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Can Internet-of-food technologies foster collective food awareness within a food consumer community? The paper contributes
to answer this question in a fourfold aspect. Firstly, we model a cooperative process for generating and sharing reliable food
information that is derived from food instrumental measurements performed by consumers via smart food things. Secondly,
we outline the functional architecture of a platform capable to support such a process and to let a consumer community share
reliable food information. Thirdly, we identify main entities and their attributes necessary to model the contextualized interaction
between a consumer and the platform. Lastly, we review articles reviewing technologies capable of acquiring and quantifying food
characteristics for food performances assessment.The purpose is to give an insight into current research directions on technologies
employable in a platform for collective food awareness.

1. Introduction

Modern food consumers are ever more engaged in open dis-
cussions, comments, and feedback on characteristics, quality,
and safety of food that has become a very trending topic (to
give an idea, think of the many food pictures and messages
that are daily posted on online social media). Also, among
them, food consumers communicate and interact with food
suppliers and third parties in loose, open, effective, and flexi-
ble ways in a continuous search for food information trans-
parency and more visibility of food supply chains.

On the other hand, new technological advances, espe-
cially in food sensor miniaturization, have made possible
the development of lab-on-smartphone platforms for mobile
food diagnostics that allow a rapid and on-site food analysis
for preliminary andmeaningful food information extraction.
These lab-on-smartphone platforms use hand-held and low-
cost devices (e.g. food scanners or food sniffers) to cap-
ture and communicate food data (e.g., data from measures
of physical, chemical, biological, and microbiological food
properties) or food-related entities data (e.g., data from label,
package, container, and environment) with some specialized

smartphone/tablet apps. These devices are easy to use and
incorporate an analytical precision and resolution almost
equivalent to bench-top instruments.

These trends let envisage future scenarios where consum-
ers and other stakeholders of the food supply chain, using
their own capabilities integrated with ICT and food diag-
nostics technologies, could collaboratively constitute a large-
scale socio-technical superorganism capable to foster collec-
tive food awareness. Here, we refer to collective food aware-
ness (shortly, CFA) as food beliefs, knowledge and informa-
tion, shared within a consumer community, that drive food
consumption patterns of community members in terms of
culinary preferences, and food habits and needs.

The need of sharing food information and knowledge is
due to the fact that quality and safety issues about food are
difficult to identify and, in the majority of cases, recognizable
only after their consumption. In fact, depending on the type
of attribute, food is an experience (some food attributes can
be determined just after purchasing and consumption) or cre-
dence good (some food attributes that cannot be determined
by consumer even after consumption). In food markets,
this intrinsic nature of food facilitates the occurrence of
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information asymmetries that deeply affect consumers' deci-
sions and behaviour. Main consequences of asymmetric
information are moral hazard (a food producer takes more
risks, e.g., false labelling or food adulteration, because con-
sumers bear the burden of those risks) and adverse selection
(producers hide some food information in a transaction,
leading consumers to poor decisions making).

A broad CFA contributes to make many “problems”
linked up with information asymmetries vanish and beyond
that could drive consumers to greater consciousness about
health, and environmental choices compatible with social
goals. It can be fostered by a sociotechnical infrastructure
based on a platform that empowers consumers by collectively
managing (generating, verifying/validating, and distributing)
information on safety and quality of food products and pro-
cesses, as well as on issues around environmental, social, and
ethical aspects.

In linewith otherworks on collective awareness platforms
[1–3], we view aCFAplatform as an ICT system leveraging for
gathering and making use of open food data, by combining
social media, distributed knowledge creation and IoF (IoF
(Internet of Food) is an offshoot of the Internet of things.
It can be viewed as a network of smart food things, i.e.,
food-related objects and devices that are augmented with
sensing, computing, and communication capabilities in order
to provide advanced services. Smart food things include
sensor-equipped information artifacts (e.g., food labels with
RFID or NFC tags), time-temperature indicators, and other
sensors on packages to detect spoiled foods, sensor devices
that spots bacterial infection in food and water, kitchen
devices that generate a record of compliance with food safety
protocols, wearables to count bites and estimate calories, and
so on [4]) technologies, in order to support the creation of
CFA within a food consumer community.

A general research question that is crucial for sociotech-
nical infrastructures aimed to create a CFA is the following:

How can a CFA platform empower food consumers to
have control over their own food and be responsive to their
expectations of reliable food information?

In this paper, we focus on four implied questions flowing
from this general question and reflecting different point of
views:

(1) How can a consumer community share reliable food
information derived from food properties instrumen-
tal measurements performed by consumers?

(2) What is the functional architecture of a CFA platform
that supports such a process and lets a consumer
community share reliable food information?

(3) What are the entities with their relevant properties
characterizing the CFA platform interaction context?

(4) Which technologies can allow a CFA platform to gen-
erate food information based on scientific instrumen-
tal measurements of food properties?

The rest of the paper includes a short background discussion
on the superorganism paradigm and four sections devoted to
answer these questions.

2. Backgrounds

As people are increasingly becoming connected and active
participants in smart environments, the convergence of
“Internet of Things” and “Social Networks” worlds is gaining
momentum in many researches [5], paving the way to a new
generation of “user-in-the-loop” context aware systems [6].
The challenge is to harness the collaborative power of ICT
networks (networks of people, of knowledge, and of sensors)
to create collective and individual awareness [7].

A single “individual” is characterized by heterogeneity
and limited reasoning capabilities, acting in an autonomous
way within a smart environment. However, when many indi-
viduals join together they can self-organize into large-scale
cooperative collectives, based on the assumption that a large
number of individuals tied in a social network can provide
far more accurate answers to complex problems than a single
individual or a small group [8]. According to this perspective,
the very large number of interconnected objects or people
can be exploited to create what several researches define
“superorganism” [9] or “swarm intelligence” [10], since they
exhibit properties of a living organism (e.g., “collective intel-
ligence”) on their own. In fact, such approach is inspired by
self-organizational behaviour of complex systems in nature
[11], with particular reference to ant colonies. While a single
ant has very limited sensing and actuating capabilities and
little or no cognitive abilities, by and large, ants can indirectly
coordinate their movements and activities, via spreading and
sensing of pheromones in the environment, exhibiting, as a
colony, a very powerful collective behaviour [12].

Collective intelligence and nature-inspired computing
represent an extremely interesting phenomenon that has been
addressed in several application fields, e.g., smart cities [13],
manufacturing [14], healthcare [15], energy [16], and finance
[17].

The food sector is another promising application area.
The increasing demand on safe, high-quality, and healthy
food, the recent food safety incidents and scandals, and the
availability of new smart food technologies have led substan-
tial changes in both food consumer’s behaviour and food
information user’s behaviour [4, 18]. Today’s consumers may
have access to a wealth of mobile app-based services that pro-
vide them with food information (food traceability, nutrition
advices, recipes, and purchasing support). At the same time,
new digital businesses can collect and process big amount of
food data through data analytics and intelligence tools for
better understanding food consumers and increasing food
processes effectiveness.

Moreover, the coupling of smart food technologies with
social networking technologies is disclosing a world where
consumers can interact, communicate, and collaborate with
each other in loose, open, effective, and flexible ways for en-
hancing the transparency and visibility of food supply chains
through collective wisdom and intelligence [19].

In a similar way we see that individual ants behave as if
they were a single superorganism; we can envisage a near
future where food consumers are engaged in large-scale coor-
dinated activities for the good of everyone. In our opinion,
it is advisable that some of these activities should address
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the creation of CFA. Although the superorganism paradigm
has been employed for building collective awareness in many
fields, prior research has not been explicitly focused on
organizational and technological aspects in creating CFA
within a consumers’ community.

3. Collectively Generating and
Sharing Reliable Food Information

As a first attempt to answer question 1, described in the intro-
duction section, we introduce a process that allows a con-
sumer community to share reliable information on food
performances of some food items belonging to a same food
class. In our process model, we assume that the reliability
of a food performance is determined by a collective inter-
pretation of food items' characteristics that are derived from
instrumental measurements performed by some consumer
community members. According to Peri [9], we refer to food
characteristics as physical, chemical, biological, and micro-
biological food properties that are objectively attributable to
food and do not change by changing the consumer (food
shape, weight, size, structure, and composition, in terms of
chemical or bioactive compounds).We refer to food perform-
ances as functional and subjective food properties; i.e., they
relate to the consumer and do not exist except in the
interaction between food products and consumers. They in-
clude sensory, nutritional, safety, and aesthetic properties.

In what follows we describe the process under a perspec-
tive that addresses its structure in terms of components and
roles, and we include a process scenario.

3.1. Process Actors and Roles. Main roles, actors, and interre-
lationships are the following:

(i) Recipient (R): he/she is a consumer communitymem-
ber who needs reliable information about a food
item performance. He/she makes a request r(i, p) to
a Food Information Broker, where i refers to some
identity property values of a food item (e.g., a product
batch number, production date and place, etc.) and
p is the identifier of a performance he/she wants to
know the value. In order to provide these data, he/
she possibly interacts with a technological CFA plat-
form through his/her own handheld device and Food
Information Artifact (FIA) (according to [20], a FIA
is a physical entity expressly created to bear food
information (e.g., labels, tables, RFID chips, and NFC
tags)) located in the surrounding spatial environ-
ment.

(ii) Contributor (C): he/she is a consumer community
member that contributes to the process by providing
a Food Information Broker with some food item data.
In particular:

(a) he/she implicitly or explicitly acquires food item
data through smart food things, i.e., sensor
devices that capture implicit or explicit signals
from a food item (e.g., food near-infrared emis-
sion, food volatile compounds) or the consumer

body (e.g., blood glucose level, chewing sound,
and skin temperature);

(b) he/she explicitly acquires other descriptive
identity data of a food item (e.g., batch number,
production date, and provenance) from a FIA;

(c) he/she uses his/her own handheld device to
communicate acquired food item data to the
Food Information Broker.

(iii) Food Information Broker (FIB) is an intermediate
agent that plays a threefold role. Firstly, it receives a
request r(i, p) coming from R, and controls if it has
been already satisfied. Otherwise, it submits a new
challenge question to a Collective Challenge Solver
(CCS). A challenge consists in knowing to what ex-
tent food items with same values i share the same
value of p, and, possibly, in finding this value. Sec-
ondly, it possibly receives challenge answers from
the CCS, and makes them understandable (human-
readable) to R. Thirdly, It receives and controls both
data acquired by C and other interaction context data
captured by environmental sensors, and passes them
to a Food Analysis Manager;

(iv) Food Analysis Manager (FAM) is a food data analyst
that is able to perform a food item diagnosis. It
receives food item data and other interaction context
data from FIB, and applies some intelligent methods
to determine food item characteristics. Generally,
these methods analyse food item data versus food
characteristics specific knowledge through machine
learning techniques and/or statistical analysis (such
as principal components analysis, supervised pattern
recognition techniques). For instance, classification-
based methods match food item data against class
models in order to determine a value of a single
food item characteristic. Food item diagnostics and
identity data are successively sent to a Food Journal
Manager;

(v) Food Journal Manager (FJM) is a food database man-
ager that collects and organizes data coming from
FAM. It also provides results of query q(i, c) formu-
lated by a Collective Challenge Solver. Query results
consist in a set of values of characteristics c for food
items having the same identity properties i;

(vi) Collective Challenge Solver (CCS) is an intelligent
agent that plays the core role in the collective process
for generating reliable food information. It receives
from FIB a challenge question consisting in finding
the value of the food performance p that is possibly
shared by all food items with the same identity
properties i. Leveraging on a food knowledge base, it
selects food characteristics c that are factors of food
performance p. It formulates the query q(i, c) to FJM
and, once obtained query results, it applies collectively
reliable criteria in order to possibly determine the
value of the food property shared by food items with
same value i. A Reliability Authority establishes these
criteria whose application may require the CCS to use
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specific methods (e.g., statistical methods, machine
learning, neural networks) [21, 22];

(vii) Reliability Authority (RA) is an organizational entity
that is responsible for the process governance. It sets
and manages the criteria that CCS uses to provide
reliable information on food performances of some
food items belonging to a same food class. These
criteria consist of rules that underpin a collective
interpretation of food items' characteristics and deter-
mine reliability of information on food performances
derived from those characteristics.

3.2. The Process Flow. In what follows, we give a description
of the process flow that is also visually represented in Figure 1.
The process flow consists of two streams, say 1 and 2, which
are started by R and C, respectively.

In stream 1, R needs reliable information about a food
item performance p. He/she provides FIB with some identity
property value i and asks FIB for the value of p on the food
item. FIB controls if the request can be immediately satis-
fied by consulting a solved challenge database that collects
answers given to previous requests. Otherwise, FIB submits
a new challenge question to CCS.CCS identifies food charac-
teristics necessary to determine the value of p and asks FJM
for their values on all food journal items with the same value
i. CCS controls these data and decides if the value of p can be
computed and collectively reliable criteria (established by a
RA) are applicable. In positive case,CCSdetermines the value
of p, and it both inserts the new record in the solved challenge
database and sends the challenge answer to FIB that makes it
understandable to R.

In stream 2, C examines a food item through his/her own
devices (smart food things) in order to acquire measurement
data of food item properties. He/she provides FIB with
these data and descriptive identity data, say id, of that
food item. FIB collects and controls them as well as other
interaction context data captured by environmental sensors,
and it passes the whole data to FAM that determines some
food characteristic values, say c, by performing a food item
diagnosis. The pair (id, c) is sent to FJM that stores it a Food
Journal.

3.3. Exemplification Scenario. In what follows, we present a
scenario to clarify the collective process described above.

A consumer community faces the problem of knowing
relevant water performance (e.g., safety) of a branded bottled
water. A community member can act as contributor (C)
and/or recipient (R).

Cs are community members that are equipped with lab-
on-smartphones (taste-analysis based devices connected to a
smartphone), capable to acquire data on electrical impedance
of water. Each of them examines a sample of water, acquires
electrical impedance data, and transmits them to the FIBwith
somedescriptive identity data (e.g., “product batch number”).
FIB collects and controls these data coming from many Cs,
and it sends them to the FAM that makes a diagnosis of
the sampled water. FAM applies some methods, e.g., mul-
tiple regression analysis or principal component analysis to

identify chemical compounds (e.g. “magnesium,” “calcium,”
“sodium,” poisoning elements as “cyanide,” heavy metal
pollutants as “copper,” and “arsenic”) [23] andmicrobial pro-
perties (e.g., pathogenic bacteria as “coliform group” and
“escherichia coli”) [24]. These water characteristic values of
the water sample are permanently stored in the Food Journal.

R is a community member that needs to know perfor-
mance values (e.g., safety) of a branded bottled water b.
He/she uses his/her smartphone to scan the label of b to
acquire the product number of the batch that b belongs to,
and he/she queries the FIB about the safety of the water
contained in b. FIB acquires the R’s request and determines
if it is well formed (e.g., “batch number” correctness, water
performance checkability). If this request had not been
previously solved, the FIB submits the following challenge
to the CCS: “determine if all bottles in the batch of b are
safe.” The CCS selects water characteristics (e.g. cyanide,
heavy metal pollutants) that it needs to know in order to
solve the challenge. Successively, it queries the FJM to obtain
characteristic values referring to previously analysed bottles
belonging to the batch of b. Once obtained these values, it
solves the challenge by applying some methods based on
some collectively reliable criteria (established by the RA). In
carrying out its activity, the CCS could apply some machine
learning or statistical methods to establish:

(i) What is the set of water characteristics (e.g., escheri-
chia coli, cyanide, copper, and arsenic)?

(ii) How they combine in order to obtain category inspect
indicators (e.g., pathogenic bacteria, heavy metal
pollutants, and chemical contaminants)

(iii) How to use these indicators to determine the water
safety performance.

Lastly, the CCS sends the challenge answer to the FIB that
could possibly generate a hazardwarning for collective aware-
ness of a safety risk related to the water bottles’ batch which b
belongs to.

4. Functional Architecture of a CFA Platform

In what follows we describe a high-level architecture for a
CFAplatform, as it can support the collective process for shar-
ing reliable food information. The architecture, illustrated
in Figure 2, is structured as a classic three-tier architecture
commonly found in today’s software applications:

(i) An interface layer that enables the user to submit,
retrieve, and manipulate data

(ii) An application layer that performs data processing
and analysis

(iii) A storage layer where information is stored and
retrieved from a persistent database.

In our platform architecture, the interface layer is the front-
end interface between the user/consumer and the CFA
platform back-end, and it is responsible for interactions with
the external environment (user’s request formulation, sensor
data acquisition, and information presentation/visualization
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Figure 1: A representation of the Collective process for generating reliable food information.

to the user). In particular, the interface layer comprises simple
and empowered nodes that are used by the CFA platform
to interact with the user, food items and the surrounding
environment. A simple node comprises user interface devices
while an empowered node include also smart food things,
environment sensors and wearable devices, where

(i) user interface devices are input-output devices (e.g.
smartphone, tablet) that take input from and deliver
output to the user in his/hers foreground attention.
These devices are able to manage users’ requests,
manual data entry and acquire data from FIA (e.g.
from labels, tables, RFID chips, and NFC tags) and
provide human readable food information to users.

(ii) smart food things are sensing devices, owned by
contributor users that are able to capture implicit
signals from food (e.g. food near-infrared emission,
food volatile compounds) with or without requiring
user’s action or attention. Smart food things can be

connected and synchronized to users’ interface devi-
ces.

(iii) environmental sensors are networked sensors that
take environment data without requiring user’s action
or attention. These devices include sensor devices
embedded in food packaging, containers, and food
appliances and small tools (e.g., kitchen or cooking
utensils), as well as ambient sensors;

(iv) wearable devices are devices that take input from the
user in the background of user’s attention (also called,
peripheral attention), while he/she is involved in food
consumption activities, such as many wearables for
food intake monitoring.

The application layer comprises the following:
(i) Food Information Broker: this module has the follow-

ing main functionalities:

(a) It receives unformatted digital data from an em-
powered node and translates them in a proper
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Figure 2: A three-tier architecture for the CFA platform.

schema or grammar in order to generate a well-
formed digital document (e.g., XML) represent-
ing a diagnostic data model and then send it to
the FAM so that it can be processed;

(b) It receives data from a simple node and gener-
ates a formatted digital document to properly
define the challenge to be solved by the CCS;

(c) It verifies if a challenge has been already solved,
by querying the Solved Challenges DB.

(d) It returns to a simple node challenge results in
a formatted document that can be easily pro-
cessed and converted in human-readable views.

(ii) FAM Data analysis engine selector: this submodule
receives the formatted diagnostic document from

FIB. By analyzing document entities, it automatically
at run-time selects, from the Model DB, library
software modules for the FAM data analysis solver.
They are the implementation of some model/method
(statistical, deep learning) for determining food char-
acteristics from sensing data. The selection can be
driven by empowered node features contained in the
diagnostic document.

(iii) FAM Data Analysis Solver: this submodule receives
the selected software modules that complete a food
diagnosis process engine. By leveraging on an aux-
iliary database (e.g., a food item training set), the
engine produces characteristic values of a single food
item and it stores them in the Food Journal.
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(iv) Collective Challenge Solver: It receives a formatted
challenge question from FIB. It leverages on a Food
Class DB to analyze data coming from Food Journal,
in order to determine the challenge results according
to some collectively reliable criteria. To perform its
analysis it may use complex software libraries such
as extreme/deep learning machines, neural networks,
classifier algorithms, clustering algorithms, and statis-
tical/regression algorithms.

The storage layer contains persistent food data. In particular,
it comprises the following:

(i) Food ItemTraining Set: a database containing data and
inference rules to determine food characteristics of a
food item.

(ii) Model DB: a set of library software modules that can
complete a diagnosis process engine.

(iii) Food Journal: a public ledger containing data on food
characteristics of analyzed food items.

(iv) Food Class DB: a set of library software modules that
are the systematic representation of collective reliable
criteria established by the RA and used, on a case by
case basis, to determine a class food performance.

(v) SolvedChallenges DB: a database containing challenge
questions already solved by the CCS.

5. Entities of the User-CFA Platform
Interaction Context

In order to support the collective process, described in
Section 2, the CFA platform needs to acquire data from

(a) a user in foreground attention. The user explicitly
interacts with platform interface devices that are in
the foreground of his/hers attention, i.e. he/she is
intentional conscious of interacting with the CFA
platform. For instance, he/she could use handheld
devices to get data from some food information arti-
facts, such as labels, RFID, and NFC tags, and, in the
place where the artifacts are located, transmits them
to the platform. He/she could also interact with smart
food things in order to capture and communicate data
on some property of a food item.

(b) a user in background attention. The user implicitly
interacts with platform interface devices that are in
the background of his/hers attention, i.e. they escape
the user’s observation. For instance, wearable sensors
could provide the CFA platform with data for real-
time food intake monitoring [25].

(c) a food item or the environment, without requiring
any user’s action or attention. Some smart things
automatically detect food properties and environ-
ment conditions, and transmit related data to the plat-
form. They include sensor devices embedded in food
packaging, containers, and food appliances and small
tools (e.g., kitchen or cooking utensils), as well as
environmental sensors.

In what follows we summarize the main entities with their
properties (attributes) that are relevant for the CFA process
and characterize the CFA platform interaction context.

Context entities:

(i) user: a consumer who interacts with the platform
through interface devices (including his/her own
handheld devices) located in the environment, as
he/she participates to the CFA process as recipient or
contributor. In the recipient role, he/she asks the
platform to give him/her validated information about
a food attribute. In the contributor role, he/she can
also contribute to the validation process by communi-
cating food item (a class identifier and a food attribute
value) and other interaction context information to
the platform.

(ii) food: it refers to a food item which the user and the
platform can interact with. Food related stimuli are
perceived by the user and, possibly, smart food things
detect signals coming from the food item. Attribute
values of the food item can be exchanged during the
interaction between the user and the platform;

(iii) environment: it is the physical and organizational
environment where interactions take place (e.g., a
home kitchen, a restaurant, and a food shop). Envi-
ronmental conditions have direct or indirect influ-
ence on the behaviour of both consumer and inter-
face devices during the interaction. Physical prop-
erties, like light, humidity, temperature, localization,
and spatial layout of the environment, may affect
both consumers' perception and instrumental mea-
surements of food item properties. Organizational
aspects, like rules, shop opening hours, and working
time, may drive the provision of information from the
platform.

Context entities attributes are

(i) Identity. It refers to properties that identify a context
entity or a class the entity belongs to. In particular, the
CCS of the platform can build a food class identity by
inferring class properties from food item data coming
from instrumental evaluations of food item qualities;

(ii) Time. It comprises temporal aspects that may range
from a current time representation to a complete time
history of context entity properties. When referred to
a food item, values of this attribute allow the CFA
platform to recognize or predict over time qualities
of food items in a certain class. For instance, a time
series of values of properties, like temperature, pH,
or microbial growth, could be used to generate and,
share, within a consumer community, information
on when food items of a certain class are at their
nutritional best and are safe to eat, or on when they
should be disposed of to avoid ill health;

(iii) Location. Values of this attribute may be quantitative
or qualitative. They represent current and previous
positions of context entities in absolute or relative
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terms. When referred to food, location is a funda-
mental attribute when creating a CFA based on geo-
graphical traceability or geographic-based origin de-
termination of food products.

(iv) Activity. It refers to fundamental changes of entity
attributes that occur when a food activity is per-
formed by a consumer. In particular, changes of food
item characteristics, like surface conditions, temper-
ature or size, could be used by the CFA platform to
drive a collective awareness on consumption activities
(e.g., cooking, or eating) on a certain class of food
items.

6. Food Analysis Technologies for
a CFA Platform: A Review of Reviews

Food analysis technologies are based on a plethora of quan-
titative/qualitative food analysis techniques and methodolo-
gies investigated by many researchers of various scientific
fields. These methods are addressed to automatically acquire
food item information (e.g., food quality traits) by using
sensor devices, and they can be employed in technical
approaches to the development of a CFA platform. Here, we
refer to a technical approach as a collection of techniques,
tools, devices, and knowledge, that is applied to measure a
certain food characteristic (i.e., physical, chemical, biological,
and microbiological attributes) in order to determine a
certain set of food performances.

In this section, we present a review of review articles
that were published from 2012 to 2017 and explicitly referred
to technologies capable of nondestructively acquiring and
quantifying food characteristics (external and internal quality
attributes) for fast, real-time food performance assessment.
The intent is to answer the following questions:

(i) Which technical approaches to food-data capture and
analysis are investigated in scientific research litera-
ture?

(ii) Which food characteristics could be detected by these
approaches?

(iii) Which information on food performances could be
provided?

According to Kitchenham [26] we have been undertaken a
systematic literature review of reviews, in order to provide a
complete, exhaustive summary of current literature relevant
to our research questions. The steps of the methodology we
followed are below described, while Figure 3 shows the
workflow we adopted:

(i) Step 0. Initialization: we selected Scopus as scientific
database where to perform our search. Scopus deliv-
ers a comprehensive overview of the world's research
output in our domain of reference and it has the
ability to handle advanced queries. We initialized a
list L of search keywords with English terms related
to technologies capable of nondestructively acquir-
ing and quantifying food characteristics (e.g., “spec-
troscopy,” “camera photo,” “e-nose,” “e-tongue,”and

“machine vision,” as well as synonymous, and other
broader/wider terms).

(ii) Step 1. Search process: We performed a search on
Scopus database by using keywords in the list L
coupled with term “food” and other terms used for
major food groups; then, we filtered retrieved papers
by choosing only those indexed as reviews and pub-
lished since January 2012.

(iii) Step 2. Screening relevant papers: We manually anal-
ysed metadata (authors, title, source, and year) in
order to detect and remove duplicated items. More-
over, we analysed the abstract of each paper in order
to determine whether it matched our inclusion crite-
rion:

(a) the paper is classifiable as a research paper re-
view;

(b) the review specifically focuses on research appli-
cations for detection and classification of food
properties;

Moreover, the list L was possibly extended by adjoining
new terms found among the author keywords of each paper.

Steps 1 and 2 were iteratively performed until no newer
keywords or new papers were found. At the end of this cycle
we obtained the final set R of review papers to be analysed.

(iv) Step 3. Review papers analysis. For each review paper
r ∈ R we identified the set TRP(r) of technology re-
search patterns that the paper focuses on. An element
of TRP(r) is represented by a triple (ti, Ci,and Pi),
where ti is a technical approach, Ci is the set of food
characteristics measured by ti, and Pi is the set of food
performance determined by ti from the values of the
food characteristics of Ci.

6.1. Results and Discussion. The resulting set R is constituted
by 67 review papers whose references are listed in the
Appendix. In what follows we present and discuss results
with respect to the research question we posed at the
beginning of this section. Table 1 shows the set T of technical
approaches reported in the literature, Table 2 describes food
characteristics that can be detected by these approaches, and
Table 3 shows the set of information on food performances
that can be determined.

In Table 4, for each technical approach ti, we summarize
the set of technological patterns that comprise ti, and we
indicate the review papers focusing on it.

From these results, it emerges that five class of technolo-
gies are promising to be a valued addition to the development
of CFA platforms:

(i) Spectroscopy. These technologies are mostly based
on vibrational spectroscopic data acquisitions and
statistical analyses (e.g., principal components anal-
ysis, supervised pattern recognition techniques). The
first ones collect spectroscopic data (e.g., mid- and
near-infrared reflectance or transflectance data) as
they measure molecular vibrations either by the
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Figure 3: Systematic literature review workflow.

Table 1: The set T of technical approaches.

Technical Approaches
t1: near infrared spectroscopy t8: Gas Biosensors
t2: mid infrared spectroscopy t9: Gas Electrochem sensors
t3: raman spectroscopy t10: Gas Optical sensors
t4: fluorescence spectroscopy t11: Solids and Liquids Gravimetric sensors
t5: camera image sensors t12: Solids and Liquids biosensors
t6: hyperspectral imaging t13: Solids and Liquids Electrochem sensors
t7: Gas Gravimetric sensors t14: Solids and Liquids Optical sensors

Table 2: The set C of food characteristics.

Food Characteristics
Index Name Description

c1 microbial properties food kinetic properties that can be measured by microbial detection (e.g.,
the total count of microorganism in a sample of food)

c2 chemical properties food kinetic properties that can be chemically detected (e.g., pH value and
total volatile basic nitrogen);

c3 chemical compounds chemical compounds’ properties (e.g., concentration level);

c4 surface conditions visible attributes describing the physical outer aspect of a food item (such
as colour, shape);

c5 mass-volume related properties physical properties of a food sample (e.g., weight and the volume);

c6 volatile organic compounds compounds of organic vapours or gases released into the air by solid or
liquid foods.
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Table 3: The set P of food performances.

Food Performances
Index Name Description
p1 freshness/spoilage spoilage/edible level of a food product
p2 hazard degree of hazard, e.g., presence of illegal ingredients or treatments contaminating or poisoning a food product
p3 ingredients edible substances in a dish or a food product
p4 category food group (e.g. fruits, dairy, meat, fish) or food type (e.g. apple, orange, apricot) which a food sample belongs to
p5 variety variety of a food sample belonging to a food type (e.g. sunstar orange, belladonna orange, tarocco orange)
p6 nutrients nutrients (protein, carbs, fat, calories, vitamins, minerals) and their quantities in a food sample
p7 taste perception level of tastes (e.g., sourness, saltiness, umami, bitterness, and sweetness)
p8 quality grade quality assessment a food sample according to some standardised grading system
p9 geographical origin geographical area where a food sample has been originate, according to some geographical classification
p10 adulteration presence and quantities of improper substances in a food product

Table 4: Technological research patterns and related works.

Technical
Approach Food Characteristics Food Performances Review Papers

t1 c1,c2, c3 p1, p2, p6, p8, p10
[r1] [r2] [r3] [r6] [r7] [r8] [r9] [r10] [r11] [r12] [r13]
[r14] [r15] [r16] [r17] [r18] [r19] [r20] [r22] [r23]
[r24] [r26] [r25] [r28] [r31] [r32] [r55] [r67]

t2 c2, c3 p1, p2, p3, p4, p8, p9, p10
[r2] [r10] [r11] [r12] [r13] [r14] [r17] [r19] [r21] [r23]

[r31] [r32]

t3 c1,c2, c3 p1, p3, p8, p10
[r5] [r8] [r9] [r11] [r12] [r13] [r14] [r21] [r23] [r25]

[r32]
t4 c1, c2 p1, p10 [r8] [r11] [r12]

t5 c4, c5 p1, p5, p6, p8
[r4] [r27] [r35] [r36] [r37] [r39] [r40] [r42] [r44]

[r41] [r43] [r45] [r67]

t6 c1, c3, c4, c5 p1, p5, p6, p8, p10
[r9] [r12] [r13] [r14] [r15] [r16] [r18] [r21] [r23] [r27]

[r28] [r29] [r30] [r33] [r34] [r38]
t7 c6 p1, p10 [r46]
t8 c6 p1, p10 [r46]

t9 c1, c6 p1, p4, p8, p9, p10
[r46] [r47] [r48] [r49] [r50] [r51] [r52] [r53] [r54]

[r55] [r56]
t10 c6 p1, p10 [r47] [r48] [r49]
t11 c3 p1, p7 [r53] [r62] [r63] [r65]
t12 c3 p1, p5, p7 [r62] [r63] [r65]

t13 c1, c3 p1, p2, p4, p7, p9, p10
[r54] [r55] [r56] [r57] [r58] [r60] [r61] [r62] [r63]

[r64] [r66]
t14 c1, c3 p1, p7, p9, p10 [r46] [r53] [r58] [r62][r63] [r64] [r65]

absorption of light quanta or the inelastic scattering
of photons; the second ones are suited to perform
targeted and nontargeted screening of ingredients
using spectral profiles [27, 28]. They are at the core of
food knowledge-based approaches aimed to analyze
foods at the molecular level. In most laboratory
researches, they are used to collect spectroscopic data
coming from scanned training food samples, to build
a classification or cluster model according to known
values of a certain property, and to determine the
property value of a new food sample by matching
sample’s spectroscopic data against class models [29].
For example, spectroscopic analysis has been success-
fully applied in food safety analysis and prediction
for several food categories, such as meat, fish, fruits

and vegetables. In particular, the verification through
spectroscopy of the freshness and the presence of any
adulterants (or improper substances) in food can be
based both on the chemical compounds of food and
on the analysis of some properties (such as pH, TVB-
N, and K1.), as well as on analytical techniques based
on microbial count. Reviews highlight that several
methods to assess food freshness have been devel-
oped. Suchmethods are based on themeasurement of
food deteriorative changes associated with microbial
growth and chemical changes.

(ii) Machine vision. Recognition methods embedded
in computer vision systems can detect visible char-
acteristics by analyzing food images captured with
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a camera-enabled device (e.g., a smartphone camera
photo).They can be employed to determine data relat-
ing to the mass, weight and volume of a food product
and to identify its food category and subcategory.
However, several reviews highlight the existence of
substantial obstacles to recognize food in complex
cases, such as a home cooked meal or a composite
plate [30]. Combinations of these methods in con-
junction with databases of food knowledge (e.g.,
nutritional facts tables) and consumers’ profiles can
be applied to provide quantitative analysis of various
food aspects (e.g., amount of calorie and nutrition
in the food), even in a personalized manner. Fur-
thermore, other contextual clues, such as restaurant
location and menus, can be also utilized to augment
or improve the information provided by the combi-
nation of these methods [31–33];

(iii) Hyperspectral imaging. Hyperspectral imaging
(HSI) is an approach that integrates conventional
imaging and spectroscopy to attain both spatial and
spectral information from a food object. “The spatial
features of HSI enable characterization of complex
heterogeneous samples, whereas the spectral features
allow a vast range of multiconstituent surface and
subsurface features to be identified” [34]. Applica-
tions of this technology make it possible to analyze
food quality, freshness, and safety, especially for fruits
and vegetables Pu et al. [35];

(iv) Odour analysis (e-noses). These technologies mimic
the human sense of smell, by identifying and analyz-
ing some food properties on the basis of its odour.The
employed methods are based on an array of sensors
for chemical detection of analysis of volatile organic
compounds (VOCs) and a pattern recognition unit
[36]. The sensing system consists of broadly tuned
sensors (optical, electrochemical, and gravimetric)
that are able to infer a variation of concentration a gas.
Optical sensors work by detecting a shift in the emis-
sion or absorption of different types of electromag-
netic radiation on binding with a desired analyte [37];
electrochemical sensors detect a variation of electrical
conductivity of a gas while gravimetric sensors detect
a variation of mass of a gas [38]. These technologies
are mainly used to discriminate different food vari-
eties for food authenticity and adulteration assess-
ment [39];

(v) Taste analysis (e-tongues). These technologies are
based on analytical tools mimicking the functions of
humangustatory receptors. Liquid samples are direct-
ly analysed without any preparation, while solids
require a preliminary dissolution before measure-
ment [40]. Like odour analysis systems, taste analysis
tools include an array of nonspecific sensors and a set
of appropriate methods for pattern recognition [41].
They are employed to identify variety or geographical
origin, to detect adulteration, and to assess authentic-
ity of many food products [42].

7. Conclusions

Today's consumers have more and more need of reliable
food information for their food consumption activities to
become aware of the wider consequences of decisions they
make. Recent cases of adulterations, allegations of fraud and
subterfuges that have invested food sector have increased
this trend. Current conventional ways of providing food
information (e.g., labelling, mass media) have limited chance
to satisfy this need, as they are usually product/producer cen-
tered and driven by food producers and distributors that tend
to reveal only information that suit their marketing approach.

As opposed to that, we have introduced a democratic and
bottom-up approach that lets consumers be more food aware
as helping them to make more informed decisions in their
food related activities. This approach leverages on the super-
organism and the capabilities of smart food technologies
in determining physical, biochemical, and microbiological
properties of food and beverages. At its core, there is a coop-
erative process that is aimed to foster collective food aware-
ness, as letting a consumers’ community share reliable infor-
mation derived from scientific instrument measurement of
food properties.

The main contribution of this paper is to envisage the
organization of such a process, as well as a technological
platform capable to support it. Moreover, in order to point
out significant research outcomes potentially useful for devel-
oping the platform, we have conducted a survey of academic
papers reviewing technical approaches for determining food
characteristics and performances.

We conclude by addressing what we view as limitations
and areas for further development of this article.

Firstly, we have presented only a framework in which
details of the cooperative process remain unspecified. For
instance, how to define a criterion for deriving a food class
performance? When do we consider “collectively reliable”
such a criterion? How do we empirically assess the coopera-
tive process effectiveness? These are relevant questions when
it comes to translating our framework into concrete guide-
lines for the platform design.

Secondly, all the reviews in our survey have been con-
ducted by scholars and, thus, they have been concerned with
research findings oriented to clarify or discover conceptual
state of a technology. A more relevant contribution would
be given by investigating current gaps between technology
research and mobile food diagnostics tools already available.
Identifying and understanding knowledge and application
gaps is vital for researchers so they can recognize technical
challenge, missing insight or pieces of complementary tech-
nology in order to move forward from research to develop-
ment and viability of a platform for collective food awareness.

For us, the above considerations suggest a clear direction
for future research. Together with a more extensive explo-
ration of our process model, we need empirical work that
reflects both technological and food consumer behaviour
perspectives.

Appendix

See Table 5.
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