which this constant value of F is reached asymptotically when ρ → ∞.
Indeed, one can check this fact by solving (4.22) as an expansion in powers of 1/ρ. One gets:

F =Nc +NcNf
1
ρ
− 3

4
NcNf

(
Nc − 4Nf

) 1
ρ2

+ · · ·
(
ρ −→ ∞

)
. (4.26)

By plugging the expansion (4.26) into (4.23) one can prove that when Nc /= 2Nf , these
solutions have a dilaton that depends linearly on ρ in the UV and, actually, one can verify
that

dφ

dρ
=

1
2
(
Nc − 2Nf

) − 3N2
c − 12NcNf + 16N2

f

8
(
Nc − 2Nf

)2

1
ρ
+ · · ·

(
ρ −→ ∞

)
. (4.27)

Notice the different large ρ behavior of the dilaton in the two cases Nc > 2Nf and Nc < 2Nf .
Indeed, when Nc > 2Nf, the dilaton grows linearly with the holographic coordinate ρ (the
behavior expected for a confining theory in the UV), while for Nc < 2Nf the field φ decreases
linearly with ρ. This seems to suggest that the sign of the beta function of the dual gauge
theory depends on Nc and Nf through the combination Nc − 2Nf . Actually one can verify
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by means of a probe calculation in the complete system that the beta function is positive for
Nc > 2Nf and changes its sign when Nc < 2Nf [135].

Equation (4.22) can be solved numerically by imposing the behavior (4.26) for large ρ.
Once F(ρ) is known, one can obtain the dilaton φ(ρ) by direct integration of the right-hand
side of (4.23). The result of this numerical calculation was analyzed in detail in [135]. Let us
only mention here that, in the most interesting case Nc > 2Nf , the function F diverges for
ρ → 0, while the dilaton φ remains finite for small ρ. This bad IR behavior of F is cured in
the untruncated solution with the same leading UV form of F and φ but with w, γ /= 0 (see
below).

4.1.2. Flavored G2 Cone

Let us now consider the solution of (4.22) and (4.23) that leads to a metric which is
asymptotically a G2-cone with constant dilaton in the UV. It can be checked that there exists
a solution of (4.22) which can be expanded for large values of ρ as

F =
4
3
ρ + 4

(
Nf −Nc

)
+

15N2
c − 39NcNf + 24N2

f

ρ
+ · · · . (4.28)

The corresponding expansion for φ(ρ) is

φ = φ∗ −
9Nf

4
1
ρ
− 27

32
Nc

(
Nc + 2Nf

) 1
ρ2

+ · · · , (4.29)

where φ∗ is the constant limiting value of φ in the UV. In order to explore the asymptotic form
of the metric for large ρ, it is convenient to perform a change in the radial variable, namely

ρ =
1
3
τ2, (4.30)

in terms of which the metric asymptotically becomes the one corresponding to the direct
product of (2+1)-dimensional Minkowski space and a seven-dimensional cone with G2

holonomy, namely

ds2 ≈ eφ∗/2

⎡
⎣dx2

1,2 + (dτ)2 +
τ2

12

(
σi

)2
+
τ2

9

(
ωi − σ

i

2

)2
⎤
⎦. (4.31)

To find the solution in the whole range of the radial coordinate one can numerically integrate
the system (4.22)-(4.23) by imposing the asymptotic behavior (4.28) to the function F(ρ).
For Nc ≥ 2Nf one can show that F(ρ) is welldefined for ρ > 0 while it diverges for ρ →
0 (see [135] for further details). Notice that, at least in the unflavored case Nf = 0, it is
natural to regard these solutions with finite dilaton in the UV as corresponding to D5-branes
wrapped on a three-cycle of aG2 cone, in which the near horizon limit has not been taken and,
thus, as we move towards the large ρ region the effect of the branes on the metric becomes
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asymptotically negligible and we recover the geometry of the G2 cone where the branes are
wrapped.

4.2. The Complete System

Let us now consider the solutions of the BPS equations for our general ansatz. These complete
BPS equations have been derived in [135, Appendix A]. Here we will restrict ourselves from
now on to the cases with Nc > 2Nf , which are the ones that lead to more sensible solutions.
As in the truncated case of Section 4.1, we will use ρ = e2h as radial variable and F = e2h as a
function of ρ. In order to solve the general BPS equations we must impose initial conditions
to the functions w(ρ) and γ(ρ) introduced in (4.3) and (4.9), and we must fix the value of
the constant κ of (4.12). These initial conditions are determined by imposing some regularity
requirements at ρ = 0 that we now review (see [135] for additional details). First of all, we
will demand that the function F approaches a constant finite value when ρ → 0 (i.e., F ∼ F0

for ρ → 0). In order to fix the value of the functionw(ρ) at ρ = 0 let us recall (see (4.3)) thatw
parameterizes the one-formAi which, in turn, determines the mixing of the two three-spheres
in the ten-dimensional fibered geometry. The curvature of the gauge connection Ai (defined
as in (4.6) with Bi → Ai) determines the nontriviality of this mixing. When this curvature
vanishes, one can choose a new set of three one-forms in which the two three-spheres are
disentangled in a manifest way and one can factorize the directions parallel and orthogonal
to the color brane worldvolume in a well-defined way. From the wrapped brane origin of our
solutions, one naturally expects such an unmixing of the two S3’s to occur in the IR limit ρ = 0
of the metric. Moreover, by a direct calculation using (4.1) it is easy to verify that for w = 1
the curvature of the one-form Ai vanishes. Thus, it follows that the natural initial condition
for w(ρ) is

w
(
ρ = 0

)
= 1. (4.32)

Actually, the three-cycle that the color branes wrap can be identified with the one that shrinks
when ρ → 0, which is the one given by

Σ ≡
{
ωi = σi

}
. (4.33)

In order to have a nonsingular flux at the origin, the RR three-form F3 should vanish on Σ
when ρ → 0. It is easy to check that this occurs if the constant κ takes the following value:

κ =
1
2
−

3Nf

2Nc
. (4.34)

Actually, (4.34) is also a necessary condition to have a finite dilaton at ρ = 0. Indeed, it was
shown in [135] that, in addition to (4.34), the dilaton remains finite in the IR if the function
γ(ρ) takes the following value for ρ = 0:

γ
(
ρ = 0

)
= 1 −

2Nf

Nc
. (4.35)
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Equations (4.32) and (4.35) provide the initial conditions for the functions w and γ we were
looking for.

4.2.1. Asymptotic Linear Dilaton

As explained above, we are interested in solutions of the BPS equations such that
asymptotically F is constant. Actually, by solving the BPS system in powers of 1/ρ, one can
check that there are solutions in which F has the following asymptotic behavior:

F =Nc +
a1

ρ
+
a2

ρ2
+
a3

ρ3
+ · · · , (4.36)

where the coefficients a1, a2, and a3 are given by

a1 =NfNc,

a2 = −3
4
NcNf

(
Nc − 4Nf

)
,

a3 =
NfNc

16

[
21N2

c − 148NfNc + 240N2
f

]
.

(4.37)

Notice that the first two terms in (4.36) and (4.37) coincide with the one written in (4.26) for
the truncated system. Similarly, the functions w and γ can be represented as

w =
b1

ρ
+
b2

ρ2
+
b3

ρ3
+ · · · ,

γ =
c1

ρ
+
c2

ρ2
+
c3

ρ3
+ · · · ,

(4.38)

where the coefficients bi and ci are the following:

b1 = c1 =
1
2
(
Nc − 3Nf

)
,

b2 = c2 =
5
8
(
Nc − 3Nf

)(
Nc − 2Nf

)
,

b3 =
1
32

(
Nc − 3Nf

)[
49N2

c − 184NcNf + 204N2
f

]
,

c3 =
1
32

(
Nc − 3Nf

)[
49N2

c − 208NfNc + 252N2
f

]
.

(4.39)

Moreover, for Nc > 2Nf the dilaton grows linearly with ρ as in (4.27), that is, φ ∼ ρ/[2(Nc −
2Nf)] for large ρ.

The solution for the full range of the holographic coordinate can be found by numerical
integration of the BPS system with the IR regularity conditions (4.32), (4.34), and (4.35) and
with F(ρ = 0) = F0 finite. One has to perform an interpolation between the ρ → 0 and
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ρ → ∞ behaviors by means of a shooting technique in which the only free parameter F0 is
varied until a solution with F(ρ) ≈ Nc for large ρ is obtained (which only occurs when F0 is
fine tuned to a very precise value).

After obtaining this solution of the equations of motion of the gravity plus brane
system, we can see if it incorporates some of the features that the supergravity dual of
2+1-dimensional gauge theory plus flavors should exhibit. In particular, we can study the
evolution of the gauge coupling constant with the holographic coordinate. In order to do
that, let us consider a D5-brane probe extended along the three Minkowski directions and
wrapping the internal three-cycle Σ defined in (4.33) at a fixed value of the holographic
coordinate ρ. By looking at the F2 terms in the DBI action of this probe, we get the value
of the Yang-Mills coupling constant of the dual (2+1)-dimensional gauge theory, namely,

1
g2

YM

∼ e−(3/4)φ
∫
Σ

√
−det

(
Ĝ3

)
d3ξ ∼

[
ρ +

F

4
(1 −w)2

]3/2

, (4.40)

where Ĝ3 is the induced metric on the three-cycle Σ and we have neglected all constant
numerical factors. Due to our initial condition (4.32), the right-hand side of (4.40) vanishes
for ρ = 0, which corresponds to having g2

YM → ∞ in the IR, as expected in a confining
theory. Moreover, 1/g2

YM grows as we move towards the UV region ρ → ∞, in agreement
with the expected property of asymptotic freedom. Other gauge theory observables for these
backgrounds, such as the Wilson loops, can be also analyzed (see [135]). Notice that, despite
the regularity conditions we have imposed, in the flavored caseNf /= 0 the explicit calculation
of the scalar curvature for the linear dilaton solutions shows that the metric is singular at the
origin of the radial coordinate. Notice that, as argued for other backgrounds, it is physically
reasonable to expect that massless flavors drastically alter the backreacted geometry in the
deep IR. However, as our initial conditions are such that the dilaton is finite at the origin, the
value of the gtt component of the metric is also bounded and then, according to the criterium
of [73], the singularity is “good” and the background can be used to extract nonperturbative
information of the dual gauge theory.

4.2.2. Asymptotic G2 Cones

When F(ρ = 0) takes values in a certain range, the solutions of the BPS equations lead to
the metric (4.31) at the UV, which is the direct product of 2+1-dimensional Minkowski space
and a G2 cone. The solutions in this case are very similar in the UV to the ones discussed in
Section 4.1.2 (with better IR behavior) and we will not discuss them further here. Let us only
mention that the asymptotic values of F, w, and γ for ρ → ∞ can be determined analytically
and are given by

F ≈ 4
3
ρ + 4

(
Nf −Nc

)
+ · · · ,

w ≈
3
(
Nc − 3Nf

)
2ρ

+ · · ·
(
ρ −→ ∞

)
,

γ ≈ 1
3
−
Nf

Nc
+ · · · .

(4.41)
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5. Flavors in the Klebanov-Strassler Model

The so-called Klebanov-Strassler (KS) solution [13] is dual to a cascading, confining theory,
and has been a popular and successful laboratory in which to study numerous issues related
to gauge-gravity duality and to cosmology. The gauge theory lives on a stack of regular and
fractional D3-branes at the tip of the deformed conifold, as we now briefly review.

The deformed conifold is a regular, six-dimensional, noncompact manifold defined by
the equation z1 z2 − z3 z4 = μ̂2 in C

4. When the complex deformation parameter μ̂ is turned
off, it reduces to the singular conifold, which is invariant under complex rescaling of the
zi. The base of the conifold has SU(2) × SU(2) × U(1) isometry and S2 × S3 topology. The
deformation parameter breaks the scale invariance, produces a blown-up S3 at the apex of
the conifold, and breaks the U(1) isometry to Z2.

The low-energy dynamics of N regular and M fractional D3-branes on the deformed
conifold is described by a cascadingN = 1 4D gauge theory with gauge group SU(N +M) ×
SU(N) and bifundamental matter fields A,B transforming as SU(2) × SU(2) doublets and
interacting with a quartic superpotential WKW = εijεkl Tr[AiBkAjBl]. The dual to this theory
is the KS solution [13], that is relevant for the N = nM case, where n is an integer. The related
theory develops a Seiberg duality cascade which stops after n−1 steps when the gauge group
is reduced to SU(2M) × SU(M). The regular KS solution precisely accounts for the physics
of an A ↔ B-symmetric point in the baryonic branch of the latter theory, which exhibits
confinement and U(1)R → Z2N → Z2 where the second breaking is due to the formation
of a gluino condensate 〈λλ〉 ∼ Λ3

IR. The complex parameter μ̂ is the geometric counterpart of
this condensate.

In this section, we will discuss how the solution is modified when a smeared
distribution of D7-branes is introduced. In the dual theory, they correspond to fundamental
fields, but the precise way in which they couple to the rest of fields depends on the D7-brane
embeddings, as we will discuss below. In what follows, we only discuss cases in which the
flavor D7-branes do not break any supersymmetry, such that the four-dimensionalN = 1 of
the KS solution is preserved. The material we summarize in this section was developed in
[68, 69, 127, 136].

5.1. Backreaction with Nonchiral Flavors

5.1.1. Brane Embeddings

Let us start by choosing an appropriate family of supersymmetric D7-brane embeddings. A
particularly interesting example is given by D7-branes wrapping the holomorphic 4-cycle
defined by an equation of the following form [80]:

z1 − z2 = μ, (5.1)

where μ is a constant. It was shown in [80] that this embedding is κ-symmetric and hence
preserves the four supercharges of the deformed conifold theory.

A D7-brane wrapping the 4-cycle defined above is conjectured to add a massless (if
μ = 0) or massive (anti)fundamental flavor to a node of the KS model. The resulting gauge
theory is said to be “nonchiral” because the flavor mass terms do not break the classical
flavor symmetry of the massless theory. The related perturbative superpotential is just as in
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Figure 6: The quiver diagram of the gauge theory. Circles are gauge groups, squares are flavor groups, and
arrows are bifundamental chiral superfields. Nf1 and Nf2 sum up to Nf .

the singular conifold case [43], which we wrote in (2.14). The complex mass parameter m
in W is mapped to the geometrical parameter μ. The different fields are summarized in the
quiver diagram of Figure 6.

By acting on this fiducial embedding (5.1) with the generators of the broken
symmetries, we can build the family of embeddings over which we want to smear. This is
the obvious generalization to the deformed conifold case of the discussion in Section 2 and,
in fact, a generic nonchiral embedding is still given by (2.17).

5.1.2. The Ansatz

We now write the ansatz for the metric and forms. It is similar to the ansatz for the KS
solution, but, due to the presence of D7-branes, the RR one-form F(1) is non-trivial and the
dilaton runs. It is useful to introduce the gi one-forms used in [13]:

g1 =
− sin θ1dϕ1 − cosψ sin θ2dϕ2 + sinψdθ2√

2
, g2 =

dθ1 − sinψ sin θ2dϕ2 − cosψdθ2√
2

,

g3 =
− sin θ1dϕ1 + cosψ sin θ2dϕ2 − sinψdθ2√

2
, g4 =

dθ1 + sinψ sin θ2dϕ2 + cosψdθ2√
2

,

g5 = dψ + cos θ1dϕ1 + cos θ2dϕ2.

(5.2)

The Einstein frame metric ansatz is (a more generic form of the ansatz was used in
[68, 69, 127]; by requiring supersymmetry and performing some algebra, one ends up with
(5.3); we will skip those intermediate steps here for the sake of briefness)

ds2 = h−1/2(τ)dx2
1,3 + h

1/2(τ)
1
2
μ̂4/3e−φ(τ)/3K(τ)

×
[

1
3K3(τ)

(
dτ2+

(
g5

)2
)
+cosh2

(τ
2

)((
g3

)2
+
(
g4

)2
)
+sinh2

(τ
2

)((
g1

)2
+
(
g2

)2
)]

,

(5.3)

where μ̂ is the complex deformation parameter of the conifold, dx2
1,3 denotes the four-

dimensional Minkowski metric, and K(τ), h(τ), and the dilaton φ are unknown functions
of the radial variable to be determined. (The relation of the zi complex variables as used
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above to the τ, θ1, ϕ1, θ2, ϕ2, ψ coordinates can be found, for instance in [127]. The embedding
equation (2.17) expressed in terms of the “deformed conifold τ variable” looks the same in
terms of the “backreacted ansatz τ variable”. See [127] for details.)

For the forms we will adopt the following ansatz:

F5 = dh−1(τ) ∧ dx0 ∧ · · · ∧ dx3 − ḣ
μ̂8/3

16
e−2φ/3sinh2τK2g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5,

B2 = gsα′
M

2

[
fg1 ∧ g2 + kg3 ∧ g4

]
,

H3 = gsα′
M

2

[
dτ ∧

(
ḟg1 ∧ g2 + k̇g3 ∧ g4

)
+

1
2
(
k − f

)
g5 ∧

(
g1 ∧ g3 + g2 ∧ g4

)]
,

F1 = gs
Nfp(τ)

4π
g5,

F3 = gsα′
M

2

{
g5 ∧

[(
F +

gsNfp(τ)
4π

f

)
g1 ∧ g2 +

(
1 − F +

gsNfp(τ)
4π

k

)
g3 ∧ g4

]

+Ḟdτ ∧
(
g1 ∧ g3 + g2 ∧ g4

)}
,

(5.4)

where f = f(τ), k = k(τ), F = F(τ) are functions of the radial coordinate (and where the dot
denotes derivatives with respect to τ). We have implemented the self-duality condition for
F5.

Notice that, consistently, dF1 = −gsΩ, where Ω is the symmetry preserving D7-brane
density distribution form analogous to (2.31):

Ω =
Nf

4π
(
p(τ)

(
sin θ1dθ1 ∧ dϕ1 + sin θ2dθ2 ∧ dϕ2

)
− ṗ(τ)dτ ∧ g5

)
. (5.5)

When quarks are massless [68, 69], one just has p(τ) = 1, whereas p(τ) becomes nontrivial
when quarks are massive. In what follows, we will keep p(τ) generic. We refer the reader to
[127] for the computation of p(τ) from the massive nonchiral brane embeddings (2.17). The
source contributions to the modified Bianchi identities for F3 and F5

dF3 = H3 ∧ F1 − gsΩ ∧ B2,

dF5 = H3 ∧ F3 −
1
2
gsΩ ∧ B2 ∧ B2

(5.6)

follow from the WZ term of the smeared D7-brane action [127]. Given (5.4) and (5.5),
equations in (5.6) are satisfied provided that

ḣ
μ̂8/3

16
e−2φ/3sinh2τK2 = const − 1

4
(
gsα

′M
)2

[
f −

(
f − k

)
F +

gsNf

4π
p(τ)fk

]
. (5.7)
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5.1.3. The BPS Equations

By requiring the vanishing of the bulk fermionic supersymmetry variations, one finds a set
of first-order BPS equations. The computation is lengthy but straightforward and was carried
out in [68, 69] (since in that paper p(τ) = 1, the substitution Nf → Nfp(τ) has to be
implemented in the equations of [68, 69]). In the present notation, the differential equations
are

φ̇ =
gsNfp(τ)

4π
eφ,

k̇ = eφ
(
F +

gsNfp(τ)
4π

f

)
coth2 τ

2
,

ḟ = eφ
(

1 − F +
gsNfp(τ)

4π
k

)
tanh2 τ

2
,

Ḟ =
1
2
e−φ

(
k − f

)
,

K̇
K =

2
3K3 sinh τ

+
φ̇

3
− coth τ,

(5.8)

supplemented by the algebraic constraint:

e−φ
(
k − f

)
= tanh

τ

2
− 2F coth τ +

gsNfp(τ)
4π

[
k tanh

τ

2
− f coth

τ

2

]
. (5.9)

Quite remarkably, (5.8)-(5.9) can be (almost) explicitly integrated. In the following, we will
use notations similar to those employed in Section 2. We introduce an arbitrary value of the
radial coordinate τ∗ at which the dilaton is φ∗. Then, we can write the dilaton as

eφ−φ∗ =
1

1 + ε∗
∫τ∗
τ p(ξ)dξ

, (5.10)

where we have introduced the deformation parameter which weighs the flavor loops as

ε∗ =
Nf

16π2M
λ∗ with λ∗ ≡ 4πgsMeφ∗ . (5.11)

Let us also introduce a function

η(τ) = ε∗eφ−φ∗
∫ τ

0
(sinh 2ξ − 2ξ)p(ξ)dξ. (5.12)



70 Advances in High Energy Physics

Then, we can integrate for the rest of the functions of the ansatz

K =

[
sinh 2τ − 2τ + η(τ)

]1/3

21/3 sinh τ
, F =

sinh τ − τ
2 sinh τ

,

f = eφ
τ coth τ − 1

2 sinh τ
(cosh τ − 1), k = eφ

τ coth τ − 1
2 sinh τ

(cosh τ + 1).

(5.13)

Finally, the function h can be obtained by integrating (5.7). The KS solution without flavors
[13] is obtained by taking ε∗ = 0, such that the dilaton is constant and η(τ) = 0. For p(τ) = 1,
we find the solution backreacted with massless flavors [68, 69]. In this case, the integrals for
the dilaton and η(τ) can be explicitly performed:

η(τ) = ε∗eφ−φ∗
(

sinh2τ − τ2
)
,

eφ−φ∗ =
1

1 + ε∗(τ∗ − τ)
(
for p(τ) = 1

)
.

(5.14)

In this massless case, the solution has a curvature singularity in the IR τ = 0. Some cases
where p(τ) is nontrivial were discussed in [127].

5.1.4. Some Physical Features

The solution presented in the preceding sections has been used to extract some of the physics
encoded in the unquenched background. In [68, 69], the running of the couplings and
anomalies were discussed. As anticipated above, in [127], the solution with massive flavors
was found. Quark masses erase the IR singularity in the same way as explained in Section 1.5
or in Section 2.3.2. Quark-antiquark potentials, screening lengths, and associated quantum
phase transitions were discussed in the same paper. Finally, in [77], it was computed how the
screening effects due to unquenched fundamental matter affect the mass spectra of the KS
model, with results similar to Section 2.4. Due to space constraints, we cannot go explicitly
through all of these features and we refer the interested reader to the original papers. Here, we
will just briefly discuss how the solution captures the phenomenon of a duality wall [68, 69]
and how gauge groups ranks change upon Seiberg duality.

We will make use of the following holographic formulae, which can be derived in the
N = 2 orbifold case by looking at the Lagrangian of the low-energy field theory living on
probe (fractional) D3-branes:

4π2

gYM(l)2
+

4π2

gYM(s)2
=
πe−φ

gs
,

4π2

gYM(l)2
− 4π2

gYM(s)2
=

2πe−φ

gs

[
1

4π2α′

∫
S2
B2 −

1
2

]
. (5.15)

The labels (l), (s) in (5.15) refer to the gauge group with the larger or smaller rank. Strictly
speaking, these formulae need to be corrected for small values of the gauge couplings and
are only valid in the large ’t Hooft coupling regime (see [67, 72, 137, 138]), which is the case
under consideration. Moreover, they are also expected to be precise just in the UV region,
where the cascade takes place and the region on which we will focus below. The expressions
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(5.15) give positive squared couplings only if the expression inside the square bracket is in
the range [−1/2, 1/2]. Define

b0(τ) ≡
1

4π2α′

∫
S2
B2 =

gsM

π
f =

λ∗
8π2

τ − 1
1 − ε∗(τ − τ∗)

, b̃0 ≡ b0 − [b0] ∈ [0, 1], (5.16)

where [b0] denotes the integer part of b0. In order to get the explicit expression for b0 we
have integrated over the S2 parameterized by θ1 = θ2, ϕ1 = 2π − ϕ2, ψ = const [68, 69],
considered the UV limit of (5.10), (5.13) such that p(τ) ≈ 1 and f ≈ k ≈ eφ(τ − 1)/2, and
inserted the definitions (5.11). Now we see that what we have to insert in (5.15) is indeed b̃0.
This is the physical content of the cascade: at a given energy scale we must perform a large
gauge transformation on B2 in supergravity to shift

∫
B2 by a multiple of 4π2α′ to get a field

theory description with positive squared couplings.
Let us restrict our attention to an energy range, between two subsequent Seiberg

dualities, where a field theory description in terms of specific ranks holds. When flowing
towards the IR, b̃0 decreases from 1 to 0. From (5.15) and inserting the solution, we can find
an expression for each of the gauge couplings:

1
λl

=
1
λ∗

(1 − ε∗(τ − τ∗))b̃0,
1
λs

=
1
λ∗

(1 − ε∗(τ − τ∗))
(

1 − b̃0

)
. (5.17)

In this energy range, the coupling λl starts different from zero and flows to ∞ at the end
of this range, where a Seiberg duality on its gauge group is needed. The coupling λs of the
gauge group with smaller rank is the one which starts very large (actually divergent) after
the previous Seiberg duality on its gauge group and then flows toward weak coupling.

The qualitative picture of the RG flow in the UV can be extracted from our
supergravity solution even without discussing the precise radius-energy relation, simply
recalling that the radius must be a monotonic function of the energy scale. First, notice that at
a finite τ (and therefore at a finite energy scale EUV), the dilaton diverges making both gauge
couplings diverge. This happens at

τdw = τ∗ +
1
ε∗
. (5.18)

From (5.16), we see that the derivative db0/dτ grows unbounded near τdw, meaning that the
interval (in τ) between Seiberg dualities becomes shorter and shorter. The Seiberg dualities
pile up the more we approach the UV cut-off EUV. The picture which stems from the flavored
Klebanov-Tseytlin/Strassler solution is that τdw is a so-called “Duality Wall”, namely, an
accumulation point of energy scales at which a Seiberg duality is required in order to have a
weakly coupled description of the gauge theory [139]. Above the duality wall, Seiberg duality
does not proceed and a weakly coupled dual description of the field theory is not known. See
Figure 7. Nevertheless, in full analogy with the discussion of Section 2, the derivative of the
holographic a-function changes sign at a finite distance in τ below τdw and so one should not
trust the solution all the way up to the singular point τdw.

Duality walls were studied in the context of quiver gauge theories first by Fiol [140]
and later in a series of papers by Hanany and collaborators [141, 142]. To our knowledge,
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1
g2

logu

Figure 7: Qualitative plot of the running gauge couplings as functions of the logarithm of the energy scale
in the cascading gauge theory. The blue lines are the inverse squared gauge couplings while the red line is
their sum.

the solution above is the only explicit realization of this exotic ultraviolet phenomenon on
the supergravity side of the gauge/gravity correspondence.

To end this section, we discuss how the effective number of regular and fractional
D3-branes changes when undergoing a step of the cascade of Seiberg dualities. We will not
compute the explicit shift in τ but rather the shift in the function f (≈ k). From (5.16), we
have

b0(τ) −→ b0
(
τ ′
)
= b0(τ) − 1 =⇒ f(τ) −→ f

(
τ ′
)
= f(τ) − π

gsM
. (5.19)

On the other hand, we compute the effective number of branes at a given energy scale by
integrating the appropriate RR-forms:

Neff(τ) ≡
1

(2π)4gsα′
2

∫
M5

F5 =N0 +
gsM

2

π

[
f +

gsNf

4π
f2

]
,

Meff(τ) ≡
1

4π2gsα′

∫
S3
F3 =M

[
1 +

gsNf

2π
f

]
.

(5.20)

In these expressions we have substituted (5.4), and (5.7) and already taken the UV limit
f = k and p(τ) = 1. The S3 for the second integral is the one parameterized by θ2 = constant,
ϕ2 = constant. Notice that Neff and Meff are not quantized. This is because they are Maxwell
charges, as opposed to Page charges. See [68, 69] for thorough explanations.

We can compute how Neff and Meff vary in a Seiberg duality step (5.19). A bit of
algebra shows that

Meff(τ) −→Meff
(
τ ′
)
=Meff(τ) −

Nf

2
,

Neff(τ) −→Neff
(
τ ′
)
=Neff(τ) −Meff(τ) +

Nf

4
,

(5.21)

whereas Nf remains unchanged. A careful analysis in [68, 69] showed that this is in full
agreement with field theory expectations.
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Figure 8: Quiver diagram of the KS theory with chiral flavors.

5.2. Backreaction with Chiral Flavors

In a remarkable paper [136], Benini discussed the solution dual to having smeared
chiral flavors on the conifold. In the probe approximation, the D7-brane embeddings that
correspond to chiral flavors were discussed in [43, 143]. How these flavors transform under
the gauge groups is shown in the quiver diagram of Figure 8. In this case, the quiver theory
is not self-similar under the duality cascade; in each step of the cascade a meson field is
generated. Its couplings to the rest of the fields are, however, irrelevant [136].

The backreacted solution of [136] uses the singular conifold and therefore it can be
considered as the deformation of the Klebanov-Tseytlin solution [144] due to smeared chiral
flavors. From the gravity point of view, the extra complication with respect to Section 5.1
is that the worldvolume gauge field on the D7s has to be turned on. In fact, this is crucial
when matching the shifts in the ranks of the gauge groups upon Seiberg dualities to the
supergravity background (there are subtle differences with respect to the nonchiral case). We
will not report further on this solution here but refer the reader to [136].

6. Models with Cohomogeneity 2

In this section we present some situations in which, even smearing the flavor branes,
the system cannot be reduced to a one-dimensional problem. In fact, the different fields
will depend on two different radial coordinates and, accordingly, one has to solve partial
differential equations rather than ordinary differential equations.

In order to provide a heuristic picture, the situation is depicted in Figure 9. Concretely,
we will refer here to the model of Section 6.1, but the situation is very similar for all the cases
discussed in this section.

In Figure 9, the color branes are placed at the tip of a Calabi-Yau (σ is a radial
coordinate along the CY; the rest of the directions of the CY are omitted from the plot). The
ρ − φ2 plane is transverse both to the color branes and to the CY. Each flavor brane lies at
a point in this plane and is extended along σ. Distributing the flavor branes along φ2, it is
possible to recover (in the smeared limit) the associated U(1) isometry. On the contrary, as
is apparent from Figure 9, there is no way in which one can place the flavor brane to recover
the full radial symmetry. Hence, the solution associated to this brane configuration must be
cohomogeneity two, meaning that all functions of the eventual ansatz will depend on ρ and
σ. In the examples considered below the coordinate ρ represents the modulus of the quark
mass and, therefore, we should not smear along this direction.

As a matter of fact, if one wishes to construct a deformation of AdS5×S5 with smeared
flavor such that the supersymmetry preserved isN = 2 (rather thanN = 1 as in Section 2),



74 Advances in High Energy Physics

σ

ρ

φ2

Figure 9: A qualitative plot of the situation with cohomogeneity 2 models. The red dot in the center
represents the color branes and each vertical line is a flavor brane. Taking a lot of them smeared along
the φ2 angle, the rotational symmetry associated to this angle is effectively recovered. Any function of the
ansatz depends on the radial coordinates ρ and σ.

Table 2: A scheme of the set-up: for the brane configuration, a line — means that the brane spans a
noncompact dimension, a point · that it is point-like in that direction, a circle © that it wraps a compact
cycle and ∼ indicates smearing in the direction. Above, it is shown which directions spanned the Calabi-
Yau and which the transverse plane before backreaction.

CY2 R2

x1,3 σ φ1 θ̃ ϕ̃ ρ φ2

Nc D5 — · · © © · ∼
Nf D5 — — © ∼ ∼ · ∼

the solution would have cohomogeneity two and, presumably, would share some similarities
with the examples presented in this section. This is an interesting open problem for the future.

6.1. A Dual to (3+1)-DimensionalN = 2 SQCD-Like Theory

In this section, we study the dual solution to the brane intersection summarized in Table 2.
The gauge theory lives on Nc D5-branes wrapping a two-sphere with the appropriate
twisting to preserve eight supercharges, that is, N = 2 in the effective four-dimensional
low-energy theory. Geometrically, it corresponds to wrapping the branes along a compact
SLag two-cycle inside a noncompact Calabi-Yau twofold. This leaves two flat transverse
dimensions which are identified with the moduli space corresponding to giving vevs to
the complex scalar inside the N = 2 vector multiplet. The Nf flavor D5-branes do not
further break supersymmetry and provide fundamental hypermultiplets in order to build
N = 2 SQCD. They are extended in the noncompact σ direction and, thus, their volume is
infinite, making exactly zero the effective four-dimensional gauge coupling living on them.
They would provide a global symmetry group U(Nf) if they were placed on top of each
other, but due to the smearing, only U(1)Nf is left. The dual solution without flavors was
found in [145, 146], and the flavored case was discussed in [147].
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We start by writing an ansatz for the metric consistent with the symmetries of the
problem. In Einstein frame,

ds2
10 = gsNcα

′eΦ/2
[

1
gsNcα′

dx2
1,3 + z

(
dθ̃2 + sin2θ̃dϕ̃2

)

+e−2Φ
(
dρ2 + ρ2dφ2

2

)
+
e−2Φ

z

(
dσ2 + σ2

(
dφ1 + cos θ̃dϕ̃

)2
)]

,

(6.1)

where z and Φ depend on both radial coordinates ρ, σ. The Calabi-Yau twofold directions
are 0 ≤ θ̃ ≤ π , 0 ≤ ϕ̃ < 2π , 0 ≤ σ < ∞, 0 ≤ φ1 < 2π (of course, in this solution with fluxes
there is not a Calabi-Yau anymore, but it can be thought of as a deformation of the Calabi-
Yau that was present before backreaction). The coordinates 0 ≤ ρ < ∞, 0 ≤ φ2 < 2π span
the transverse two-dimensional plane, so they should be identified with the moduli space,
and therefore rotations in φ2 are related to the U(1)R symmetry of the field theory. Out of
the SU(2)R symmetry, only its diagonal U(1)J is manifest in the geometry, as rotations in
φ1. The extra SO(3) isometry which acts on θ̃, ϕ̃, φ1 does not play a role in the low-energy
N = 2 SQCD theory [145, 146].

As anticipated in Table 2, we want to consider a set of Nf D5-branes extended in x1,3,
σ and wrapped in φ1. They lie at fixed ρ = ρQ, where ρQ is proportional to the modulus of
the mass of the fundamental hypermultiplets. These D5-branes are homogeneously smeared
over the S2 parameterized by θ̃, ϕ̃ and on the angle φ2, which corresponds to the phase of the
mass of the hypers. This distribution is described by the four-form:

Ω =
Nf

8π2
δ
(
ρ − ρQ

)
sin θ̃dρ ∧ dφ2 ∧ dθ̃ ∧ dϕ̃, (6.2)

such that the source-modified Bianchi identity for F(3) reads

dF(3) = 2κ2
(10)T5Ω = gsα′

Nf

2
δ
(
ρ − ρQ

)
sin θ̃dρ ∧ dφ2 ∧ dθ̃ ∧ dϕ̃. (6.3)

We can write an ansatz for F(3) consistent with this expression:

F(3) =Ncgsα
′
[
− g ′dφ2 ∧ dρ ∧

(
dφ1 + cos θ̃dϕ̃

)
− ġdφ2 ∧ dσ ∧

(
dφ1 + cos θ̃dϕ̃

)

+
(
g +

Nf

2Nc
Θ
(
ρ − ρQ

))
sin θ̃dφ2 ∧ dθ̃ ∧ dϕ̃

]
,

(6.4)

where Θ is the Heaviside step function (notice that, as opposed to Section 3.7.1 where a
Heaviside function was introduced as an approximation to the effect of the massive flavors,
the Θ here is exactly what comes from the family of D-brane embeddings considered, since
they all lie at fixed ρ = ρQ), g a new function of ρ and σ that needs to be determined, and we
have introduced the following notation for the partial derivatives:

′ ≡ ∂ρ, ˙ ≡ ∂σ (6.5)
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The next step is to insert the ansatz (6.1) and (6.4) into the type IIB supersymmetry
transformations δψμ = δλ = 0, as outlined in Section 1.4.1. This procedure was carefully
performed in [147], whereas here we just quote the resulting system of first-order equations:

g +
Nf

2Nc
Θ
(
ρ − ρQ

)
= −ρz′, g ′ = −2e−2ΦρσΦ̇,

e2Φ =
σ

zż
, ġ = −z−2e−2Φσ

(
g +

Nf

2Nc
Θ
(
ρ − ρQ

))
+ 2z−1ρσe−2ΦΦ′.

(6.6)

It is easy to check that the last equation is not independent of the previous ones and that the
equations in (6.6) ensure the equation of motion for the 3-form d(eΦ ∗F(3)) = 0. This system
of equations can be recast as a single, nonlinear, second-order PDE for z(ρ, σ):

σ
Nf

2Nc
δ
(
ρ − ρQ

)
+ ρz(ż − σz̈) = σ

(
ρż2 + z′ + ρz′′

)
. (6.7)

Once z(ρ, σ) is computed, g and Φ are read from (6.6). In general, (6.7) cannot be solved
explicitly. In the unflavored case Nf = 0, there is in fact an exact solution [145, 146] (see [147]
and the first paper of [120, 121] for the adaptation of the solution [120, 121] to the present
coordinate system).

Equation (6.7), however, can be studied numerically [147]. We will not pursue that
here, but we will verify using (6.6) that the expected beta-function for the gauge coupling
stems from the differential equations. In order to read the effective four-dimensional gauge
coupling from the geometry, we consider a “color” D5-brane probing the Coulomb branch of
the theory, namely, a D5 wrapping the S2 parameterized by θ̃, ϕ̃, sitting at σ = 0 [120, 121].
After integrating the volume of the S2, we find

1
g2

YM

=
Nc

4π2 (z|σ=0). (6.8)

Thus, in order to understand the running of the coupling it is not necessary to know the
geometry everywhere, but just at σ = 0. From the second equation of (6.6), we see that g
is a constant at σ = 0, which then results in the fact that the first equation of (6.6) can be
trivially integrated. But before doing that, let us find out which is the value of g|σ=0. With that
purpose, let us consider the normalization condition:

1
2κ2

(10)

∫
F(3) =NcT5, (6.9)

where we have to integrate along φ1, φ2 and an angle built in the “plane” of the two radial
directions ρ, σ (heuristically, think of introducing some polar coordinates r, θ such that ρ =
r sin θ and σ = r cos θ. Then we want to integrate in θ from 0 to π/2 at fixed and large r).
Inserting (6.4), we find

g
∣∣
(σ=∞,ρ=0) − g

∣∣
(σ=0,ρ=∞) = 1. (6.10)
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But from the first equation in (6.6) we read that g|ρ=0 = 0 and, thus, g|σ=0 = −1. We are now
ready to integrate the first equation in (6.6) at σ = 0:

Nc

4π2 (z|σ=0) =
1
g2

YM

=
1

4π2

[(
Nc −

Nf

2
Θ
(
ρ − ρQ

))
log ρ +

Nf

2
Θ
(
ρ − ρQ

)
log ρQ + const

]
,

(6.11)

where the next to last term comes from requiring continuity of the metric at ρ = ρQ. Making
use of the radius-energy relation ρ = μ/Λ found in [120, 121], we get

β
(
gYM

)(
μ
)
= −

g3
YM

8π2

(
Nc −

Nf

(
μ
)

2

)
, (6.12)

where Nf(μ) is defined as the number of flavors for which the modulus of their masses is
smaller than the scale. Matter fields with bigger mass are holomorphically decoupled at lower
scales, as expected. The expression (6.12) fits field theory expectations and is a nontrivial
check of the described unquenched set-up. For further discussion of this model, see [147].

6.2. Flavors in Lower-Dimensional SQCD Models

The approach described in Section 6.1 can be also applied to construct supergravity duals of
SQCD-like models in two and three dimensions by considering lower-dimensional branes
wrapping different cycles of Calabi-Yau manifolds. In this subsection we will review two of
such constructions. First of all, following [73, 148], we will consider the case of D3-branes
wrapping a two-cycle of a Calabi-Yau twofold, which is dual to a two-dimensional gauge
theory with N = (4, 4) supersymmetry. Secondly, we will review the similar construction
of [73, 128, 149] of the gravity dual of three-dimensional N = 4 gauge theories from D4-
branes wrapping two-cycles in a CY2. Backgrounds dual to 2D and 3D flavored theories with
reduced supersymmetry have been also constructed [34, 150, 151], and they will be also very
briefly reviewed.

6.2.1. Two-Dimensional Theories

Let us consider the following setup for two sets of D3-branes in a Calabi-Yau cone of complex
dimension two (see Table 3), where S2 represents the directions of a compact two-cycle and
N2 are the directions of the corresponding normal bundle. Notice also that the symbols
“—” and “·” represent, respectively, unwrapped worldvolume directions and transverse
directions, while a circle denotes wrapped directions. Let us parameterize the cycle by means
of two angular coordinates (θ, φ) and let σ be the radial coordinate of the CY cone. The ansatz
for the string frame metric which we will adopt is the following:

ds2
st = H

−1/2
[
dx2

1,1 +
z

m2

(
dθ2 + sin2θdφ2

)]

+H1/2
[

1
z

(
dσ2 + σ2(dψ + cos θdφ

)2
)
+ dρ2 + ρ2dΩ2

3

]
,

(6.13)
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Table 3

CY2

R
1,1 S2 N2 R

4

Nc D3 (color) — — © © · · · · · ·
Nf D3 (flavor) — — · · — — · · · ·

where m is a constant with units of mass which, for convenience, we will take as

1
m2

=
√

4πgsNcα
′. (6.14)

Notice that in this set-up there is another radial coordinate ρ, which represents the distance
along R

4, the directions orthogonal to both the D3-brane worldvolume and the CY cone.
Moreover, dΩ2

3 is the metric of a unit three-sphere. Furthermore, the function z (which
controls the size of the cycle) and the warp factor H should be considered as functions of
the two radial variables (ρ, σ): H = H(ρ, σ), z = z(ρ, σ).

As in any background created by D3-branes, our solution should be endowed with a
self-dual RR five-form F5, that we write as

F5 = F5 + ∗F5. (6.15)

The presence of Nf flavor D3-branes induces a violation of the Bianchi identity of F5. Indeed,
the WZ term of the flavor brane action contains the term

∑
Nf

∫
M4

Ĉ4 that acts as a source
for this violation. Actually, the smearing procedure amounts to performing the following
substitution in this term:

∑
Nf

∫
M4

Ĉ4 −→
∫
M10

Ω ∧ C4, (6.16)

where Ω is a six-form proportional to the volume form of the space transverse to the
worldvolume of the flavor brane. The modified Bianchi identity takes the form dF5 =
2κ2

10T3Ω. As in the four-dimensional example discussed in Section 6.1, we shall locate the
flavor branes at a particular value ρ = ρQ of the ρ coordinate (the mass of the matter fields
is just mQ = ρQ/(2πα′)). Moreover, we will smear the Nf D3-branes along the angular
directions (θ, φ) of the cycle as well as along the external three-sphere. The corresponding
smearing form is

Ω = −
Nf

8π3
δ
(
ρ − ρQ

)
dρ ∧ω3 ∧ω2, (6.17)

with ω2 = sin θdθ ∧ dφ and ω3 is the volume element of the external S3 with line element
dΩ2

3 (the minus sign in (6.17) is due to the orientation of the worldvolume required by
supersymmetry). It is clear that the modified Bianchi identity in this case is

dF5 = −2πgs
(
α′
)2
Nfδ

(
ρ − ρQ

)
dρ ∧ω3 ∧ω2. (6.18)
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Accordingly, let us represent F5 as in (6.15) with F5 being given by

F5 = f5 − 2πgs
(
α′
)2
NfΘ

(
ρ − ρQ

)
ω3 ∧ω2, (6.19)

with f5 such that df5 = 0. We shall represent f5 in terms of a potential C4 as f5 = dC4, where
C4 is given by the ansatz:

C4 = gω3 ∧
(
dψ + cos θdφ

)
, g = g

(
ρ, σ

)
. (6.20)

Proceeding as in Section 6.1, one gets in this case the following set of BPS equations:

m2
[
g − 2πgs

(
α′
)2
NfΘ

(
ρ − ρQ

)]
= ρ3z′,

m2H =
zż

σ
, g ′ = −σρ3Ḣ,

ġ =
σρ3

z
H ′ − σ

z2
Hm2

[
g − 2πgs

(
α′
)2
NfΘ

(
ρ − ρQ

)]
,

(6.21)

where the prime and the dot have the same meaning as in (6.5). The fulfillment of (6.21)
ensures the preservation of eight supersymmetries by the background, which corresponds to
N = (4, 4) SUSY of the dual gauge theory. Moreover, one can prove that z(ρ, σ) satisfies the
following PDE:

ρz(ż − σz̈) = σ
(
ρż2 + ρz′′ + 3z′

)
+
Nf

2Nc

σ

m2ρ2
δ
(
ρ − ρQ

)
. (6.22)

In the unflavored case Nf = 0, the BPS system (6.21) (and the PDE equation (6.22))
can be solved analytically [148] by constructing the solution in five-dimensional gauged
supergravity and by uplifting it to ten dimensions [73]. After a suitable change of variables
one can show [148] that the metric and RR five-form of this gauged supergravity solution
can be written as in our ansatz. In the general flavored case one has to apply numerical
techniques. However, as in the four-dimensional case, one only needs to know the solution
for σ = 0 in order to get the behavior of the gauge coupling. Indeed, by means of a probe
calculation one can check [148] that the supersymmetric locus of a color D3-brane occurs
precisely at σ = 0 and that the gauge coupling is related to z(ρ, σ = 0) by means of the
following relation:

1
g2

YM

(
ρ
) =

z
(
ρ, σ = 0

)
m2gs

. (6.23)

It follows from the system (6.21) that g(ρ, σ = 0) is constant. Actually, by using a flux
quantization condition similar to the one employed for the 4D case, one can verify that
g(ρ, σ = 0) = 1/m4, where m is the constant defined in (6.14). By using this result in the first
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Table 4

CY2

R
1,2 S2 N2 R

3

Nc D4 (color) — — — © © · · · · ·
Nf D4 (flavor) — — — · · — — · · ·

equation in (6.21) one readily integrates z(ρ, σ = 0). By imposing continuity of the solution
at ρ = ρQ, one gets

z
(
ρ, 0

)
= z∗ −

πm2gs(α′)
2

ρ2
Q

NfΘ
(
ρ − ρQ

)
−

2πm2gs(α′)
2

ρ2

[
Nc −

Nf

2
Θ
(
ρ − ρQ

)]
, (6.24)

where z∗ is a constant of integration. Plugging this result in (6.23), and assuming that the
energy scale μ is related to the holographic coordinate ρ as ρ = 2πα′μ, one gets

1
g2

YM

(
μ
) =

1
g2

YM

(
1 −

g2
YM

2πμ2

(
Nc −

Nf

(
μ
)

2

))
, (6.25)

where Nf(μ) is again the number of flavors with mass smaller than the scale μ and gYM is
the bare UV Yang-Mills coupling. The dependence on the scale μ of the Yang-Mills coupling
displayed in (6.25) matches precisely the one in field theory, which constitutes a nontrivial
test of the gravity result.

Backgrounds dual to 2D theories withN = (2, 2) SUSY can be obtained by wrapping
D5-branes along a four-cycle of a Calabi-Yau threefold [150]. An alternative construction,
which improves the UV behavior of the solution, involves D3-branes wrapping a two-cycle
of a CY3 [73, 151]. One can further reduce the amount of supersymmetry by considering a
D5-brane wrapping a four-cycle of a manifold of G2 holonomy, which leads to a dual of an
N = (1, 1) supersymmetric gauge theory. In all these cases the flavor branes are extended
along some of the noncompact normal directions of the cycle wrapped by the color branes
and the corresponding backreacted solutions can be obtained numerically and are similar to
the one reviewed here.

6.2.2. Three-Dimensional Theories

A similar analysis can be carried out to obtain the gravity dual of N = 4 three-dimensional
gauge theories. In this case one must consider flavor and color D4-branes wrapping two-
cycles according to the array (see Table 4).

The concrete ansatz for the ten-dimensional string frame metric we will adopt in this
case is very similar to the 2D and 4D cases studied above, namely

ds2 = e2Φ
[
dx2

1,2 +
z

m2

(
dθ̃2 + sin2θ̃dφ̃2

)]

+ e−2Φ
[

1
z

(
dσ2 + σ2

(
dψ + cos θ̃dφ̃

)2
)
+ dρ2 + ρ2

(
dθ2 + sin2θdφ2

)]
,

(6.26)
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where Φ = Φ(ρ, σ) is the dilaton and the constant m is now given by

1
m3

= 8πgsNc

(
α′
)3/2

. (6.27)

As before, z = z(ρ, σ) and the background should include an RR form whose Bianchi identity
is violated due to the presence of flavor branes. For D4-branes the appropriate RR form is a
four-form F4. If we locate the flavor branes at a fixed distance ρ = ρQ in the transverse R

3 and
we smear them along their orthogonal angular directions, the modified Bianchi identity is

dF4 = 2κ2
10T4Ω =

Nf

2Nc

1
8m3

δ
(
ρ − ρQ

)
dρ ∧ω2 ∧ ω̃2, (6.28)

where ω2 and ω̃2 are the volume forms of the unit (θ, φ) and (θ̃, φ̃) two-spheres. Let us solve
(6.28) by means of the following ansatz:

F4 = dC3 +
Nf

2Nc

1
8m3

Θ
(
ρ − ρQ

)
ω̃2 ∧ω2, (6.29)

where C3 is the following potential depending on the function g(ρ, σ):

C3 = −gω2 ∧
(
dψ + cos θ̃dφ̃

)
. (6.30)

By imposing that the system preserves eight supersymmetries, we arrive at the following
system of BPS equations:

g +
Nf

2Nc

1
8m3

Θ
(
ρ − ρQ

)
= −

ρ2z′

m2
, e−4Φσ =

1
m2

zż,

g ′ = −4σρ2e−4φΦ̇,

ġ = −m2σz−2e−4Φ
[
g +

Nf

2Nc

1
8m3

Θ
(
ρ − ρQ

)]
+ 4σρ2z−1e−4ΦΦ′.

(6.31)

Again, one can combine the different equations in (6.31) and get a single second-order PDE
for z(ρ, σ), namely,

ρ2z(ż − σz̈) = ρσ
(
ρż2 + ρz′′ + 2z′

)
+ σ

Nf

2Nc

1
8m3

δ
(
ρ − ρQ

)
. (6.32)

As in the 4D and 2D cases, (6.31) and (6.32) can be solved analytically when Nf = 0 by using
gauged supergravity [73, 149]. In the general flavored case one can get analytically the form
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of the solution for σ = 0 [128]. Indeed, one can verify from (6.31) and the corresponding flux
quantization condition that g(ρ, σ = 0) = −1/(8m3) and that z(ρ, 0) is

z
(
ρ, 0

)
= z∗ −

1
8ρQm

Nf

2Nc
Θ
(
ρ − ρQ

)
− 1

8mρ

[
1 −

Nf

2Nc
Θ
(
ρ − ρQ

)]
, (6.33)

with z∗ being a constant. Moreover, by means of a probe calculation one readily verifies that
σ = 0 is the SUSY locus of the color D4-branes and that the relation between the YM coupling
and z(ρ, 0) is g−2

YM(ρ) = z(ρ, 0)/(2πgs
√
α′m2). Using this result and the radius-energy relation

ρ = 2πα′μ, one can convert (6.33) into the following equation for the running of the YM
coupling of the 3D theories:

1
g2
YM

(
μ
) =

1
g2

YM

[
1 −

g2
YM

4πμ

(
Nc −

Nf

(
μ
)

2

)]
, (6.34)

which again matches the corresponding field theory result.
A gravity dual of N = 2 three-dimensional gauge theory based on D5-branes

wrapping a three-cycle was found in [152, 153]. The addition of flavor to this background
along the lines discussed here is carried out in [34, 151]. Alternatively, for this same amount of
supersymmetry one can consider D4-branes wrapping a two-cycle of a Calabi-Yau threefold
[73, 151].

7. A Mathematical Viewpoint

In the approach we have followed up to now in this review on how to add unquenched
flavor; we considered a family of equivalent embeddings of the flavor branes. This family
can be generated by acting with the isometries of the background on a fiducial representative
embedding. When the number Nf of flavor branes is large, considering the set of branes as a
continuous distribution is a good approximation. We then computed the RR charge density
generated by the branes, that is, the smearing form Ω, by explicitly performing the average
over the set of embeddings and, subsequently, we have studied the deformation induced on
the metric and forms due to the backreaction.

The outcome of this microscopic approach is a system of supergravity plus delocalized
sources preserving some amount of supersymmetry. It turns out that, in this process,
very interesting mathematical structures emerge. The reason for this is the fact that the
supersymmetric sources that we are using satisfy a calibration condition. As a consequence,
one can use the methods of modern geometry to find backgrounds with smeared flavors in
a systematic way [34]. In this procedure one does not deal with the set of embeddings and,
for this reason, we will refer to it as the macroscopic approach, as opposed to the microscopic
approach reviewed in previous sections. The goal is computing (or at least constraining) the
smearing form Ω by using the same type of technology as the one employed in the analysis
of flux compactifications of string theory (see [31, 154–157]).
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The central object in this geometric approach is the so-called “calibration form”K. For
Dp-branesK is a (p + 1)-form, which can be represented in a vielbein basis as

K =
1(

p + 1
)
!
Ka1···ap+1e

a1···ap+1 , (7.1)

with ea1···ap+1 = ea1 ∧ · · · ∧ eap+1 . The different components Ka1···ap+1 are given by fermionic
bilinears of the following type:

Ka1···ap+1 = ε
†τΓa1···ap+1ε, (7.2)

where ε are Killing spinors of the background, conveniently normalized, and τ is a constant
matrix which (in the type IIB theory) is τ = τ

(p−3)/2
3 iτ2, where τ2 and τ3 are Pauli matrices

and the spinor ε is represented as a two-dimensional vector of Majorana-Weyl spinors (τ
is the same matrix that appears in the expression of the kappa symmetry matrix Γκ of a Dp-
brane when all worldvolume fluxes are switched off). The formK can be used to characterize
(p + 1)-dimensional surfaces in the ten-dimensional geometry. A (p + 1)-dimensional surface
Mp+1 is said to be calibrated byK if its pullback toMp+1 is equal to the induced volume form
onMp+1, namely,

K̂ =
√
−det ĝdp+1ξ, (7.3)

where the ξ’s are a set of local coordinates of Mp+1. When there are no NSNS fluxes or
worldvolume gauge fields the calibration condition (7.3) characterizes the supersymmetric
embeddings of Dp-branes (this can be easily established by using kappa symmetry). Actually,
a Dp-brane whose worldvolumeMp+1 is calibrated byK is electrically charged with respect
to an RR(p + 2)-form field strength Fp+2 and, in the Einstein frame, Fp+2 is related toK as

Fp+2 = d
(
e((p−3)/4)φK

)
. (7.4)

Equation (7.4) is a consequence of supersymmetry [154] and, actually, in our backreacted
backgrounds it follows from the system of BPS equations. Moreover, as a consequence of
(7.3), the action of a localized embedding of a Dp-brane (without NSNS flux and with
worldvolume gauge fields switched off) can be written as

Sloc
Dp = −Tp

∫
Mp+1

[
e((p−3)/4)φK̂ − Ĉp+1

]
. (7.5)

Following our prescription, the smeared version of the brane action is obtained by performing
the wedge product with Ω of the (p + 1)-form inside the brackets in (7.5) and by integrating
the result over the full ten-dimensional spacetime:

Ssmeared
Dp = −Tp

∫
M10

[
e((3−p)/4)φK− Cp+1

]
∧Ω. (7.6)
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Let us now define the (8 − p)-form F8−p, under which the Dp-brane is magnetically charged,
as

F8−p = ±e((p−3)/2)φ ∗
Fp+2, (7.7)

where the sign depends on the particular value of p and on the conventions used. As in the
examples studied in previous sections, the Dp-brane modifies the Bianchi identity of F8−p,
namely,

dF8−p = ±2κ2
10TpΩ. (7.8)

Equation (7.8) establishes a crucial connection between the smearing form Ω and the
calibration formK. Indeed, by using (7.4) and (7.7), the right-hand side of (7.8) can be written
in terms ofK and its exterior derivative. Moreover, from the inspection of the smeared brane
action (7.6), one concludes that Ω can be regarded as a kind of orthogonal complement (the
Poincare dual) ofK inM10. Interestingly, the possible calibration formsK in a manifold are
known and are related to its supersymmetric cycles and G-structures. In the case of a manifold
preserving minimal SUSY in 4D,K can be written in terms of powers of the Kähler form and
of the holomorphic volume form. Thus, geometry and topology constrain the form of the
charge density distribution of supersymmetric configurations and, actually, one could adopt
the point of view in which the expression of Ω is partially determined from these constraints
without explicitly performing the average over the family of embeddings, although, in order
to fix Ω completely, an explicit microscopic calculation is needed. This macroscopic approach
was followed in [34, 150, 151, 158] for some particular brane set-ups.

To finish this section let us detail the implementation of these mathematical concepts
in the case discussed in Section 2, namely, the D3-D7 system. From now on we will assume
that the metric, dilaton, and forms are given by the expressions written in (2.32) and (2.33).
It is convenient to define the following two-form:

J = h1/2
[
e2gJKE + e2fdρ ∧ (dτ +AKE)

]
, (7.9)

which is such that h−1/2J is the Kähler form of the transverse 6d space. Actually, one can
immediately verify that d[h−1/2J] = 0 as a consequence of the BPS equation for g in (2.34).
By explicitly computing the fermion bilinear in (7.2) and by using the projections satisfied by
the Killing spinor of the flavored AdS5 ×S5 background, one gets that the calibration formK
in this case is given by

K =
1
2

Vol(M1,3) ∧ J ∧ J, (7.10)

with Vol(M1,3) = h−1d4x being the volume form of the Minkowski part of the space. Using
the fact that dAKE = 2JKE, one gets

d
(
eφK

)
=

1
2
e2g+φ

[(
4g ′ + φ′

)
e2g − 4e2f

]
d4x ∧ JKE ∧ JKE ∧ dρ = F9, (7.11)
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where, in the last step, we have used the condition (7.4) for p = 7. Let us now verify that the
value of F9 obtained in (7.11) is consistent with the expression for F1 written in our ansatz
(2.33) and, thus, with the Ω displayed in (2.31). Taking into account that the volume form
of the KE space is (1/2)JKE ∧ JKE, one can easily compute the Hodge dual of F1 and get the
following result for F9:

F9 = −e2φ ∗
F1 =

Qf

2
p
(
ρ
)
e4g+2φd4x ∧ JKE ∧ JKE ∧ dρ. (7.12)

The expressions (7.11) and (7.12) for F9 coincide if the following relation holds:

Qfp
(
ρ
)
= e−φ

[
4g ′ + φ′ − 4e2f−2g

]
. (7.13)

One can easily check that (7.13) is a consequence of the BPS system (2.34).

8. Discussion

In hindsight, we can say that the program of finding solutions dual to theories with
unquenched fundamentals with smeared flavor branes has been quite successful. As
expected, it simplifies matters both when looking for the background solution and when
discussing the physics they encode.

We have presented a series of example of solutions of ten-dimensional type IIA or
type IIB supergravity coupled to D-brane sources. The philosophy and methods used in
the different cases are quite similar. Finding a consistent solution requires solving at the
same time the closed string degrees of freedom (namely, finding solutions of the generalised
Einstein equations in the presence of sources) and the open string degrees of freedom
(namely, checking that the D-brane embeddings which generate the mass and charge source
density are indeed solutions of the background). Supersymmetric solutions are easier to
deal with and indeed preserving SUSY simplifies enormously the technical work. It is
rather remarkable that sometimes such complicated coupled systems can be (at least almost)
completely integrated and the solutions given in a simple closed form (in particular in
Sections 2 and 5; for the other sections, profuse numerical integration was necessary).
However, supersymmetry is not mandatory for the construction and we have presented non-
supersymmetric black hole solutions.

The solutions are conjectured to be dual to theories with unquenched quarks. Since we
have always dealt with the particular case of smearing the flavor branes over the transverse
directions, we have built duals of a very particular class of such unquenched theories. We
have used the solutions to discuss many physical features of the different set-ups. Many
crosschecks of field theory expectations have been discussed. Just to mention a few instances,
the running of the gauge coupling in different theories, the behaviour of the cascade in
Section 5, or the direct computation of the first flavor contribution to the entropy of the D3-
D7 plasma (Section 2.5) which was previously known from an indirect method (namely, from
first computing the free energy) [84]. All this asserts that the dualities discussed in this review
are on firm ground. Due to obvious space constraints, we have not been able to include all the
material that may deserve to be reviewed, but we hope that we have given enough references
to the original literature.
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It is worth recapitulating about the presence of singularities in the different solutions
discussed. First, in all the cases presented there are IR curvature singularities when all of the
flavor branes reach the bottom of the geometry; see the heuristic picture of Section 1.5. They
pertain to the kind of singularities usually called good. In fact, we have shown explicitly in the
examples of Sections 2 and 5 how adding (even an infinitesimal) quark mass leads to regular
backgrounds (the analogous generalization for the set-ups of Sections 3 and 4 remains an
interesting open question). Moreover, heating up the theories can result in the formation of
a black hole horizon behind which the IR singularity is hidden; see Section 2.5 and (3.27) for
examples.

On the other hand, the solutions of Sections 2 and 5 are singular in the UV (an effect
connected to having flavor D7-branes) since the dilaton diverges at a finite position of the
radial variable. This is expected, since it is the consequence of the Landau pole of the dual
theory (more precisely, in the case of Section 5 it is a duality wall). Despite the singularity,
we have shown that it is possible to consistently compute IR observables as long as the IR
scale is well separated from the pathological UV. Clear examples are the meson spectrum
(Section 2.4) and the black hole thermodynamical properties (Section 2.5.1). In the D5D5 set-
ups of Sections 3 and 4, the dilaton diverges linearly in the UV, signalling a little string theory-
like UV completion of the dual field theory. We want to stress here that this already happens
in the unflavored solutions and thus is not problem associated to the backreaction.

Finally, all the solutions in Section 6 have a singularity in the IR. This singularity is
not associated to the flavors as it is already present in the flavorless solutions and, at least
in some cases, can be resolved by the worldsheet CFT [159]. On top of that, for the same
models, typically, when Nf is sufficiently large, a Landau pole is generated and, jointly, a UV
singularity appears in the geometry.

Notice that when choosing a particular radial coordinate, we still have reparametriza-
tion invariance; that is, we can still redefine ρ = f(r). So, the fact that different energy-
radius relations have appeared in different duals should not be a matter of concern as it
is a physically motivated choice (inspired, e.g., in the gaugino condensate or some other
operators whose scaling is known). What is certainly more important is the rate of change
of different quantities with the radial coordinate. This should be thought as choosing a
renormalization scheme.

We end this discussion with two clarifications.

(i) We have repeatedly stressed that our main goal is to build duals to theories in
which Nc and Nf are of the same order. Nevertheless, for the set-ups discussed in
Section 2, which include the specially interesting flavored AdS5 ×S5 case, Nf �Nc

is needed; see Section 2.6 (similar comments apply to Section 5). This is because,
starting with a conformal theory, the introduction of extra matter generates an
UV pathology, namely, a Landau pole. Then, roughly speaking, in order to have
a meaningful IR, it has to be well separated from the pathological region, enforcing
the number of flavors not to be too large. However, backreaction effects and,
accordingly, the effect of unquenched quarks, can still be computed as an expansion
in Nf/Nc. On the other hand, for the models in Sections 3, 4, and 6, this restriction
is not present and, indeed, it makes sense to talk about solutions with Nf ∼ Nc.
In fact, this is imperative, for instance, when discussing Seiberg-like dualities as in
Section 3.6.2.

(ii) Since the (DBI) action is used to model the D-brane sources, one could be wary
for the following reason: the effective string coupling on a stack of Nf D-branes is
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gsNf ∼ Nf/Nc and this should be small for the DBI to be a good approximation
[160], whereas there is not a good effective description for strong string coupling.
However, this caveat is circumvented because we do not deal with stacks of
localized flavor branes: due to the smearing, the typical distance between any
pair of flavor branes is of the order of the size of the transverse space, which is
typically large. As a result, the flavor symmetry is usually broken toU(1)Nf and the
effective open string coupling remains small. As already pointed out, this amounts
to keeping “one window graphs” in the Veneziano expansion [26].

Outlook

There are still many open questions that deserve to be addressed within the framework
presented in this review. We briefly mention a few examples of possible future projects.
They comprise both making further progress in studying the models here presented and
building new solutions that could be useful in exploring the consequences of the formalism
for different physical points. Along the first of these lines, it would be nice to generalise the
solutions of Section 3 to the massive quark case in order to remove the IR singularity. Also,
we expect the black hole solution of Section 2.5 to encode interesting physical information.
For instance, one could consider massive embeddings in the search of a first-order phase
transition similar to those in [17, 84, 161]. The peculiarity of the back-reacted setting would
be, conceivably, that the area of the horizon would undergo a finite jump at the transition.
Along the second line, a back-reacted D4-D6 solution building on the model of [17] could
be useful in discussing QCD-like properties. Another conceivable program is to look for
a solution, which, as in [162], may correspond to a color-flavor locking phase. The study
of fluctuations in these backgrounds, that will also contain fluctuations of the fields in the
flavor branes, with a view on understanding holographic renormalization would be a highly
interesting result.

Aside from this, it would be nice to find solutions (with backreacted flavor branes) that
contain an AdS5 factor. The study of conformal anomalies there may give interesting results.

As stressed in the introduction, finding the kind of solutions discussed here, including
the D-brane backreaction, has an interest on their own, independently of AdS/CFT. It
would be nice to understand whether they may turn out to be useful for different physical
applications. For instance, for models of inflation built with D3-D7 systems on the conifold
(see [163] for recent progress in this direction), the analysis of Section 5 could have some
relevance.
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[100] J. Maldacena and C. Nuñez, “Towards the large N limit of pure N = 1 super Yang-Mills theory,”
Physical Review Letters, vol. 86, no. 4, pp. 588–591, 2001.

[101] E. Witten, “Supersymmetric Yang-Mills theory on a four-manifold,” Journal of Mathematical Physics,
vol. 35, no. 10, pp. 5101–5135, 1994.

[102] M. Bertolini, “Four lectures on the gauge/gravity correspondence,” International Journal of Modern
Physics A, vol. 18, no. 31, pp. 5647–5711, 2003.

[103] F. Bigazzi, A. L. Cotrone, M. Petrini, and A. Zaffaroni, “Supergravity duals of supersymmetric four-
dimensional gauge theories,” Rivista del Nuovo Cimento della Societa Italiana di Fisica, vol. 25, no. 12,
article 1, 2002.

[104] A. Paredes, Supersymmetric solutions of supergravity from wrapped branes, Ph.D. thesis, University of
Santiago de Compostela.

[105] R. P. Andrews and N. Dorey, “Spherical deconstruction,” Physics Letters B, vol. 631, no. 1-2, pp. 74–82,
2005.

[106] R. P. Andrews and N. Dorey, “Deconstruction of the Maldacena-Núñez compactification,” Nuclear
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[148] D. Areán, P. Merlatti, C. Núñez, and A. V. Ramallo, “String duals of two-dimensional (4, 4)
supersymmetric gauge theories,” Journal of High Energy Physics, vol. 2008, no. 12, article 054, 2008.

[149] P. Di Vecchia, H. Enger, E. Imeroni, and E. Lozano-Tellechea, “Gauge theories from wrapped and
fractional branes,” Nuclear Physics B, vol. 631, no. 1-2, pp. 95–127, 2002.

[150] D. Areán, E. Conde, and A. V. Ramallo, “Gravity duals of 2d supersymmetric gauge theories,” Journal
of High Energy Physics, vol. 2009, no. 12, article 006, 2009.

[151] D. Arean, E. Conde, A. V. Ramallo, and D. Zoakos, “Holographic duals of SQCD models in low
dimensions,” Journal of High Energy Physics, vol. 2010, no. 6, pp. 1–38, 2010.

[152] J. Gomis and J. G. Russo, “D = 2 + 1N = 2 Yang-Mills theory from wrapped branes,” Journal of High
Energy Physics, vol. 2001, no. 10, article 028, 2001.

[153] J. P. Gauntlett, N. Kim, D. Martelli, and D. Waldram, “Fivebranes wrapped on SLAG three-cycles
and related geometry,” Journal of High Energy Physics, vol. 2001, no. 11, article 018, 2001.

[154] J. Gutowski, G. Papadopoulos, and P. K. Townsend, “Supersymmetry and generalized calibrations,”
Physical Review D, vol. 60, no. 10, Article ID 106006, 11 pages, 1999.

[155] P. Koerber, “Stable D-branes, calibrations and generalized Calabi-Yau geometry,” Journal of High
Energy Physics, vol. 2005, no. 8, article 099, 2005.

[156] L. Martucci and P. Smyth, “Supersymmetric D-branes and calibrations on general N = 1
backgrounds,” Journal of High Energy Physics, vol. 2005, no. 11, article 048, 2005.

[157] P. Koerber and L. Martucci, “Deformations of calibrated D-branes in flux generalized complex
manifolds,” Journal of High Energy Physics, vol. 2006, no. 12, article 062, 2006.

[158] J. Gaillard and J. Schmude, “The lift of type IIA supergravity with D6 sources: M-theory with
torsion,” Journal of High Energy Physics, vol. 2010, no. 2, pp. 1–34, 2010.

[159] K. Hori and A. Kapustin, “Worldsheet descriptions of wrapped NS five-branes,” Journal of High
Energy Physics, vol. 2002, no. 11, article 038, 2002.

[160] C. G. Callan, C. Lovelace, C. R. Nappi, and S. A. Yost, “String loop corrections to beta functions,”
Nuclear Physics B, vol. 288, no. 3-4, pp. 525–550, 1987.

[161] I. Kirsch, “Generalizations of the AdS/CFT correspondence,” Fortschritte der Physik, vol. 52, no. 8,
pp. 727–826, 2004.

[162] H.-Y. Chen, K. Hashimoto, and S. Matsuura, “Towards a holographic model of color-flavor locking
phase,” Journal of High Energy Physics, vol. 2010, no. 2, article 104, 2010.

[163] D. Baumann, A. Dymarsky, S. Kachru, I. R. Klebanov, and L. McAllister, “D3-brane potentials from
fluxes in AdS/CFT,” Journal of High Energy Physics, vol. 2010, no. 6, article 72, 2010.

[164] F. Benini, C. Closset, and S. Cremonesi, “Chiral flavors and M2-branes at toric CY4 singularities,”
Journal of High Energy Physics, vol. 2010, no. 2, article 036, 2010.

[165] D. L. Jafferis, “Quantum corrections to N = 2 Chern-Simons theories with flavor and their AdS4
duals,” http://arxiv.org/abs/0911.4324.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


