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72076 Tübingen, Germany

3 International Max Planck Research School for Neural Information Processing, Österbergstraße 3, 72074 Tübingen, Germany
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The extent to which humans can interact with machines significantly enhanced through inclusion of speech, gestures, and eye
movements. However, these communication channels depend on a functional motor system. As many people suffer from severe
damage of the motor system resulting in paralysis and inability to communicate, the development of brain-machine interfaces
(BMI) that translate electric or metabolic brain activity into control signals of external devices promises to overcome this
dependence. People with complete paralysis can learn to use their brain waves to control prosthetic devices or exoskeletons.
However, information transfer rates of currently available noninvasive BMI systems are still very limited and do not allow versatile
control and interaction with assistive machines. Thus, using brain waves in combination with other biosignals might significantly
enhance the ability of people with a compromisedmotor system to interact with assistivemachines. Here, we give an overview of the
current state of assistive, noninvasive BMI research and propose to integrate brain waves and other biosignals for improved control
and applicability of assistive machines in paralysis. Beside introducing an example of such a system, potential future developments
are being discussed.

1. Introduction

The way humans interact with computers has changed sub-
stantially in the last decades. While, for many years, the
input from the human to the machine was mainly managed
through keystrokes, then later through hand movements
using a computer mouse, other potential input sources
have been opened up allowing more intuitive and effortless
control, for example, based on speech [1], gestures [2], or eye
movements [3], all depending on a functional motor system.

As cardiovascular diseases increase and people live
longer, an increasing number of people suffer fromconditions

that affect their capacity to communicate or limit their
mobility [4], for example, due to stroke, neurodegenerative
disorders, or hereditary myopathies. Motor disability can
also result from traumatic injuries, affecting the central or
peripheral nervous system or can be related to amputations
of the upper or lower extremities. While these handicapped
people would benefit the most from assistive machines, their
capacity to interact with computers or machines is often
severely impeded.

Among the most important causes of neurological dis-
abilities resulting in permanent damage and reduction of
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motor functions or the ability to communicate are stroke,
multiple sclerosis (MS), spinal cord injury (SCI), brachial
plexus injury (BPI), and neurodegenerative diseases, such as
amyotrophic lateral sclerosis (ALS) or dementia [4].

Stroke is the leading cause of long-term disability in
adults and affects approximately 20 million people per year
worldwide [5, 6]. Five millions remain severely handicapped
and dependent on assistance in daily life [4]. Nearly 30% of
all stroke patients are under the age of 65 [7]. Other diseases
resulting in paralysis at such early age include MS, affecting
more than 2.5 million people worldwide [8], or SCI with
12.1 to 57.8 cases per million [9, 10]. BPI, the disruption of
the upper limb nerves leading to a flaccid paralysis of the
arm, affects thousands of people every year [11]. Furthermore,
every year there are approximately 2,000 new traumatic
upper limb amputations in Europe [12].

While there is major progress in the development of
assistive apparatuses built for instance to compensate for a
lost or paralyzed limb for example, lightweight and versatile
prostheses or exoskeletons [13–16], intuitive and reliable
control of such devices is an enormous challenge.

Previous surveys on the use of artificial hands revealed
that up to 50% of the amputees are not using their prosthetic
hand regularly, mainly due to low functionality, poor cos-
metic appearance, and low controllability [17].

Since early on, the use of electromyographic (EMG)
signals for prosthetic control, for example, from the amputee’s
stump or contralateral chest muscles, was an important
concept [18, 19]. However, its broader success is still limited
due to many practical reasons that are valid for all assistive
systems that depend on recording biosignals, primarily the
effort and costs to provide good signal quality, a fast and
effective calibration process, and, last but not least, the
benefit of the system in the user’s everyday life. Furthermore,
increasing the signal-to-noise ratio or the specificity of such
recordings by means of techniques such as the electric nerve
stimulation [20] is possible but increases the overall system
complexity [21]. Adding sensory qualities during utilization
of prosthetic devices increasing the bidirectional interaction
between users and the machine improves the functionality
of assistive systems [22]. Here, however, the same limitation
applies as to the motor domain that the majority of such
systems depend on an intact peripheral sensory system.

Thus, the development and provision of assistive ma-
chines that are independent of the peripheral nervous sys-
tem’s integrity represent a promising and appealing per-
spective, particularly, if controlled intuitively and without
requiring extensive training to gain reliable control.

2. Brain-Computer and Brain-Machine
Interfaces: A General Overview

Since it was discovered that brain waves contain information
about cognitive states [23, 24] and can be functionally specific
[25, 26], the idea to use such signals for direct brain control
of assistive machines became a major driving force for the
development of the so-called brain-computer or brain-
machine interfaces (BCI/BMI) [27]. Such interfaces allow
direct translation of electric or metabolic brain activity into

Table 1: Categories of brain-computer and brain-machine inter-
faces.

Based on: recording site of brain signals
Brain signal used Recording technique
Invasive

Single spike Single cell recordings
Multiunit activity Multiunit arrays (MUA)
Local field potentials (LFP) Electrocorticogram (ECoG)

Noninvasive
Electric brain potentials Electroencephalography (EEG)
Neuromagnetic fields Magnetoencephalography (MEG)

BOLD Functional magnetic resonance
imaging (fMRI)

Oxy/deoxyhemoglobin Near-infrared spectroscopy (NIRS)
Based on:mode of operation
Active Asynchronous control

Synchronous control
Reactive N.A.
Passive N.A.
Based on: purpose
Assistive/biomimetic Restorative/biofeedback
Used for restoration of Tested in the treatment of

Communication Stroke
Paralysis Chronic pain

Tinnitus
Dementia
Depression
Schizophrenia

control signals of external devices or computers bypassing the
peripheral nervous and muscular system.

As neural or metabolic brain activity can be recorded
from sensors inside or outside the brain, BCI/BMI is cat-
egorized as invasive or noninvasive systems [28]. Other
categorizations relate to the specific brain signal used for
BCI/BMI control or the mode of operation (see Table 1).

Invasively recorded brain signals that were successfully
used for BCI/BMI control include single-spike or multiunit
activity and local field potentials (LFP) [29]. These signals
are necessarily recorded from inside the skull, while electric
or magnetic brain oscillations reflecting pattern formation of
larger cell assemblies’ activity [30] can also be recorded from
outside the skull using electro- or magnetoencephalography
(EEG/MEG). Each method offers access to specific unique
properties of brain activity [31].These noninvasive techniques
allow, for example, detection and translation of slow cortical
potentials (SCP), changes of sensorimotor rhythms (SMR),
or event-related potentials (ERP), for example, the P300,
translating them into control signals for external devices or
computers. More recently, online interpretation of changes in
metabolic brain activity [32, 33] was introduced for BCI/BMI
application offering high spatial (in the range ofmm), but low
temporal, resolution (in the range of seconds).These systems
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use functional magnetic resonance imaging (fMRI) [32] or
near-infrared spectroscopy (NIRS) [33, 34], both measuring
changes in brain tissue’s blood-oxygenation-level dependent
(BOLD) signals.

In 1969, Fetz demonstrated that single neurons in pre-
central cortex can be operantly conditioned by delivery of
food pellets [35]. Since then, operant conditioning of cortical
activity was demonstrated in various paradigms [36], requir-
ing, though, opening of the skull and insertion of electrodes
into the brain with the risk of bleedings and infections
[37, 38]. An intermediate, semiinvasive approach uses LFP
recorded by epidural electrocorticography (ECoG) [29, 39].
LFP reflects neural activity of an area of up to 200𝜇m2 com-
prising hundreds of thousands of neurons with numerous
local recurrent connections and connections to more distant
brain regions [40], while brain oscillations recorded nonin-
vasively (e.g., using EEG or MEG) contain information of
millions of neurons [41].

To control assistive devices or machines in paralysis, the
following noninvasively recorded neurophysiologic signals
were successfully used up to now: (1) slow cortical potentials
(SCP) [42, 43], (2) sensorimotor rhythms (SMRs) and its har-
monics [44, 45], and (3) event-related potentials (ERPs), for
example, P300 [46].

The use of SCP in BCI/BMI applications goes back
to Birbaumer and his coworker’s work in the late 1970s
showing that operant control of SCPs (slow direct-current
shifts occurring event-related after 300ms to several seconds)
is possible while exhibiting strong and anatomically specific
effects on behavior and cognition [47–49]. A tight correlation
of central SCPs and blood-oxygen level-dependent (BOLD)
signals in the anterior basal ganglia and premotor cortex was
found [50] suggesting a critical role of the basal ganglia-
thalamo-frontal network for operant control of SCP.

In contrast to SCPs, SMRs are recorded over the sensori-
motor cortex usually at a frequency between 8 and 15Hz. In
analogy to the occipital alpha and visual processing [51], the
SMR (or rolandic alpha) shows a clear functional specificity,
disappearing during planned, actual, or imagined move-
ments [52]. Accordingly, a close association with functional
motor inhibition of thalamocortical loops was suggested [53].
Depending on the context, the SMR is also called 𝜇-rhythm
[54] or rolandic alpha and was extensively investigated by the
Pfurtscheller group in Graz [55] and the Wolpaw group in
Albany [56, 57].

Another well-established and tested BCI/BMI controller
is the P300-based ERP-BCI introduced by Farwell and
Donchin [58]. While SCP- and SMR-controls are learned
through visual and auditory feedback often requiring multi-
ple training sessions before reliable control is achieved, the
P300-BCI needs no training at all. While, in the classical
P300-ERP-BCI paradigm, the user focuses his attention to a
visual stimulus, other sensory qualities such as tactile [59]
or auditory stimuli [60, 61] were successfully implemented
in ERP-BCI. Information rates of ERP-BCI can reach 20–
30 bits/min: [62].

In terms of operation mode, active, passive, and reactive
BCI/BMI applications can be distinguished [63].While active

and reactive BCI/BMI require the user’s full attention to gen-
erate voluntary and directed commands, passive BCI/BMI
relates to the concept of cognitive monitoring introducing
the assessment of the users’ intentions, situational interpre-
tations, and emotional states [64].

In active BCI/BMI applications, two forms of control
can be distinguished: synchronous and asynchronous control
[65]. In synchronous control, translation of brain activity
follows a fixed sequence or cue.Theuser is required to be fully
attentive, while in asynchronous or uncued control, a specific
brain signal is used to detect the user’s intention to engage in
BCI/BMI control [65, 66].

3. Brain-Machine Interfaces in
Neurorehabilitation of Paralysis

BMI used in neurorehabilitation follows two different strate-
gies: while assistive or biomimetic BMI systems strive for
continuous high-dimensional control of robotic devices or
functional electric stimulation (FES) of paralyzed muscles to
substitute for lost motor functions in a daily life environment
[67–69], restorative or biofeedback BMI systems aim at
normalizing of neurophysiologic activity that might facilitate
motor recovery [70–74]. Insofar, restorative or biofeedback
BMI can be considered as “training-tools” to induce use-
dependent brain plasticity increasing the patient’s capacity for
motor learning [44, 75].

These two approaches derive from different research
traditions and are not necessarily related to the invasiveness
of the approach: in the early 80s of the last century, decoding
of different movement directions from single neurons was
successfully demonstrated [76]. Since then, reconstruction
of complex movements from neuronal activity was pursued,
using both invasive and noninvasive methods.

Firing patterns acquired through single cell recordings
from the motor cortex [77] or parietal neuronal pools [78]
in animals were remarkably successful for reconstruction of
movement trajectories.Monkeys learned to control computer
cursors towards moving targets on a screen activating neu-
rons in motor, premotor, and parietal motor areas. It was
shown that 32 cells were sufficient to move an artificial arm
and perform skillful reachingmovements enabling a monkey
to feed himself [67]. Learned control of movements based on
single cell activity was also shown using neurons outside the
primary or secondary motor representations [79]. In 2006,
successful implantation of densely packed microelectrode
arrays in two quadriplegic human patients was demonstrated,
enabling them to use LFP in order tomove a computer cursor
in several directions [68]. Most recently, a study using two
96-channel intracortical microelectrodes placed in themotor
cortex of a 52-year-old woman with tetraplegia demonstrated
robust seven-dimensional movements of a prosthetic limb
[80].

In contrast to this work aiming at assistive appliance of
invasive and noninvasive BMI technology, the development
of restorative/biofeedback BMI systems is tightly associated
with the development and successes of neurofeedback (NF)
and its use to purposefully upregulate or downregulate brain
activity—a quality that showed to have some beneficial effect
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in the treatment of various neurological and psychiatric
disorders associated with neurophysiologic abnormalities
[71]. InNF, subjects receive visual or auditory online feedback
of their brain activity and are asked to voluntarily modify, for
example, a particular type of brainwave. Successful modifi-
cation becomes contingently rewarded. NF was successfully
used in the treatment of epilepsy [81, 82], ADHD [83–85],
chronic pain syndrome [86].The rational to use this approach
in the context of neurorehabilitation is based on data indi-
cating that stroke patients with best motor recovery are
the ones in whom ipsilesional cortical function is closer to
that found in healthy controls [87]. A negative correlation
between impairment and activation in ipsilesional M1 during
hand motions has been documented [88]. Thus, a larger
clinical study was performed at the University of Tübingen in
Germany and the National Institute of Neurological Disor-
ders and Stroke (NINDS, NIH) in USA with over 30 chronic
stroke patients testing the hypothesis that augmentation of
ipsilesional brain activity would improve motor recovery
[89, 90]. In this study, all participating patients suffered from
complete hand paralysis and were unable, for example, to
grasp. The study showed that one month of daily ipsilesional
BMI training combined with goal-directed physiotherapy
resulted in significant motor improvements, while random
BMI-feedback did not. Further analysis of neurophysiologi-
cal parameters indicated that motor evoked potentials (MEP)
from the ipsilesional hemisphere reflecting the integrity of
the corticospinal tract could predict motor recovery of the
trained patients [91]. Currently, further improvements of this
training paradigm, for example, related to the feedback or
specificity and effectiveness of training [44], for example,
using electric brain stimulation to enhance neuroplasticity
[92], are being tested.

4. Noninvasive Assistive Brain-Machine
Interfaces in Paralysis

Both invasive and noninvasive BCI and BMI found their way
into assistive systems, for example, allowing communication
in locked-in patients [42] or restoration of movement in
patientswith paralysis [28, 93].TheGraz groupwas the first to
use volitional SMRmodulation for control of electric stimula-
tion of a quadriplegic patient’s paralyzed hand [69, 94].While
the patient imagined a movement, the associated modulation
of SMR was translated into functional electric stimulation
(FES) of his upper limb muscles resulting in grasping mo-
tions. After this proof-of-concept study, numerous publica-
tions addressed the different aspects that are important to
allow intuitive and seamless control of biomimetic devices
[20] or FES [95] in a daily life environment [96]. While many
challenges were successfully mastered in the last years, three
major aspects were not satisfyingly solved yet: (1) intuitive,
asynchronous BCI/BMI control, (2) 100% reliability, and (3)
unambiguous superiority (in terms of information transfer
rate, ITR, and necessary preparation effort) over the use of
other biosignals (e.g., related to speech, gestures, or eye
movements).

These aspects do not apply to BCI use for communication
in complete paralysis, for example, complete locked-in-state

(CLIS) in ALS, as no asynchronous mode is necessary,
reliability is secondary, and no other biosignals are available
anymore [97].

A system that is unreliable in daily does not only limit its
practicality, but limits its practicality, but would be also asso-
ciated with ethical difficulties [98, 99]. While there are good
arguments suggesting that invasive BCI/BMI can provide
a higher ITR [100], it is still unclear how much meaningful
information, for example, for reconstruction of hand move-
ments, can be extracted from noninvasively recorded brain
signals [101]. Recently, work by Contreras-Vidal’s group at the
University of Houston suggested that slow-frequency EEG
(oscillations with a frequency of up to 4Hz) might provide as
much information as invasive recordings [102, 103], for exam-
ple, for reconstruction of three-dimensional hand move-
ments [103]. Currently, implementation of this approach in
closed-loop paradigms is being pursued. Nevertheless, it is
conceivable that the only viable solution to satisfyingly solve
those three aspects will be the inclusion of other biosignals
into a system merging different biosignal sources to detect
user’s intentions and integrating this information into the
current context of the user to further increase intuitive
control and assure reliability of the system. Such systems
that merge brain control with other biosignals were recently
summarized under the term “brain-neural computer inter-
action” (BNCI) systems receiving notable funding through
the 7th Framework Program for Research and Technological
Development (FP7) of the European Union.

Particularly promising in this context is integrating eye
movements using electrooculography (EOG) or eye tracking
into prosthetic control. At the University of Tübingen, a
first prototype system was conceptualized that allows asyn-
chronous BCI/BMI control while solving the reliability issue
by using eye tracking, EOG, and computer vision-based
object recognition. A computer equipped with a 3D camera
recognizes objects placed on a table.The system detects when
the user fixates any of the objects recognized as graspable,
for example, a cup or ball. Once an object is fixated with the
eyes, the BCI/BMI mode switches on, detecting whether the
user wants to grasp the object. A robotic hand or exoskeleton
(both developed by the BioRobotics Institute, Scuola Supe-
riore Sant’Anna, Pisa, Italy) performs the grasping motion
(Figure 1). The motion becomes interrupted if the user does
not fixate the object anymore as measured by eye tracking
and EOG (see Figure 2). This assures that no action of
the system depends exclusively on brain wave control that
might be susceptible to inaccuracies. Such system, integrating
perceptual and contextual computing developed in the field
of human-computer interaction (HCI) research into BCI
applications, promises to overcomemany limitations of brain
control alone,mainly the reliability issue, likewise broadening
the repertoire of modern HCI research to infer user state and
intention from brain activity.

As trauma or stroke can affect motor and body functions
very differently in each individual, proper and fast calibration
for inclusion into seamless BNCI control is often impeded.
Thus, inclusion of eye movements is the most promis-
ing biosignal in this context so far. Particularly as visual
interaction plays a key role when planning, executing, and
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EEG 

BCI/BMI platform 
EOG 

Eye tracking 
Control unit 

Assistive  
device  

Visual and proprioceptive  
feedback  

Biosignals 

Figure 1: Organization of the University of Tübingen’ prototype system controlling assistive devices using brain waves and eye movements.

(I) 3D-camera recognizes graspable objects 

(II) User fixates a specific object (detected by eye tracking) 

(III) BCI/BMI mode becomes activated 

(IV) Brain activity indicating the user’s  
intention to move the paralyzed arm is detected 

(V) Grasping motion is performed by the  
prosthetic device or hand exoskeleton 

Figure 2: Illustration of the processing chain for performing grasping motions of an assistive system using brain waves and eye movements.
The grasping motion stops once the user does not fixate the object with his eyes anymore.

adapting motor control. Beside electric biosignals such as
EOG and EMG, other measures that can be used for BNCI
control include magnetic, mechanic, optic, acoustic, chem-
ical, and thermal biosignals. These biosignals, however, are
more susceptible for artifacts and exhibit larger variability
depending on the environmental conditions. Future research,
however, might find novel ways to advantageously include
such biosignals into BNCI control and application.

The organisms’ behavior measurable in these various
biosignals reflects conscious and unconscious processes that
can be inferred and purposefully used for BNCI control. In
case of eye movement control, changing fixation of an object
can point to inattention, distraction, or volitional (conscious)
act to interrupt unwanted output of the BNCI for example.

Practicality of such approach is limited when, for in-
stance, eyesight or eyeball control is impaired due to a
disease or trauma. This can be the case in multiple sclerosis,
traumatic brain injury, stroke, or neurodegenerative disor-
ders such as ALS. ALS may lead to CLIS, where classical
semantic conditioning might be the only way to sustain
a communication channel [104] while inclusion or use of
other biosignals seemed not particularly helpful [94]. Also,
inclusion of other biosignals often increases preparation time
for placing and calibrating the required biosensors further

limiting practicality. This is particularly relevant when the
system requires handicapped persons to place and handle
the sensors in a home environment. Nevertheless, these
technical limitations might dissolve in the course of near-
future research and development.

An important conceptual advantage of including other
biosignals into BCI control relates to the improved reliability,
which not only increases usability in daily life, but also
the degree of self-efficacy, a dimension that should not be
underestimated in acceptance of such technology, but also
in the context of restorative/biofeedback BCI training for
example. Here, the fact that a patient experiences full control
of a completely paralyzed limb might facilitate overcoming
“learned nonuse” and motivate the user to engage in behav-
ioral physiotherapy [105].

5. Conclusion

BCI/BMI systems promise to enhance applicability of assis-
tive technology in humans with a compromised or damaged
motor system. While information transfer rates of noninva-
sive BCI/BMI are sufficient for communication, for example,
in locked-in-state, versatile control of prosthetic devices
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using brain waves will require major research and devel-
opment efforts to provide intuitive, asynchronous control
sufficiently reliable in daily life environments. Many reasons
suggest that using the combination of brain waves with other
biosignals might entail many attractive solutions to control
assistive, noninvasive technology even after severe damage of
the central or peripheral nervous system.
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[74] A. Caria, C. Weber, D. Brötz et al., “Chronic stroke recovery
after combined BCI training and physiotherapy: a case report,”
Psychophysiology, vol. 48, no. 4, pp. 578–582, 2010.

[75] W. Wang, J. L. Collinger, M. A. Perez et al., “Neural interface
technology for rehabilitation: exploiting and promoting neuro-
plasticity,” Physical Medicine and Rehabilitation Clinics of North
America, vol. 21, no. 1, pp. 157–178, 2010.

[76] A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner, “Neu-
ronal population coding on movement direction,” Science, vol.
233, no. 4771, pp. 1416–1419, 1986.

[77] M. A. L. Nicolelis, D. Dimitrov, J. M. Carmena et al., “Chronic,
multisite, multielectrode recordings in macaque monkeys,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 100, no. 19, pp. 11041–11046, 2003.

[78] H. Scherberger,M. R. Jarvis, and R. A. Andersen, “Cortical local
field potential encodes movement intentions in the posterior
parietal cortex,” Neuron, vol. 46, no. 2, pp. 347–354, 2005.

[79] D.M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical
control of 3D neuroprosthetic devices,” Science, vol. 296, no.
5574, pp. 1829–1832, 2002.

[80] M. Velliste, A. McMorland, E. Diril, S. Clanton, and A.
Schwartz, “State-space control of prosthetic hand shape,” in
Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC ’12), pp.
964–967, 2012.

[81] A. R. Seifert and J. F. Lubar, “Reduction of epileptic seizures
through EEG biofeedback training,” Biological Psychology, vol.
3, no. 3, pp. 157–184, 1975.

[82] B. Kotchoubey, U. Strehl, C. Uhlmann et al., “Modification of
slow cortical potentials in patients with refractory epilepsy: a
controlled outcome study,” Epilepsia, vol. 42, no. 3, pp. 406–416,
2001.

[83] N. Birbaumer, T. Elbert, B. Rockstroh, and W. Lutzenberger,
“Biofeedback of slow cortical potentials in attentional disor-
ders,” in Cerebral Psychophysiology: Studies in Event-Related
Potentials, pp. 440–442, 1986.

[84] U. Strehl, U. Leins, G. Goth, C. Klinger, T. Hinterberger, and
N. Birbaumer, “Self-regulation of slow cortical potentials: a
new treatment for children with attention-deficit/hyperactivity
disorder,” Pediatrics, vol. 118, no. 5, pp. e1530–e1540, 2006.

[85] T. Fuchs, N. Birbaumer, W. Lutzenberger, J. H. Gruze-
lier, and J. Kaiser, “Neurofeedback treatment for attention-
deficit/hyperactivity disorder in children: a comparison with
methylphenidate,” Applied Psychophysiology and Biofeedback,
vol. 28, no. 1, pp. 1–12, 2003.

[86] M. Lotze, W. Grodd, N. Birbaumer, M. Erb, E. Huse, and H.
Flor, “Does use of a myoelectric prosthesis prevent cortical
reorganization and phantom limb pain?” Nature Neuroscience,
vol. 2, no. 6, pp. 501–502, 1999.

[87] T. Platz, I. H. Kim, U. Engel, A. Kieselbach, and K. H. Mauritz,
“Brain activation pattern as assessed with multi-modal EEG
analysis predict motor recovery among stroke patients with
mild arm paresis who receive the Arm Ability Training,”
Restorative Neurology and Neuroscience, vol. 20, no. 1-2, pp. 21–
35, 2002.

[88] C. Calautti, M. Naccarato, P. S. Jones et al., “The relationship
between motor deficit and hemisphere activation balance after
stroke: a 3T fMRI study,”NeuroImage, vol. 34, no. 1, pp. 322–331,
2007.

[89] E. Buch, C. Weber, L. G. Cohen et al., “Think to move: a neu-
romagnetic brain-computer interface (BCI) system for chronic
stroke,” Stroke, vol. 39, no. 3, pp. 910–917, 2008.

[90] A. Ramos-Murguialday, D. Broetz, M. Rea et al., “Brain-
machine-interface in chronic stroke rehabilitation: a controlled
study,” Annals of Neurology, 2013.

[91] F. Brasil, M. R. Curado, M. Witkowski et al., “MEP predicts
motor recovery in chronic stroke patients undergoing 4-weeks
of daily physical therapy,” in Human Brain Mapping Annual
Meeting, Beijing, China, 2012, 33WTh.

[92] J. M. Carmena and L. G. Cohen, “Brain-machine interfaces
and transcranial stimulation: future implications for directing



Advances in Human-Computer Interaction 9

functional movement and improving function after spinal
injury in humans,” in Spinal Cord Injuries E-Book, vol. 109 of
Handbook of Clinical Neurology, chapter 27, pp. 435–444, 2012.

[93] C. R. Hema, M. Paulraj, S. Yaacob, A. H. Adom, and R. Nagara-
jan, “Asynchronous brain machine interface-based control of
a wheelchair,” in Software Tools and Algorithms for Biological
Systems, pp. 565–572, 2011.

[94] G. Pfurtscheller, G. R. Müller, J. Pfurtscheller, H. J. Gerner,
and R. Rupp, “‘Thought’—control of functional electrical stim-
ulation to restore hand grasp in a patient with tetraplegia,”
Neuroscience Letters, vol. 351, no. 1, pp. 33–36, 2003.

[95] A. H. Do, P. T.Wang, A. Abiri, C. King, and Z. Nenadic, “Brain-
computer interface controlled functional electrical stimulation
system for ankle movement,” Journal of NeuroEngineering and
Rehabilitation, vol. 8, no. 1, article 49, 2011.

[96] M. Tavella, R. Leeb, R. Rupp, and J. D. R. Millán, “Towards
natural non-invasive hand neuroprostheses for daily living,” in
Proceedings of the 32nd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC ’10),
pp. 126–129, September 2010.

[97] A. R. Murguialday, J. Hill, M. Bensch et al., “Transition from
the locked in to the completely locked-in state: a physiological
analysis,” Clinical Neurophysiology, vol. 122, no. 5, pp. 925–933,
2011.

[98] J. Clausen, “Ethische Aspekte von Gehirn-Computer-
Schnittstellen in motorischen Neuroprothesen,” International
Review of Information Ethics, vol. 5, pp. 25–32, 2006.

[99] J. Clausen, “Man, machine and in between,”Nature, vol. 457, no.
7233, pp. 1080–1081, 2009.

[100] J. L. Collinger, B. Wodlinger, J. E. Downey et al., “High-
performance neuroprosthetic control by an individual with
tetraplegia,”The Lancet, vol. 381, no. 9866, pp. 557–564, 2013.

[101] S. T. Grafton and C. M. Tipper, “Decoding intention: a neu-
roergonomic perspective,”NeuroImage, vol. 59, no. 1, pp. 14–24,
2012.

[102] A. Presacco, L. W. Forrester, and J. L. Contreras-Vidal, “Decod-
ing intra-limb and inter-limb kinematics during treadmill walk-
ing from scalp electroencephalographic (EEG) signals,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering,
vol. 20, no. 2, pp. 212–219, 2012.

[103] T. J. Bradberry, R. J. Gentili, and J. L. Contreras-Vidal, “Recon-
structing three-dimensional hand movements from noninva-
sive electroencephalographic signals,” The Journal of Neuro-
science, vol. 30, no. 9, pp. 3432–3437, 2010.

[104] N. Birbaumer, G.Gallegos-Ayala,M.Wildgruber, S. Silvoni, and
S. R. Soekadar, “Direct brain control and communication in
paralysis,” Brain Topography. In press.

[105] S. R. Soekadar and N. Birbaumer, “Improving the efficacy of
ipsilesional brain-computer interface training in neurorehabili-
tation of chronic stroke,” in Brain-Computer Interface Research:
A State-of-the-Art Summary, C. Guger, B. Allison, and G.
Edlinger, Eds., Springer, 2013.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


