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Symbolic gestures are the hand postures with some conventionalized meanings. They are static gestures that one can perform in
a very complex environment containing variations in rotation and scale without using voice. The gestures may be produced in
different illumination conditions or occluding background scenarios. Any hand gesture recognition system should find enough
discriminative features, such as hand-finger contextual information. However, in existing approaches, depth information of hand
fingers that represents finger shapes is utilized in limited capacity to extract discriminative features of fingers. Nevertheless, if
we consider finger bending information (i.e., a finger that overlaps palm), extracted from depth map, and use them as local
features, static gestures varying ever so slightly can become distinguishable. Our work here corroborated this idea and we have
generated depth silhouettes with variation in contrast to achieve more discriminative keypoints. This approach, in turn, improved
the recognition accuracy up to 96.84%. We have applied Scale-Invariant Feature Transform (SIFT) algorithm which takes the
generated depth silhouettes as input and produces robust feature descriptors as output. These features (after converting into unified
dimensional feature vectors) are fed into a multiclass Support Vector Machine (SVM) classifier to measure the accuracy. We have
tested our results with a standard dataset containing 10 symbolic gesture representing 10 numeric symbols (0-9). After that we have
verified and compared our results among depth images, binary images, and images consisting of the hand-finger edge information
generated from the same dataset. Our results show higher accuracy while applying SIFT features on depth images. Recognizing
numeric symbols accurately performed through hand gestures has a huge impact on different Human-Computer Interaction (HCI)
applications including augmented reality, virtual reality, and other fields.

1. Introduction

Gesture-based interaction has been introduced in many HCI
applications which allow users to interact intuitively through
computer interfaces in a natural way. Rather than using
traditional unimodal inputs, blending alternative style of
interactions, such as hand gestures along with mouse and
keyboard, introduces more degree of freedom (DoF) to the
computer users. Nowadays, hand gesture-based interaction
is a prominent area of research which has a huge impact
in the design and development of many HCI applications
like controlling robots through hand gestures, manipulating
virtual objects in an augmented reality environment, playing

virtual reality games through different hand movements,
communicating through sign languages, etc. We need these
types of interaction to achieve interaction design goals like
effectiveness, efficiency, affordance, and feedback.

Hand gesture can be defined as the movement of hands
and fingers in a particular orientation to convey some
meaningful information [1] like pointing to some object
through index fingers, expressing victory sign or OK sign,
waving hands, grasping an object, etc. Symbolic hand gestures
represent some specific symbols like ’OK’ sign or gesture
that represents numeric symbol 1" (raising the index finger
and bending all other fingers). In most of the cases, these
gestural movements conveys single meaning in each culture
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having very specific and prescribed interpretations. More
importantly, symbolic gestures are alternative to verbal dis-
course structure, different from everyday body movement
which is consciously perceived. These gestures are observed
in the spatial domain and are called static hand gestures
characterized by the position of fingers (finger joint angle,
orientation, and finger bending information). Unlike static
hand gestures, dynamic gestures are considered in the tempo-
ral domain, presenting gesture as a sequence of hand shapes
which includes starting through ending hand pose (e.g., hand
waving, boxing).

There are different approaches to capture and recognize
these gestures. Computer vision-based approach imposes
restrictions on the gesturing environment, such as special
lighting conditions, simple and uncluttered background, and
occlusions (the gesturing hand is occluded by other parts of
the body) [1]. Due to these restrictions segmentation of hand
may cause the reduction in hand gesture recognition accu-
racy. Hand poses, generated in the process of gesticulation,
can also be detected by means of wearable sensor like data-
gloves. The data-gloves are embedded with the accelerometer,
gyroscope, bend sensor, proximity sensor, and other forms of
inertial sensors [2]. These sensors collect hand-finger motion
information as multiparametric values. However, the sensor-
based gesture recognition approaches have limitations in
terms of naturalness, cost, user comfort, portability, and data
preprocessing.

The recent advancements in stereo vision camera that
utilizes depth perception from smaller to larger distances
have opened a huge scope for the researchers to work
with depth information [3]. Traditional web cameras do not
provide the depth values (the distance of the gesturing hand
from the camera). Depth information can help eliminating
occlusion problems easily and can quicken the segmentation
process with less error. In an occluded background, using
depth information it is possible to extract the gesturing hand
movement information including other important features
(e.g., finger bending information) which can be effectively
utilized in feature representations. Moreover, static gesture
can be performed by the users with varying hand size,
changes in hand position (orientation, rotation), and different
illumination conditions. Scale-Invariant Feature Transform
(SIFT) [4] is an algorithm that works better for these types
of variation. The algorithm generates key points from images
and provides 128-dimensional feature vectors.

In this research work, we try to recognize symbolic hand
gestures representing 10 numeric symbols from 0 to 9. These
are very close gestures, differing only in slight variations
(e.g., the difference between numeric symbol 2 and numeric
symbol 3 is due to the presence/absence of one finger only)
of finger positions. With the help of depth data stream, after
a quick and robust segmentation process, we have calculated
depth threshold based on which the contrast varying depth
images are generated according to the depth map of the
individual gesture. This process was applied to 100 image
instances per gesture. In each image for the same gesture, we
got the different number of SIFT keypoints. By combining
the keypoints, we have generated bag-of-feature (BoF) vector
with the help of the k-means clustering technique to generate
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uniform dimensional feature vectors and classified using a
multiclass SVM.
The main contributions of this paper are as follows:

(i) Generating contrast varying grey-scale depth images
according to the depth map to utilize local shape
information of hand fingers which has contributed to
the improvement of recognition accuracy.

(ii) Applying SIFT over depth images to achieve image
invariant properties (translation, scaling, rotation,
illumination, and local geometric distortion).

The remainder of the paper is described as follows.
Section 2 elaborates the related research. Section 3 describes
the proposed approach. Section 4 presents the experimental
results. The last Section 5 describes the conclusion and the
future scope of the work.

2. Related Works

Human hand is a highly articulated model, prominent in
making deft poses. To recognize those hand poses many
research works have utilized RGB cameras and applied either
template-based approaches or model-based approaches on
RGB images. Conventional RGB image-based gesture recog-
nition techniques need to consider many research challenges,
such as light sensitivity, cluttered background, and occlu-
sions. However, the recent emergence of depth sensors has
given an opportunity for the researchers to utilize the depth
information in order to overcome those challenges. The depth
data stream provided by the depth sensors (e.g., Microsoft
Kinect, Intel Real Sense, Asus Xtion Pro) corresponding
to the hand gesture images has given new dimensions
to conduct research in hand segmentation process, finger
identification techniques, finger joint detection, and finger
tracking. Depth value indicates the distance of the gesturing
hand from the RGB-Depth (RGB-D) camera in millimeters
appropriate to make the segmentation process faster. Among
the depth sensors, we have used Microsoft Kinect depth
sensor that captures depth image in 640 x 480 resolution in a
frame rate of 30 fps and 11-bit depth under the environment
consisting of any ambient light. Depth information helps to
extract additional features which can significantly improve
the recognition results. Many researchers have developed
depth sensor-based applications like interactive displays
through Kinect [5], a system for therapeutic interventions
[6], robot navigation through gestures [7-9], Kinect-based
American Sign Language (ASL) recognition [10], etc. Other
different applications of Kinect depth sensor includes catego-
rizations of indoor environments by mobile robots equipped
with Kinect [11], measuring canopy structure for vegetation
[12], just to name a few.

From the depth sensors, the most common features
used in hand posture recognitions [13] are skeleton joint
positions, hand geometry, hand-finger shape, area, distance
features, depth pixel values, etc. Generally, these features
can be categorized as local features or global features. The
major challenges of these feature descriptors are variations
of gesturing hands while articulating an emblem or symbolic
gesture. A gesture may slightly differ in terms of hand shape
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and size, variations in translation, or rotation of the fingers for
the same gesture. A robust hand gesture recognition system
should be invariant to the scale, speed, and the orientation of
the gesture performed.

The approaches that are followed by static gesture recog-
nition system from binary images in [14] and time-series
curves in [15] do not facilitate the possibility of extracting
local finger context information. The authors in [14] have
captured RGB images from webcam and converted them to
binary images and applied SIFT algorithm to determine the
recognition accuracy. In binary images, the finger context
information, shape, orientation, bending fingers, and occlu-
sion, cannot be preserved, a limitation that can be overcome
by utilizing depth map information of the gesturing hand.
SIFT keypoints are important feature points which are well
distributed and contain information about not only thumb
and baby fingers but also finger bending information of index,
middle, and ring fingers. Figure 1 shows the differences of
SIFT keypoints in gesture 8 mapped into the binary image (7
keypoints) (Figure 1(b)) and into depth image (56 keypoints)
(Figure 1(d)). This information is not present in the case of
binary image or time-series curve. SIFT works on local ori-
ented features rather than topological shapes of opening fin-
gers which are considered as the global features. In [15], global
features are used to generate time-series curves (Figure 1(f))
after the segmentation process as shown in Figure 1(e) from
the hand shape represented in binary image. The edit-
distances are calculated to apply distance-based matching
algorithm, such as Finger-Earth Mover’s Distance (FEMD).
Edit-distance-based matching algorithms are not completely
rotation, orientation invariant because they are measured by
comparing time-series trajectories based on the proximity
distance and not based on the local shape information.
Moreover, the temporal information is better for dynamic
gesture recognition rather than static gesture recognition [16].

Local features measure the characteristics of a particularly
important region of the object, superior in discriminating fine
details. In [17], shape descriptor-based algorithm and weak
learning-based strong classifier were applied to recognize
three symbolic gestures (palm, fist, six). Their goal was to get
orientation invariant property of those gestures. They have
used SIFT features as local features in weak classifier for
hand detection and trained each classifier independently. The
accuracy, in this case, depends on the large set of training
images which they have not considered. They have used a
varying number of training images for individual gestures.
They have not considered the fact that SIFT features extracted
from the different gesturing image can form a natural group
of clusters having feature vectors of the unified dimensions
appropriate to feed into a classifier that can recognize more
than two classes. We have achieved this by clustering fea-
ture descriptors and generating BoF features. In [18, 19],
the researchers have considered Haar-like features, applying
learning-based techniques to recognize hand gestures. They
required a huge number of images for training and testing
with high computational power and they have not considered
the scale-invariant property for object detection.

Global features measure the characteristics of the whole
image and face difficulties in capturing fine details. An

example would be the contour representation of a hand
gesture image (e.g., the hand contour image of Figure 1(e))
which gives hand-finger shape information from the whole
image. The limitations of contour-based recognition methods
are that they are not robust on local distortion, occlusion, and
clutter [20]. To extract the complete hand posture informa-
tion while a finger and a palm are overlapped, such as bending
fingers, as shown in Figure 1(d), the consideration of hand
contour as the global feature representations is not enough.
The similar problems are also mentioned in the recognition
approaches like skeleton-based recognition methods [21],
shape contexts based methods [22], and inner-distance meth-
ods [23]. A solution to these problems was proposed using a
novel distance-based measurement technique called Finger-
Earth Mover’s Distance (FEMD) [15]. They represented the
shape of hand fingers as a global feature (the finger cluster)
by analyzing time-series curve. In the curve, the Euclidean
distance between each contour point and the center point is
considered in one dimension and the angle of these contour
points made with the initial point relative to the center point
is considered as another dimension. Figure 1(f) shows the
time-series curve of the topological hand shape considered
as finger parts and matches those fingers only, not the whole
hand shape. Features only from opening finger parts may
not give good recognition results. Rather features including
bending finger parts as local features will play a significant
role to improve the recognition accuracy. We have considered
those features in our proposed approach. Moreover, for
gesture recognition, they [15] have applied template matching
with minimum dissimilarity distance which may not give
improved recognition accuracy on both changes in orienta-
tion and rotation of a particular pose. We propose to over-
come this problem using local features found as SIFT key-
points. Edit-distance-based time-series matching approaches
are more applicable for dynamic gesture recognition due
to their spatiotemporal features, rather than static symbolic
gesture recognition. Template-based approaches are good to
recognize the shape as a whole but lack in terms of invariance.
SIFT algorithm is known to be robust for its distinctiveness
and invariance to rotation, scale, and translation in object
recognition. Depth image acquired using Kinect depth sensor
suffers from low grey level contrast that can cause an unstable
set of keypoints. Recently in [24], the researchers used
Kinect-based depth map information to discard the SIFT
keypoints that are located at the boundaries of an object.
They applied Canny’s edge detection algorithm [25] on depth
images and generated an object model to store depth values
and distance to the nearest depth edge for the remaining
SIFT keypoints. They have used Euclidean distance-based
nearest neighbor algorithm to rank the keypoints matches
and performed RANSAC-based homograph estimation for
object pose estimation. Their aim was to identify predefined
objects in the surrounding environment for the visually
impaired. To extract a stable set of SIFT keypoints different
techniques were proposed by the researchers. Preprocessing
on the medical image (retina image) was done to reduce the
number of SIFT keypoints in [26].

In [27], the researchers have extracted the SIFT keypoints
from both the color and the depth image and tried to find
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F1GURE I: Differences in the number of SIFT keypoints in both (a) binary image and (c) depth image and the use of finger bending information.

out the correspondence of SIFT keypoints between those two
images. They have combined SIFT descriptor with Harris
corner detector to compute SIFT features at predefined spatial
scales. They enhanced the depth image contrast by applying
histogram equalization without utilizing the depth values
explicitly of the gesturing hand to generate contrast varying
depth images. However, we have considered the depth map

information to determine the contrast level and generate
depth silhouettes accordingly.

SIFT algorithm along with its different variants like PCA-
SIFT [28], SURF [29], and GLOH [30] has been applied in
various applications such as image stitching, object recogni-
tion, and image retrieval. SIFT and SURF algorithm were also
applied in simultaneous localization and mapping (SLAM)
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FIGURE 2: The architecture to recognize symbolic gestures.

with RGB-D Kinect sensor on robots [31]. SURF is the fast
approximation of SIFT that uses box filter instead of Gaussian
filter. However, SURF is not good at different illumination
conditions [29]. To improve the time complexity of SIFT
several alternatives were proposed, such as Binary Robust
Independent Elementary Features (BRIEF) [32] and Oriented
FAST and Rotated BRIEF (ORB) [33] that uses binary
descriptor instead of floating point descriptor to achieve
faster performance suitable for real-time applications.

In [34], the authors showed the comparisons among
different image matching algorithms, such as SIFT, SURE,
and ORB. They have manually performed transformation and
deformation on the images in respect to rotation, scaling,
fish eye distortion, noise, and shearing. The comparison
was done based on different evaluation parameters, such
as the number of keypoints in images, execution time, and
matching rate. For most of the scenarios they have found SIFT
performed best. The researchers in [35] tried to use depth
map to perform smoothing process in the scale-space. They
smoothed the scene surface considering smoothing quantity
as a function of the distance given by the depth map so that
‘the further a given pixel is, the less it is smoothed. They
tried to inject the smoothing filter in the SIFT algorithm and
determined the repeatability score to evaluate the keypoint
detection performance. Their goal was to find the keypoint
repeatability under viewpoint position changes. However, the
dataset we have used in our research was generated using sin-
gle depth camera without changing the viewpoint positions.

Bag-of-Feature (BoF) representation was used in [36] to
obtain a global information of visual data out of arrays of
local point descriptors generated by SIFT algorithm. SIFT
algorithm can extract higher dimensional feature points from
the images even with lower resolutions but compromises

the efficiency in terms of computation. To address this
problem, BoF approach has been applied in reducing feature
dimensions, redundancy elimination, and extracting global
information from local SIFT features [36]. Moreover, the
BoF approach has been considered as an efficient method to
represent visual contents in hand gesture recognition [37].
The local feature points extracted from SIFT are fed into
clustering algorithm to learn visual codebook and then each
feature vector is mapped to a visual codeword represented by
a sparse histogram. We have applied this technique to depth
images for the classification using a multiclass SVM.

3. Proposed System

The proposed system consists of (1) hand segmentation and
depth silhouette generation, (2) SIFT keypoints extraction,
(3) clustering keypoints and generating BoF descriptors, and
(4) symbolic gesture recognition using SVM.

The architectural diagram of the proposed approach is
shown in Figure 2. The standard dataset [15] has considered
640 x 480 image resolution to capture the RGB image and the
depth map of gesturing hand using Microsoft Kinect. Depth
values are stored in millimeters. After calibration, we have
applied the segmentation process as described in [15], except
generating grey-scale variations on depth images.

3.1. Hand Segmentation. Segmentation is the process of
removing the noninteresting area from the pertinent object.
Many of the techniques in hand region segmentation worked
on color space-based detection like skin-color detection,
YCbCr/HSV color space filtering, and so on. These color-
based techniques have limitations due to the noise, lighting
variations, and background complexities. However, utilizing
depth map information combined with color information
improves the segmentation process which in turns gives
better recognition accuracy.

Before segmenting the hand shape or region of inter-
est (ROI), some preprocessing is performed. This involves
calibrating the RGB and Depth Images. The RGB image
is also converted into grey-scale. To extract the region of
interest, first, we locate the smallest depth value from the
depth image. This corresponds to the closest point of the
hand from the camera plane. We call this value minimum
distance. Next, an empirical threshold value is added to the
minimum distance to give the segmentation threshold. This
segmentation threshold is then used to segment the hand
region from the rest of the image. This approach has proven
to be robust in cluttered and noisy environments [38]. It is
important to note that the hand should be the closest object
to the camera for proper segmentation. The segmentation
threshold is the sum of a minimum distance and a depth
threshold. The minimum distance is easily obtained from
the depth image as the minimum value in the depth matrix.
The depth threshold is estimated based on different possible
orientations of the hand shape.

After multiple measurements and testing, an upper
bound is chosen as the depth threshold, such that the sum
of the depth threshold and the minimum distance will allow
us to isolate or segment the hand shape including the black



belt from the rest of the image. In our scenario, the depth
threshold was estimated at 200 mm. The depth threshold
is useful for filtering cluttered background containing an
overlapped image (e.g., gesturing hand is overlapped with
the face having the same color). We followed the same
segmentation process as described in our previous work in
[39]. However, in this research, the segmentation process
is applied to a larger and challenging dataset [15]. Earlier,
we used smaller dataset containing only 5 (five) static
hand gestures representing numeric symbols 1 to 5 in a
restricted environment, collected from a limited number of
users.

3.11 Generating Depth Silhouettes Using Depth Map. The
images from the Kinect depth stream are in 640 x 480
resolution which does not show enough contrast variations.
Keypoints with low contrast will not give enough gradient
variations to identify finger bending information. If we can
generate contrast variation according to the depth values,

f(xy)

0,
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then we can get more discriminative keypoints. These key-
points would be the salient features to improve the recogni-
tion accuracy. So, we have done some preprocessing where
the depth values of gesturing hands were used to produce
grey-scale levels. The closer a point is, the brighter its shade
is. To do that, we cropped out depth values of the hands and
got an m-by-n matrix with depth values of hands and its
background.

Let dist(x, y) be the distance of a point in the millimeter
at (x, y). f(x,y) is the corresponding grey level of the
generated image used in extracting the key features by SIFT.
Now, we select 1 as the number of grey levels between
greyLevel,,; and greyLevel,, ... We also selected  number of
distance segments between dist,,;,, (minimum distance) and
(dist,,;, + dist,,); where dist,, is the distance, we assumed
the hand would be from dist,,;, and the depth threshold. We
let the background be black in the generated image to get the
better result using SIFT. We have applied (1) to generate the
grey-scale image using only the depth values.

if dist (x, y) > dsit,,;, + dist,,

@

= dist (x, y) — dist,,; L - L ;
greyLevel, ;, + ({( ist (%, 7) = disty X r;) + O.SJ X {grey eVelmas p greyLevely, J >, Otherwise

dist,, — dist,,;,

We can see from the equation that any point in the
depth image within the threshold distance is going to be
a nonblack pixel depending on the grey levels determined
from depth information. To assign grey levels to those pixels
we segmented the depth values in # levels. Any distance
value under the threshold is rounded off and normalized. The
normalized distance values are converted into appropriate
grey levels. After that, we find a grey-scale image which is
the depth silhouette of a hand with the dark background
and the grey levels corresponding to the depths of different
parts of the subject hand. To emphasize the contrasts, the 1
number of segments was used. If we had used all the 256
levels of the grey image, the contrasts would not be prominent
enough to get fair results. We considered # = 10 grey-scale
levels from 155 to 255, dividing the levels equally to get a
good contrast ratio. The number of levels was heuristically
determined based on the assumption that more levels of
grey will mean that the hand segments’ contrast will be low.
Thus, one of our main focuses (to represent distances in
distinctive grey levels) would be undermined. Representing
the distances using fewer grey levels would have the similar
effect as the binary images. The shape would be distinct but
the local features would be lost. Moreover, the grey-scale
images with proper contrast are useful enough to distinguish
the curves and angles of finger joints in different gestures.
Both of the characteristics helped the SIFT to generate feature
descriptors for the gestures, indifferent of the orientation of
the hands.

For each gesturing image, we have extracted depth values
within 200 from the depth image of the resolution 640 x 480.

Actually, the 200 region contains the gesture information
which we have used to generate the depth silhouettes.
The process of segmentation and grey-scale varying depth
silhouette generation are shown in Figure 3.

3.2. Feature Extraction. Features to be extracted by the
feature extraction algorithm should present a high degree
of invariance to scaling, translation, and rotation. Feature
representation depends on the algorithm to be used for
classification. We have used SIFT algorithm to represent the
features as 128-dimensional feature points that are extracted
from the depth images.

3.2.1. SIFT Features. The SIFT algorithm detects keypoints
from a multiscale image representation consisting of blurred
images at different scale. The keypoint location and the scale
values of each keypoint are accurately determined using the
Difference of Gaussian (DoG). Then the key points are filtered
by eliminating edge points and low contrast points. After
that, the orientation of the keypoint is determined based on
the local image gradient within an image patch. Finally, the
keypoint descriptor is computed which defines the center,
size, and orientation of normalized patch [4]. We have used
the SIFT implementation code as in [40].

Features generated by SIFT algorithm are invariant to
scales and robust against changing position of object, slight
rotation of object, and object in noisy and varying illumina-
tion condition in different images. These feature points can
be found in the high-contrast regions and we have generated
those contrast varying images based on depth values of the
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FIGURE 3: Hand gesture segmentation.

gesturing hand. SIFT algorithm effectively determines the
keypoints on those depth images and represent them as
feature descriptors.

The main objective of our approach is to improve the
recognition accuracy for static gestures using depth informa-
tion compared to binary and time-series representation of the
images. We have utilized depth information and generated
depth silhouettes which can be fed to any keypoint detector
and descriptor-based algorithm, such as SIFT, SURF, and
ORB. However, we have chosen SIFT to generate training
and testing images. The training images with corresponding
keypoints mapped over the gesturing image are shown in
Figure 4. The first and third columns in Figure 4 represent
the depth silhouette generated using depth map information
of the gestures 1-10 (G1-G10) of the numeric symbols 0-9.
The second and fourth columns in Figure 4 represent the
corresponding hand gestures G1-G10 with 27, 41, 51, 61, 77,101,
55,56, 32, and 80 SIFT keypoints, respectively.

While extracting the keypoints we have found that the
number of keypoints varies according to the type of gestures.
As different symbolic gestures consist of a different number
of fingers to be articulated, hence we got these variations. We
captured 100 images per gesture as the candidates to generate
keypoint descriptors and we got 41273 keypoints by consider-
ing 1000 images in total training images. The distribution of
the number of keypoints per gesture is shown in Figure 5.

The keypoint descriptors that we have found are 128-
dimensional feature vectors. Due to the changes in orienta-
tion, scale, and illumination of the same gesturing image by
multiple persons the number of keypoints varies. Moreover,
the dimensions of the gesturing images become larger which
increases computations. Hence, we have used the strategy
of a bag-of-visual-words and clustering technique to reduce
dimensions.

3.2.2. Clustering Feature Descriptors. The dimension of the
feature vector in each gesturing image varies based on the
number of keypoints found for each gesture. The problem
is that we need unified dimensional feature vectors as the
training set to classify using multiclass SVM [41]. For the
depth image that has 27 keypoints, the dimension of that
image becomes 27 x 128 = 3456 and if another image from
the same gesture contains 80 keypoints then the dimension
becomes 80 x 128 = 10240. So, we have used the bag-of-
word for which we need clustering to reduce the dimensions.

Q
o)
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<

G7

[9)
o

Q
~
[®)
o

G5 kp=77 G10 kp=80

FIGURE 4: Example images containing generated depth silhouettes
(first and third columns) and the corresponding SIFT keypoints
mapped in to depth images (second and fourth columns) showing
numeric symbols (0-9) representing the gestures (GI1-Gl10).
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FIGURE 5: Number of SIFT keypoints at o = 1.8.

The basic k-means clustering served our purpose because
k-means converge faster than hierarchical-based clustering
approaches. It also gives efficient performance for larger
datasets. The keypoint distributions for different gestures
are found to be almost Gaussian and distinctive as shown
in Figure 5. In the concept of bag-of-word, the clusters are
defined as codebooks and the size of the cluster determines
the convergence property of the clustering technique. If we
took smaller codebook size then bag-of-word vectors may
not contain all the important keypoints. The larger codebook
size may raise the overfitting problem. As the keypoints in
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FIGURE 6: Demonstration of k-means clustering.

depth images are well distributed containing information
about opening finger parts as well as bending finger parts,
intuitively, we should get better accuracy.

To build our k-means clustering model, we have chosen
1600 as the cluster size which is the size of the visual
vocabulary. An individual feature vector is assigned based
on the nearest mean value while partitioning the feature
vectors. After that, the code vectors were updated to reform
the clusters until the grouping stops.

The goal of the k-means clustering approach is to mini-
mize total intracluster distance using the following.

%) | ®

j=li=1

where k is the cluster size, n is the number of instances, and ¢
is the cluster centroid of cluster j. An illustration of k-means
clustering is shown in Figure 6 for five keypoints, A, B, C, D,
and E, to form two clusters.

We develop the cluster model from each of the training
images consisting feature vectors and encoded each of the
keypoints with the clustered index. Keypoint and the cluster
centroid are mapped according to the minimum distance
criteria based on Euclidean distance measurement.

We got k disjoint subgroups of keypoints after assigning
the keypoints to the corresponding cluster centers. So, the
dimension of each training image consisting of n keypoints
(nx 128) reduced to 1 x k. k determines the cluster numbers.

3.2.3. Creating Bag-of-Features. We have created the bag-of-
feature representation of each training image from the SIFT
feature extracted. In order to learn visual vocabulary, we
have built the k-means clustering model. Keypoints from
each training image are mapped to the centroid of the
corresponding cluster to represent visual vocabulary, known
as feature vector quantization (VQ) process [42]. After that,
we have represented each training image by the frequencies
of visual words and found a unified dimensional histogram
vector. The histogram representations of images of each
gesture are ready for the classification. The process of creating
Bag-of-features is shown in Figure 7

We updated the feature extraction process which is
applied to two types of images; one is the depth image and the
other one is the edge image, generated from the same dataset
[15]. This is because we tried to establish more reliability in
our approach through experimental evaluation compared to
our previous work [39].

3.3. Recognition of Gestures Using SVM Classifier. The bag-
of-feature vectors are now the input feature vectors for the

classification algorithm. In order to recognize the performed
symbolic gestures, we have applied a multiclass SVM training
algorithm which is a supervised machine learning algorithm.
It performs nonlinear mapping and transforms the training
dataset into higher dimensional datasets. The algorithm tries
to find out an optimal hyperplane which is linear.

SVM determines that the support vectors are closest to
the separating hyperplane. The margins are also defined by
those support vectors. Maximum separation is ensured by the
maximum margin hyperplane.

We have applied the one-against-all approach to imple-
ment the SVM classifier [41] that built the model with respect
to the training set supplied with group vector (class label
indicator from gesture classes 1 to 10).

4. Experimental Evaluation

In order to evaluate the symbolic gesture recognition results,
we have considered NTU hand gesture recognition dataset
[15] which is a benchmark dataset in static hand gesture
recognition. The dataset was collected using Kinect depth
camera from 10 subjects. Each subject has performed 10 sym-
bolic gestures 10 times. So, the dataset contains total of 1000
instances. Each gesturing instance contains a color image
and the corresponding depth map. The dataset was prepared
in a very challenging real-life environment containing the
situations like the cluttered background and pose variations
in terms of rotation, scale, orientation, articulation, changing
illumination, etc.

We have conducted the 5-fold cross-validation process to
evaluate our results. In each fold 4 of the image groups were
used as training set and one of them was used as validation
testing set. Each fold contains 20 images and we permuted
the process, calculating the accuracy of SVM classifier. All the
experiments were executed on an Intel Core 17 2.60 GHz CPU
having 16 GB RAM.

Our system is robust to cluttered background due to
the process of segmentation where the depth threshold and
minimum hand-finger distance from the depth camera are
used to determine the segmentation threshold. Good contrast
varying depth silhouettes guarantee SIFT keypoints to be
extracted in different scale-rotation-orientation changing
conditions as shown in Figure 8.

SIFT extracted local features which produce good recog-
nition results compared to global features considered in
FEMD-based approach [15]. We tested our results in two
types of images produced from the same dataset: binary
images and image with edge information. The former was
generated along with depth silhouette by converting the
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FIGURE 9: SIFT keypoints on binary image (a) and edge image (b).
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FIGURE 10: Accuracy comparison among different images.

depth silhouettes into binary images and the latter was
generated applying Canny’s edge detection algorithm [25] on
depth silhouettes. Example binary and edge images are shown
in Figure 9. The image contains internal finger bending edge
overlapped with palm and the external hand shape edge, but
this information is not present in binary image or time-series
images. So, the accuracy of our approach should vary on these
different datasets.

Previously in [39], we demonstrated that the SIFT works
better on depth images rather than binary images for static
hand gesture recognition consisting of symbolic gestures
(numeric symbol 1-5). The dataset used in the previous
work was generated by us in a constrained environment. To
create the dataset, we considered a limited number of hand
gestures from a limited number of users. The comparison of
experimental results was not performed among depth images,
binary images, and edge images. However, in this research
work, we have compared our experimental results among
all the images and also compared the result with FEMD-
based approach [15] and got higher accuracy for depth images
(recognition accuracy is shown in Figure 10). Moreover, we
elaborated the processes of depth silhouette generation with
equations which illustrates the fact that the intensity of a pixel
in grey-scale depends on the distance of that pixel from the
depth camera. This, in turn, determines the contrast of the
image based on depth values suitable for key point detector
and descriptor-based algorithms.

To evaluate the accuracy of our approach, we generated
different SIFT keypoints by varying the sigma (scaling param-
eter) value and found the highest accuracy at ¢ = 1.8. The
mean accuracy at different o values is shown in Figure 11.

With the increased value of sigma, we found more
keypoints (Figure 12) which results in spurious DoG extrema
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FIGURE 11: Accuracy at different sigma values.
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FIGURE 12: Number of SIFT keypoints at different Sigma values.

considered as less stable and not linked to any particular
structure in the image. These cause the differences in accu-
racy.

We evaluated the accuracy with the different number
of clusters. We considered 100, 200, 400, 800, 1200, 1600,
and 2000 clusters to validate our proposed method and
compared the results for depth, binary, and edge images. The
comparison result is shown in Figure 13. We observed that the
accuracy increments commensurate with the higher number
of clusters. The highest accuracy we attained has been with
a cluster size of 1600. This phenomenon can be traced back
to depth images which significantly contribute to the salient
keypoints identification for it is the depth images from which
we can distinguish the positions of each fingers. However, the
same cannot be said for binary images or images containing
only edge information. FEMD has considered the shape
distance metric which matches only opening finger parts or
finger shapes, not the whole hand. While making a pose the
bending finger parts are also important to distinguish slightly
varying gestures, which can be found in the local features. To
avoid local distortion we have chosen the correct scale factor.
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FIGURE 14: Confusion matrix of (a) proposed approach and (b) FEMD-based approach.

We have presented the input hand as a contrast varying grey-
scale image depending on the depth map information but
FEMD has presented the hand image as a global feature using
time-series curves. Shape contour presentation introduces
lower accuracy in terms of scale, rotation, or orientation
changes which we have overcome through depth images
and got accuracy up to 96.8421% whereas the FEMD has
produced 93.2%. The confusion matrix of our approach and
FEMD is given in Figure 14.

We have also calculated True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) and based
on these the F-Score values using the following.

2xTP
F — Score = X 3)
2xTP+ FP+ FN

The class-wise F-Score comparison between our approach
and FEMD is given in Figure 15.

From Figure 14(a), we find that the accuracy of gestures
2,4, 5,7 and 8 has been improved significantly as expected
because SIFT features are found more robust in the bench-
mark dataset. Moreover, we prove this by comparing the
results with binary and edge images. In binary or edge images,
a small variation in the shape may cause significant changes
on the tangent vectors at the points on the shape. Since
we are considering local hand-finger features for the hand
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Gestures
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@ SIFT
8 FEMD

FIGURE 15: F-Score comparison between proposed approach and
FEMD [15].

poses we are getting better results. Shape changes over time-
series data are not required to be considered. Recognition
accuracy of gestures 4 and 5 has increased to 98% and 97%,
respectively, compared to FEMD-based approach. In gestures
6 and 10, we are getting most confusing results. Gesture 6
is all finger open gesture and contains a maximum number
of keypoints (6374) as shown in Figure 5 and includes no
bending finger information. The same is for gesture 10 and it
is the only gesture in the dataset which contains no bending
finger information like other gestures. The pose was given by
the user opposite to other gestures; the bending fingers were
facing towards the user, not the camera.
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5. Conclusion

This paper describes a symbolic hand gesture recognition
system and presents an effective way of utilizing depth
map information. The use of depth value in determining
grey-scale levels to generate contrast varying depth images
is one of the significant contributions to this research.
Moreover, hand-finger’s context information of the gesturing
hand represented by local invariant feature descriptors has
contributed the recognition accuracy up to 96.84% which is
better compared to binary images, images containing edge
information, and images represented in time-series curves.

Preparing depth silhouettes of the gesturing hand is one
the factors that affect the accuracy of gesture recognition
system. With the help of depth map information, we were
able to produce those gesturing images using fast and effective
segmentation process. Choosing the right cluster size is also
important. Our empirical results indicate that 1600 is the
most desirable number of clusters to attain the best accuracy.
This large number of clusters is contributed by the fact that
images with only edge information or binary images contain
far less keypoints than that of depth images. The number
of training samples that we have taken was sufficient to
develop the cluster model as well as the SVM classification
model.

In future, we will analyze gesture recognition accuracy in
terms of variations in cluster size using the principal com-
ponent analysis (PCA), adaptive grey-scale levels, combining
local, and global features (containing contour information)
using hierarchical classification techniques. We will also
try to compare the performance result of different detector
and descriptor-based algorithms, such as SURF, BRIEFE, and
ORB.

Data Availability

The dataset used to support the findings of this study has
been deposited in the following link: https://drive.google
.com/file/d/0B_9saHAqQGFITODNmNzU0ZjctMjk0Yi00YjI-
5LWJmZDMtY TdiY TE2YzM50TQ4/view.
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