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A global approach with cutoff exponential functions is used to obtain the Casimir energy of
a massless scalar field in the presence of a spherical shell. The proposed method, mathematically
well defined at the outset, makes use of two regulators, one of them to make the sum of the orders
of Bessel functions finite and the other to regularize the integral involving the zeros of Bessel
function. This procedure ensures a consistent mathematical handling in the calculations of the
Casimir energy and allows a major comprehension on the regularization process when nontrivial
symmetries are under consideration. In particular, we determine the Casimir energy of a scalar
field, showing all kinds of divergences. We consider separately the contributions of the inner
and outer regions of a spherical shell and show that the results obtained are in agreement with
those known in the literature, and this gives a confirmation for the consistence of the proposed
approach. The choice of the scalar field was due to its simplicity in terms of physical quantity
spin.

1. Introduction

The relevance of the Casimir effect has increased over the decades since the seminal paper
(1948) [1] by the Dutch Physicist Hendrik Casimir. This effect concerns to the appearance of
an attractive force between two plates when they are placed close to each other. Casimir was
the first to predict and explain the effect as a change in vacuum quantum fluctuations of the
electromagnetic field.
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Nowadays, the Casimir effect has been applied to a variety of quantum fields and
geometries and it has gained a wider understanding as the effect which comes from the
fluctuations of the zero point energy of a relativistic quantum field due to changes in its base
manifold. This interpretation can be confirmed when we see the large range where the
Casimir effect has been applied: the study of gauge fields with BRS symmetry [2], in the
Higgs fields [3], in supersymmetric fields [4], in supergravity theory [5, 6], in superstrings
[7], in the Maxwell-Chern-Simons fields [8], in relativistic strings [9], in M-theory [10],
in cosmology [11], and in noncommutative spacetimes [12], among other subjects in the
literature [13, 14], the review articles [15–17], and textbooks [18–23].

In this present work, the meaning of base manifold is that the confinement that
the field is subjected is due to the presence of a sphere, where the boundary conditions
take place. The point we aim to emphasize is that once the calculation of the Casimir
effect involves dealing with infinite quantities, we need to use a regularization procedure
appropriately defined. Many different regularization methods have been proposed and we
can quote some of them: the summation mode method—using the general cutoff function
[1], exponential cutoff function [24, 25], Green function [26–30], Green function through
multiple scattering [31], exponential function and cutoff parameter [32, 33], zeta function
[34–40], Abel-Plana formula [21, 41], or point-splitting [42–44]; the Green function method—
using the point-splitting [45–48], Schwinger’s source theory [49–51], or zeta function
[52]; the statistical approach method—using the path integral formalism [53], or Green
function [54]; as some examples among others. These methods are distinguished by the
approach used to carry out the calculations of the Casimir energy, and it is clear that
the physical result must be independent from the regulators or the method employed for
them. But the literature has shown that the results found there exhibit a divergence among
them.

In a general way, the methods used to obtain the Casimir effect lie on one of the two
categories: a local procedure or a global one. With a local procedure, we mean one that the
expression for the change of the vacuum energy is explicitly dependent on the variables of the
base manifold, and only in the final step of calculations the integration over these variables
is carried out. On the other hand, in a global one, we start with an expression for the vacuum
energy where there is no space-time variables present as they already were integrated.

In the present work, we pretend detailing a global approach [55, 56] for the calculation
of Casimir energy. In this method, mathematically well defined at the outset, we propose
the use of two regulators into the cutoff exponential function, and we demonstrate that this
regularization approach is one appropriate for the calculation of Casimir effect in the case of
nontrivial symmetries, in particular a spherical symmetry.

With the use of scalar field, we can avoid the inherent complications brought by the
vector nature of the electromagnetic field, and due to its simple structure, the scalar field
usually becomes an effective tool to be used in the investigation of field proprieties as in these
examples: in the dynamical Casimir effect [57], in the Casimir effect at finite temperature
[58, 59], and in the Casimir effect on a presence of a gravitational field [60, 61], among others
[62–64].

The paper is organized as follows: we detail in Section 2 the method to be used and
why we need two cutoff parameters to obtain an regularized expression for the Casimir
energy, which is the starting point for a consistent mathematical handling. Section 3 exhibits
the calculations for the contributions of the inner and the outer regions of the spherical shell.
We analyze in Section 4 the results and compare them with those ones in the literature and
make some considerations.



Advances in High Energy Physics 3

2. The Global Procedure Proposed with Two Parameters

The starting point is the expression for the Casimir energy defined as the difference between
the vacuum energy under a given boundary condition and the reference vacuum energy.
When we consider a scalar field in the presence of a spherical shell, this vacuum energy is

E0 =
∞∑

n=1

∞∑

j=0

j∑

m=−j

∑

τ

1
2
�ωτ

jn, (2.1)

where ωτ
jn are the mode frequencies. They are obtained when the boundary conditions are

imposed on the field. In the absence of boundary conditions, the frequencies take some values
which let us designate as ωτ(ref)

jn and these lead to the vacuum reference energy

E(ref) =
∞∑

n=1

∞∑

j=0

j∑

m=−j

∑

τ

1
2
�ω

τ(ref)
jn , (2.2)

so the Casimir energy is E = E0 −E(ref). The boundary conditions due to a spherical shell with
radius a are

kajj(ka) = 0, for r = a − 0,

Ajkajj(ka) + Bjkanj(ka) = 0, for r = a + 0.
(2.3)

The Casimir energy will be calculated by using the mode summation and the argument
theorem (also known as argument principle [65–67]). This theorem gives the summation of
zeros and poles of an analytic function as a contour integral. This contour is a curve that
encompasses the interior region of the complex plane which contains the zeros and poles
[65–67]. In our case, we are interested in the root functions which match the conditions (2.3).
So, the following equations are appropriate as root functions

f1
j (az) = azjj (az),

f2
j (az) = cos δj(z)

[
azjj (az) + tanδj(z)aznj(az)

]
,

(2.4)

where

z = k
(
=
ω

c

)
, δj(z) = zR −

jπ

2
. (2.5)

When we apply the argument theorem and carry out some handling, we get

g∑

n=1

ωτ
jn =

c

2πi

∮

C

dz z
d

dz
log fτj (az). (2.6)



4 Advances in High Energy Physics

ϕ

Γ1

Γ2

ϕ Cλ

Figure 1: The path of integration in the complex plane.
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Figure 2: A sketch of the subtraction process which takes place on the regularization of the Casimir effect
of a spherical shell.

In the above equation, the argument for logarithm must involve the product of all root
functions. The contour to be taken on the calculations is given by [68] according to Figure 1.

The subtraction process (renormalization), defined by E, can be schematically
represented as in Figure 2.

The vacuum energy (2.1) which takes into account the boundary conditions can be
used to obtain the reference energy in (2.2). This is done when we take the limit for the
radius a going to infinity. This procedure is sensible, but it already has been made clear by
Boyer [69, 70]. After all, we obtain for the Casimir energy

E =
∞∑

n=1

∞∑

j=0

j∑

m=−j

4∑

τ=1

1
2
�

(
ωτ
jn −ω

τ(ref)
jn

)

= lim
σ→ 0, ε→ 0, R→∞, ξ→ 1

�c

2πi

∞∑

j=0

ν exp(−εν)
∮

C

dz z exp(−σz)

× d

dz

{
log

[
f
(1)
j (az)f (2)

j (az)
]
− log

[
f
(1)(ref)
j

(
R

ξ
z

)
f
(2)(ref)
j

(
R

ξ
z

)]}
,

(2.7)
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where ν = j + 1/2. We can see from above that two exponential functions were used, one of
them is the function under the integral sign, exp(−σz), (σ > 0), that stems from the argument
theorem and the other is the function exp(−εν), (ε > 0), under summation sign on j = ν −
(1/2). Now, group together these two developments, and (2.7) may be rewritten as

E = −�c
π
�

∞∑

j=0

ν2 exp(−εν)
∫∞ exp(−iϕ)

0
dz exp(−iσνz)z d

dz

{
log[Iν(νaz)] + log[Kν(νaz)]

}

− E(ref),

(2.8)

where the limits for R and ξ have been taken into account. The other limits will be taken in
an appropriate moment after the cancelation of possible remaining divergences.

3. Casimir Effect of a Spherical Shell: The Case of a Scalar Field

We now rewrite (2.8) in a more appropriate way, so that the contributions can be separated
by regions as E = EI + EO, where

EI = −
�c

π
�

(
1
2

)2

exp
(
−ε1

2

)∫∞ exp(−iϕ)

0
dzz exp

(
−iσ 1

2
z

)
d

dz

{
log

[
I1/2

(
1
2
az

)]}

− �c

π
�

∞∑

j=1

ν2 exp(−εν)
∫∞ exp(−iϕ)

0
dzz exp(−iσνz) d

dz

{
log[Iν(νaz)]

}
− Eref

I

(3.1)

is the contribution due to the internal modes and

EO = −�c
π
�

(
1
2

)2

exp
(
−ε1

2

)∫∞ exp(−iϕ)

0
dzz exp

(
−iσ 1

2
z

)
d

dz

{
log

[
K1/2

(
1
2
az

)]}

− �c

π
�

∞∑

j=1

ν2 exp(−εν)
∫∞ exp(−iϕ)

0
dzz exp(−iσνz) d

dz

{
log[Kν(νaz)]

}
− Eref

O

(3.2)

is the contribution due to the external modes. As it can be observed, the above contributions
were written in such a way that the term for j = 0 was detached from the summation on j.
This has been done to the effect of making explicit the term on which we will focus attention
as well as taking into account some developments already accomplished [55].

3.1. Internal Mode

Now, we proceed with the calculations of (3.1), and the first step is to take the Debye
expansion for the Bessel functions up to order O(ν−4) [71, 72]. The Debye expansion gives
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accurate results when we consider large order of ν = j + 1/2 and larger arguments and that
also makes an analytical treatment possible for the resulting expressions. So, we have

EI = EI − E(ref)
I , (3.3)

where EI = EI,0 + EI,1 + EI,2 + EI,3 + EI,4 and the terms EI,n are given by

EI,0 = − �c
2π
� exp

(
−ε1

2

)
exp

(
−iϕ

) ∫∞

0
dρ exp

(
−iσρ exp

(
−iϕ

))

×
[
−1

2
+ exp

(
−iϕ

)
aρ coth

(
aρ exp

(
−iϕ

))]
,

(3.4)

EI,1 =
�c

πa

∞∑

j=1

ν2
∫∞

0
dρ

{
log

[
II

(
ν, ρ

)]
−

4∑

k=1

U(I,k)(t)
νk

}
, (3.5)

EI,2 = −�c
π
�

4∑

k=1

∞∑

j=1

ν2−k exp(−εν)
∫∞ exp(−iϕ)

0
dz exp(−iσνz)z d

dz
U(I,k)(t), (3.6)

EI,3 =
�c

2π
�

∞∑

j=1

ν2 exp(−εν)
∫∞ exp(−iϕ)

0
dz exp(−iσνz) a2z2

1 + a2z2 , (3.7)

EI,4 = −�c
π
�

∞∑

j=1

ν3 exp(−εν)
∫∞ exp(−iϕ)

0
dz exp(−iσνz)

√
1 + a2z2, (3.8)

with the definitions [37]

II
(
ν, ρ

)
=
√

2πν
(

1 + ρ2
)1/4

exp
(
−νη

)
Iν
(
νρ

)
, (3.9)

U(I,1)(t) =
t

8
− 5t3

24
, (3.10)

U(I,2)(t) =
t2

16
− 3t4

8
+

5t6

16
, (3.11)

U(I,3)(t) =
25t3

384
− 531t5

640
+

221t7

128
− 1105t9

1152
, (3.12)

U(I,4)(t) =
13t4

128
− 71t6

32
+

531t8

64
− 339t10

32
+

565t12

128
. (3.13)

The contributions (3.7) and (3.8) compound the zero-order terms of the Debye expansion.
The contribution (3.5) stems from small values of the angular momentum j, and its value
was already determined by [37]

EI,1 = 0.00024
�c

πa
. (3.14)
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The contributions (3.6) to (3.8) are calculated taking into account the Euler-Maclaurin
formula with remainder [73–75], and these were calculated by [55]

EI,2 =
�c

π
�

{
8099
63839

1
a
+

7
24

a

σ2 +
11

192
1
a

log
(σ
a

)
+

229
40320

1
a

log(ε) + i
7801

86684
1
a

}
, (3.15)

EI,3 =
�c

π
�

{
52529
267528

1
a
+ i

[
−1

3
1
σ
− 3

4
1
σε
− 1

2
1
σε2

]}
, (3.16)

EI,4 =
�c

π
�

{
7375

85696
1
a
− 11

24
a

σ2
+ 2

a3

σ4
− 127

1920
1
a

log
(σ
a

)
− i 2197

21145
1
a

}
. (3.17)

Collecting the terms (3.14), (3.15), (3.16), and (3.17), we get

EIpartial = 0.4095155894
�c

πa
+
�c

π

[
−1

6
a

σ2
+ 2

a3

σ4
− 17

1920
1
a

log
(σ
a

)
+

229
40320

1
a

log(ε)

]
. (3.18)

For (3.4), corresponding to j = 0, we obtain

EI,0 =
�c

π

[
− 1

24
π2

a
+

1
2
a

σ2

]
. (3.19)

So, the energy of a scalar field considering a spherical configuration due the internal modes
is

EI = EIpartial + EI,0

= − �c
πa

0.0017179275+
�c

π

[
1
3
a

σ2 + 2
a3

σ4
− 17

1920
1
a

log
(σ
a

)
+

229
40320

1
a

log(ε)

]
.

(3.20)

The expression (3.20) shows in an undoubted way the need for a second regularized
exponential function, exp(−εν), to make a consistent mathematical handling of the
divergences possible. Both divergences, the logarithm in (3.15) and the polynomial in (3.16),
stem from the summation on j. This type of divergence was already observed in [76], but
only with the procedure established here this discard turns to be completely justified as an
appropriate regularization allows the real part of (3.16) to be taken in an unambiguous way.

3.2. External Mode

The contribution of the external modes comes by (3.2). We proceed with the calculations in
an analogous way to that of the previous subsection. So,

EO = EO − E(ref)
O , (3.21)
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where EO = EO,0 + EO,1 + EO,2 + EO,3 + EO,4 and

EO,0 = − �c
2π
� exp

(
−ε1

2

)
exp

(
−iϕ

) ∫∞

0
dρ exp

(
−iσρ exp

(
−iϕ

))[
−1

2
− exp

(
−iϕ

)
aρ

]
, (3.22)

EO,1 =
�c

πa

∞∑

j=1

ν2
∫∞

0
dρ

{
log

[
KO

(
ν, ρ

)]
−

4∑

k=1

U(O,k)(t)
νk

}
, (3.23)

E0,2 = −�c
π
�

4∑

k=1

∞∑

j=1

ν2−k exp(−εν)
∫∞ exp(−iϕ)

0
dz exp(−iσνz)z

d

dz
U(O,k)(t), (3.24)

EO,3 =
�c

2π
�

∞∑

j=1

ν2 exp(−εν)
∫∞ exp(−iϕ)

0
dz exp(−iσνz)

a2z2

1 + a2z2 , (3.25)

EO,4 =
�c

π
�

∞∑

j=1

ν3 exp(−εν)
∫∞ exp(−iϕ)

0
dz exp(−iσνz)

√
1 + a2z2, (3.26)

with the following definitions [37]:

KO

(
ν, ρ

)
=

√
2ν
π

(
1 + ρ2

)1/4
exp

(
νη

)
Kν

(
νρ

)
, (3.27)

U(O,1)(t) = −U(I,1)(t), (3.28)

U(O,2)(t) = U(I,2)(t), (3.29)

U(O,3)(t) = −U(I,3)(t), (3.30)

U(O,4)(t) = U(I,4)(t), (3.31)

where the U(O,k) are given by (3.10) to (3.13), respectively. The term (3.28) was numerically
determined by [37]

EO,1 = −0.00054
�c

πa
. (3.32)

The other contributions are calculated following the analogous procedure detailed in the
previous subsection:

EO,2 =
�c

π
�

{
− 5821

56688
1
a
− 7

24
a

σ2 −
11

192
1
a

log
(σ
a

)
− 229

40320
1
a

log(ε) − i 7801
86684

1
a

}
,

EO,3 = EI,3,

EO,4 = −EI,4 .

(3.33)
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After collecting the terms (3.32) and (3.33), we have

EOpartial = 0.01056399145
�c

πa
+
�c

π

[
1
6
a

σ2 − 2
a3

σ4
+

17
1920

1
a

log
(σ
a

)
− 229

40320
1
a

log(ε)

]
. (3.34)

The contribution (3.22), related to j = 0, when we repeat the calculation gives

EO,0 =
�c

π

[
−1

2
a

σ2

]
. (3.35)

Gathering together (3.34) and (3.35), we get the total contribution to the energy of a scalar
field of a spherical configuration due the external modes

EO = EOpartial + EO,0

=
�c

πa
0.01056399145+

�c

π

[
−1

3
a

σ2 − 2
a3

σ4
+

17
1920

1
a

log
(σ
a

)
− 229

40320
1
a

log(ε)

]
.

(3.36)

Our next task is to determine the reference energy and take the regularizations as indicated
by (3.3) and (3.21).

4. The Regularized Results

Calculating the reference energy, we get

E
(ref)
± = ±R

ξ

f(ε)
σ2 , (4.1)

where the plus sign refers to EI and the minus sign to EO and

f(ε) = exp
(
−ε

2

)(
3 exp(ε) − 1

)(
exp(ε) − 1

)−2
. (4.2)

Now, we can gather together the internal (3.20) and external (3.36) contributions,
taking into account (4.1), to obtain the Casimir effect for a scalar field due to the presence
of a spherical shell with radius a

E(a) = �c

a
0.002815789609. (4.3)

This result is free of divergences since we get an exact cancelation for the terms which depend
on the cutoff parameters. Equation (4.3) is in agreement with that obtained by [37], through
the zeta function method, and with that in [77], which uses the Green function formalism and
the dimensional analytical extension (in this reference the starting point is the expression for
the force).
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5. Conclusions

Our purpose in this work was to show the form and nature of each divergent term that
appears in the calculation of Casimir energy and demonstrate that the method proposed is
mathematically consistent and that it is in accordance with the results existing in literature.

To this end, we show explicitly, to the scalar field, the characteristic of the divergent
terms calculated in (3.20), (3.36), and (4.1) as a function of the geometrical proprieties of
boundary if we rewrite the divergent part of those assuming a dimensionless parameter ε =
(εa)357/155, with dim(ε) = L−1, so

E± = ±�c
[

3
π2V (a)

1
σ4
− 17

3840π2S(a)κ
3 log(σε) +

1
3π2S(a)κ

1
σ2 −

1
4π2S

(
R

ξ

)
κS

(
R

ξ

)
f(ε)
σ2

]
,

(5.1)

where the plus sign refers to the index I while the minus sign refers to the index O, and
κ = 1/a is the curvature. In (5.1), V (a) is a volume, S(a) is an area, and σ and ε are cutoff
parameters. As we can see, the second and fourth terms in (5.1) explain why two regulators
are required to get a well-defined expression for the Casimir energy of the scalar field. This
is the same case when we consider an electromagnetic field (see [55]). The result (5.1) is in
agreement with [78], except for the divergence due to log(ε) and due to the relative self-
energy of the spherical shell, f(ε)/σ2, that does not appear there.

Our purpose in this work is to confirm that the prescription in (2.7) works well
when we assume non trivial symmetries for the fields. In fact, the approach has succeed
in demonstrating the cancelation of all types of divergences appearing in the expression for
the Casimir energy of the scalar field. Besides, this calculation presented at this work shows
the desired agreement with the results existing in the literature. Furthermore, as it has been
mentioned by the authors in [79–81], a better understanding of the quantum field theory
undoubtedly involves the necessity to understand these infinities.
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[10] M. Fabinger and P. Hořava, “Casimir effect between world-branes in heterotic M-theory,” Nuclear
Physics. B, vol. 580, no. 1-2, pp. 243–263, 2000.

[11] S. Nojiri, S. D. Odintsov, and S. Zerbini, “Bulk versus boundary (gravitational Casimir) effects in the
quantum creation of an inflationary brane-world universe,” Classical and Quantum Gravity, vol. 17, no.
23, pp. 4855–4866, 2000.

[12] M. Demetrian, “Casimir effect in four simple situations—including a noncommutative two-sphere,”
Fizika B, vol. 11, pp. 175–190, 2002.

[13] G. J. Maclay, H. Fearn, and P. W. Milonni, “Of some theoretical significance: implications of Casimir
effects,” European Journal of Physics, vol. 22, no. 4, pp. 463–469, 2001.

[14] M. S. R. Miltão, Estudo do Efeito Casimir Eletromagnético Esférico pelo Método da Dupla Regularização, Tese
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