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In this paper, we introduce the concept of mapping on hesitant fuzzy soft multisets and present some results for this type of
mappings. )e notions of inverse image and identity mapping are defined, and their basic properties are investigated. Hence,
kinds of mappings and the composition of two hesitant fuzzy soft multimapping with the same dimension are presented. )e
concept of hesitant fuzzy soft multitopology is defined, and certain types of hesitant fuzzy soft multimapping such as continuity,
open, closed, and homeomorphism are presented in detail. Also, their properties and results are studied. In addition, the concept
of hesitant fuzzy soft multiconnected spaces is introduced.

1. Introduction

Since the introduction of fuzzy sets by Zadeh [1], several
extensions of this concept have been introduced. )e most
agreed one may be Atanassov’s intuitionistic fuzzy set
(briefly, IFS or A-IFS) [2]. IFSs have the benefit that allows
the user to model some uncertainties on the membership
function of the elements. )at is, fuzzy sets require
a membership degree for each element in the universe set,
whereas an IFS permits us to include some hesitation on this
value. )is is modeled with two functions that define an
interval. Type 2 fuzzy sets [3, 4] are a generalization of the
former, where the membership of a given element is pre-
sented as a fuzzy set. Other generalizations, such as type n
fuzzy sets exist (see [3] for details about type n fuzzy sets).
Dubois and Prade [3] report that Mizumoto and Tanaka [4]
were the first to study type 2 fuzzy sets. Fuzzy multisets are
another generalization of fuzzy sets. )ey are based on
multisets (elements can be repeated in a multiset, for short,
mset). In fuzzy multisets, the membership can be partial
(instead of Boolean as for standard multisets). Tokat and
Osmanoglu [5] introduced the concept of a soft mset (F, E)

as F: E⟶ P∗(U), where E is a set of parameters and
P∗(U) is a power set of an mset U. In this paper, we adopt
the notion of a soft mset in [5], since this way is better than

the other [6, 7]. In 2013, Tokat et al. [7] introduced the
concept of soft msets as a combination between soft sets and
msets. Furthermore, in [7], the soft multitopology and its
basic properties were given. Moreover, the soft multi-
connectedness was studied in [5]. Additionally, the soft
multicompactness on soft multitopological spaces was
presented in [8]. In 2015, El-Sheikh et al. [9] introduced the
concept of semicompact soft multispaces and the concept of
soft multi-Lindel€of spaces. Some other results and properties
about soft multisets are presented in [10–12]. )e concept of
a generalized open soft mset is introduced in soft multi-
topological spaces, and its properties are presented in [10].
Several authors [13–15] discussed the concept of multisets,
its generalizations, and its applications. In 2020, Hashmi
et al. [16] introduced the notion of an m-polar neutrosophic
set and m-polar neutrosophic topology and their applica-
tions to multicriteria decision-making (MCDM) in medical
diagnosis and clustering analysis. )ey introduced a novel
approach to census process by using Pythagorean m-polar
fuzzy Dombis aggregation operators. Riaz and Hashmi [17]
introduced the notion of linear Diophantine fuzzy set
(LDFS) and its applications towards MCDM problem.
Linear Diophantine fuzzy set (LDFS) is superior to IFSs,
PFSs, and q-ROFSs. Riaz and Tehrim [18] introduced the
concept of bipolar fuzzy soft mappings with application to
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bipolar disorders. Tehrim and Riaz [19] presented a novel
extension of the TOPSIS method with bipolar neutrosophic
soft topology and its applications to multicriteria group
decision-making (MCGDM). Riaz et al. [20] presented the
multiattribute group decision-making (MAGDM) methods
to a hesitant fuzzy soft set. Moreover, Riaz et al. [21] de-
veloped the topological structure on a soft rough set by using
pairwise soft rough approximations. )e multicriteria group
decision-making methods are introduced by using N-soft set
and N-soft topology to deal with uncertainties in the real-
world problems [22].

Recently, the concept of hesitant fuzzy sets was in-
troduced firstly in 2010 by Torra [23] which permits the
membership to have a set of possible values and presents
some of its basic operations in expressing uncertainty and
vagueness. Torra et al. [24] established the similarities and
differences with the hesitant fuzzy sets and the previous
generalization of fuzzy sets such as intuitionistic fuzzy sets,
type 2 fuzzy sets, and type n fuzzy sets. )erefore, other
authors [25, 26] introduced the concept of hesitant fuzzy soft
sets, and they presented some of the applications in decision-
making problems. In 2015, Dey and Pal [27] presented the
concept of hesitant multifuzzy soft topological space. In
2019, Kandil et al. [28] introduced some important and basic
issues of hesitant fuzzy soft multisets and studied some of its
structural properties such as the neighborhood hesitant
fuzzy soft multisets, interior hesitant fuzzy soft multisets,
hesitant fuzzy soft multitopological spaces, and hesitant
fuzzy soft multibasis. Finally, they showed how to apply the
concept of hesitant fuzzy soft multisets in decision-making
problems.

)e main goal of this paper is to introduce the definition
of mapping on hesitant fuzzy soft multisets and present
some results for this form of mappings. )e notions of
inverse image and identity mapping are introduced, and
their basic properties are investigated in detail. )e types of
mappings are also given on hesitant fuzzy soft multisets, and
their properties are established. )erefore, the composition
of two hesitant fuzzy soft multimapping with the same
dimension is presented. In addition, the concepts of hesitant
fuzzy soft multitopologies and hesitant fuzzy soft multi-
subspaces are introduced. Some types of hesitant fuzzy soft
multimapping such as continuity, open, closed, and ho-
meomorphism are presented in detail. Also, their properties
and results are investigated. Finally, the concept of hesitant
fuzzy soft multiconnected space is introduced.

2. Preliminaries

)e aim of this section is to present the basic concepts and
properties of multisets, soft multisets, hesitant fuzzy sets, and
hesitant fuzzy soft multisets.

Definition 1 (see [29]). An mset X drawn from the set U is
represented by a count function CX defined as CX: U⟶ N,
where N represents the set of nonnegative integers.

Here, CX(x) is the number of occurrences of the element
x in the mset X. )e mset X is drawn from the set
U � x1, x2, . . . , xn􏼈 􏼉, and it is written as

X � (m1/x1), (m2/x2), . . . , (mn/xn)􏼈 􏼉, where mi is the
number of occurrences of the element xi, i � 1, 2, 3, ..., n in
the mset X.

Definition 2 (see [29]). A domain U is defined as a set of
elements from which msets are constructed. )e mset space
[U]w is the set of all msets whose elements are in U such that
no element in the mset occurs more than w times.

)emset space [U]∞ is the set of all msets over a domain
U such that there is no limit on the number of occurrences of
an element in an mset. If U � x1, x2, . . . , xk􏼈 􏼉, then [U]w �

(m1/x1), (m2/x2), . . . , (mk/xk)􏼈 􏼉: mi ∈ 0, 1, 2, . . . , w{ }, i �

1, 2, . . . , k}.

Definition 3 (see [29]). Let X be an mset drawn from the set
U. If CX(x) � 0 for allx ∈ U, then X is called an empty mset
and denoted by ϕ, i.e., ϕ(x) � 0 for all x ∈ U.

Definition 4 (see [5]). Let X be a universal multiset, E be
a set of parameters, and A⊆E. )en, an ordered pair (F, A)

is called a soft mset, where F is a mapping given by
F: A⟶ P∗(X); P∗(X) is the power set of an mset X. For
all e ∈ A, F(e) mset is represented by count function
CF(e): X∗ ⟶ N, where N represents the set of nonnegative
integers and X∗ represents the support set of X.

Definition 5 (see [5]). Let (F, A) and (G, B) be two soft
msets over X. )en,

(1) (F, A) is said to be a sub-soft mset of (G, B) and
denoted by (F, A) 􏽥⊆ (G, B) if

(i) A⊆B

(ii) CF(e)(x) ≤ CG(e)(x), for all x ∈ X∗, e ∈ A

(2) Two soft msets (F, A) and (G, B) over X are equal if
(F, A) is a sub-soft mset of (G, B) and (G, B) is a sub-
soft mset of (F, A).

(3) )e union of two soft msets (F, A) and (G, B) over X

is the soft mset (H, C), where C � A∪B and
CH(e)(x) � max CF(e)(x), CG(e)(x)􏽮 􏽯, for all
e ∈ A∪B, x ∈ X∗. It is denoted by (F, A) 􏽥∪ (G, B).

(4) )e intersection of two soft msets (F, A) and (G, B)

over X is the soft mset (H, C), where C � A∩B

andCH(e)(x) � min CF(e)(x), CG(e)(x)􏽮 􏽯, for all
e ∈ A∩B, x ∈ X∗. It is denoted by (F, A) 􏽥∩ (G, B).

(5) A soft mset (F, A) over X is said to be a null soft mset
and denoted by 􏽥ϕ if for all e ∈ A, F(e) � ϕ.

(6) A soft mset (F, A) over X is said to be an absolute
soft mset and denoted by 􏽥A if for all e ∈ A, F(e) � X.

Definition 6 (see [5]). )e complement of a soft mset (F, A)

is denoted by (F, A)c and is defined by (F, A)c � (Fc, A),
where Fc: A⟶ P∗(X) is a mapping given by
Fc(e) � (X/F(e)) for all e ∈ A, where
CFc(e)(x) � CX(x) − CF(e)(x), for all x ∈ X∗.
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Definition 7 (see [5]). Let X be a universal mset and E be
a set of parameters. )en, the collection of all soft msets over
X with parameters from E is called a soft multiclass and is
denoted by SMS(X)E.

Definition 8 (see [23]). Let U be a reference set, then
a hesitant fuzzy (briefly, an HF) set is defined in terms of
a function h from U into the power set of [0, 1].

Definition 9 (see [23]). Let h, h1, and h2 be hesitant fuzzy sets
over a set U. )en, the following operations are defined:

(1) Full set 􏽢1: h(x) � 1{ } for all x ∈ U

(2) Null set 􏽢0: h(x) � 0{ } for all x ∈ U

(3) Lower bound: h− (x) � min h(x)

(4) Upper bound: h+(x) � max h(x)

(5) α-Upper bound: h+
α(x) � c ∈ h(x): c≥ α􏼈 􏼉

(6) α-Lower bound: h−
α(x) � c ∈ h(x): c≤ α􏼈 􏼉

(7) Complement: hc(x) � 1 − c: c ∈ h(x)􏼈 􏼉

(8) Union:
(h1 ∪h2)(x) �

c ∈ (h1(x)∪h2(x)): c≥max(h−
1(x), h−

2􏼈 (x))} or,
equivalently, (h1 ∪h2)(x) � (h1(x)∪h2(x))+

α for
α � max(h−

1(x), h−
2(x))

(9) Intersection:
(h1∩ h2)(x) � c ∈ (h1(x)∪ h2(x)): c≤min(h+

1(x),􏼈

h+
2(x))} or, equivalently, (h1∩ h2)(x) � (h1(x)∪ h2

(x))−
α for α � min(h+

1(x), h+
2(x))

Definition 10 (see [28]). A hesitant fuzzy multiset of di-
mension k (briefly, HFkM set) on a nonempty mset X is
denoted by A � < (m/x), hA(x)> : x∈mX􏼈 􏼉 and is defined
in terms of hA(x) when applied to X, and hA(x) is a set of
some distinct values in [0, 1] sorting into increasing order,
indicating the possible membership degrees of the elements
x∈mX to the multiset A.

Definition 11 (see [28]). Let A and B be two HFkM sets on
a nonempty mset X. A is called a hesitant fuzzy submset of B

if hi
A(x)≤ hi

B(x) for each x∈mX, i � 1, 2, ..., k and denoted by
A⊑B.

Definition 12 (see [28]). A pair (􏽥F, E) is a hesitant fuzzy soft
mset of dimension k if 􏽥F is a mapping from E to HFkM(X),
where HFkM(X) is the set of all hesitant fuzzy msets of
dimension k defined over an mset X and 􏽥F(e) ∈ HFkM(X)

∀e ∈ E, i.e., 􏽥F(e) � 􏼈< (m/x), h􏽥F(e)
(x)> |x∈mX} for all

e ∈ E, and h􏽥F(e)
is the membership function of 􏽥F(e).

Definition 13 (see [28]). An HFkSM set (􏽥F, E) over ( 􏽥X, E) is
said to be

(1) A relative null HFkSM set and is denoted by 􏽥0􏽥XE

, if
h􏽥F(e)

(x) � 0, 0,k− times, . . . , 0􏼈 􏼉 for all x∈mX, e ∈ E

(2) A relative absoluteHFkSM set and is denoted by 􏽥1􏽥XE

,
if h􏽥F(e)

(x) � 1, 1,k− times . . . , 1􏼈 􏼉 for all x∈mX, e ∈ E

Definition 14 (see [28]). Let (􏽥F, A) and (􏽥G, B) be two
hesitant fuzzy soft multisets of dimension k, then (􏽥F, A) is
called a hesitant fuzzy soft multi-subset (briefly, HFkSM) of
(􏽥G, B) of dimension k if

(1) A⊆B

(2) 􏽥F(e) is a hesitant fuzzy submset of 􏽥G(e), for every
e ∈ A, i.e., hi

􏽥F(e)
(x)≤ hi

􏽥G(e)
(x) for all e ∈ A, x∈mX,

i ∈ 1, 2, . . . , k{ }

Hence, this relationship is denoted by (􏽥F, A)􏽥⊑(􏽥G, B),
and (􏽥G, B) is called an HFkSM superset of (􏽥F, A).

Definition 15 (see [28]). Let ( 􏽥XE, 􏽥τE) be a hesitant fuzzy soft
multitopological space and (􏽥F, A), (􏽥G, B) be two HFkSM

sets over a hesitant fuzzy soft mset ( 􏽥X, E) (for short, 􏽥XE). A
hesitant fuzzy soft mset (􏽥F, A) is called neighborhood of
(􏽥G, B) if there exists an open hesitant fuzzy soft mset ( 􏽥O, C)

such that (􏽥G, B) 􏽥⊑ ( 􏽥O, C) 􏽥⊑ (􏽥F, A).

Definition 16 (see [28]). Let ( 􏽥XE, 􏽥τE) be a hesitant fuzzy soft
multitopological space and (􏽥F, A) and (􏽥G, B) be two
HFkSM sets over ( 􏽥X, E) such that (􏽥G, B) 􏽥⊑ (􏽥F, A). )en,
(􏽥G, B) is called an interior hesitant fuzzy soft mset of (􏽥F, A)

if (􏽥F, A) is a neighborhood of (􏽥G, B). Additionally, the union
of all interior hesitant fuzzy soft mset of (􏽥F, A) is called the
interior of (􏽥F, A), and it is denoted by (􏽥F, A)o.

Theorem 1 (see [28]). Let ( 􏽥XE, 􏽥τE) be a hesitant fuzzy soft
multitopological space and (􏽥F, A), (􏽥G, B) be two HFkSM sets
over ( 􏽥X, E), then

(1) (􏽥F, A)o is the largest open hesitant fuzzy soft mset
contained in (􏽥F, A)

(2) (􏽥F, A) is an open hesitant fuzzy soft mset if and only if
(􏽥F, A)o � (􏽥F, A)

(3) ((􏽥F, A)o)o � (􏽥F, A)o

(4) If (􏽥F, A)􏽥⊑(􏽥G, B), then (􏽥F, A)o􏽥⊑(􏽥G, B)o

3. Mappings in Hesitant Fuzzy Soft Multisets

)e purpose of this section is to present a concept of
mapping in hesitant fuzzy soft multisets. )e main prop-
erties of the current branch are studied, and some results of
this type of sets are established. Also, the concept of inverse
mapping in hesitant fuzzy soft multisets is defined. )ere-
fore, the composition of two hesitant fuzzy soft multi-
mappings is introduced. Finally, some examples are used to
explain the current definitions in a friendly way.

It should be noted that, in this section, let U be a uni-
versal set, E be a set of parameters, and X be a multiset over
U. )e union and intersection of hesitant fuzzy sets are
defined by Torra [23], but these definitions did not preserve
the dimension, so we introduce the following definitions.

Definition 17. Union of two HFkSM sets (􏽥F, A) and (􏽥G, B)

over ( 􏽥X, E) is the HFkSM set ( 􏽥H, C), where C � A∪B, for all
e ∈ C,
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􏽥HC(e) �

􏽥FA(e), if e ∈ A − B,

􏽥GB(e), if e ∈ B − A,

􏽥FA(e)􏽥∪􏽥GB(e), if e ∈ A∩B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where 􏽥FA(e)􏽥∪􏽥GB(e) � 􏼈<(m/x),􏼈h1
􏽥FA(e)

(x)∨h1
􏽥GB(e)

(x),h2
􏽥FA(e)

(x)∨h2
􏽥GB(e)

(x), . . . ,hk

􏽥FA(e)
(x)∨hk

􏽥GB(e)
(x)}> : x∈mX,e ∈ A∩B}.

It is written as (􏽥F,A)􏽥⊔(􏽥G,B) � ( 􏽥H,C).

Example 1. Let U � a, b, c, d{ }, E � e1, e2, e3􏼈 􏼉, and
X � (2/a), (3/b), (1/c), (4/d){ }. )e hesitant fuzzy soft msets
of dimension 3, (􏽥F, E), (􏽥G, E), are defined as
􏽥F(e1) � < (2/a),{ 0.1, 0.3, 0.3{ }>,< (3/b), 0.1, 0.4, 0.6{ }> ,

< (1/c), 0.8, 0.8, 0.8{ }>,< (4/d), 0.7, 0.8, 0.9{ }> },
􏽥F(e2) � < (2/a), 0.2, 0.3, 0.4{ }{ >,< (3/b), 0.2, 0.4, 0.6{ }> ,

< (1/c), 0.4, 0.5, 0.6{ }>,< (4/d), 0.5, 0.7, 0.9{ }> }, 􏽥F(e3) �

< (2/a),{ 0.4, 0.6, 0.8{ }>,< (3/b), 0.1, 0.2, 0.5{ }> , < (1/c),

0.1, 0.3, 0.5{ }> , < (4/d), 0, 0.5, 1{ }>}. 􏽥G(e1) � <{ (2/a),

0.1, 0.2, 0.3{ }> , < (3/b), 0, 0.2, 0.7{ }> , < (1/c), 0.4, 0.9,{ 1}

>, < (4/d) 0.5, 0.6, 0.7{ }> }, 􏽥G(e2) � < (2/a), 0.1, 0.2,{{

0.3}> , < (3/b), 0.2, 0.3, 0.5{ }> , < 1/c, 0.1, 0.2, 0.3{ }> ,

< (4/d), 0.3, 0.5, 0.7{ }> }, 􏽥G(e3) � <{ (2/a), 0.4, 0.5, 0.6{ }> ,

< (3/b), 0.1, 0.2, 0.3{ }> , < (1/c), 0.1, 0.2, 0.4{ } > , < (4/d),

0, 0.2,{ 0.4}> }. Hence, ( 􏽥H, E) � (􏽥F, E)􏽥⊔(􏽥G, E) such that
􏽥H(e1) � < (2/a),{ 0.1, 0.3,{ 0.3}> , < (3/b), 0.1, 0.4, 0.7{ }> ,

< (1/c), 0.8,{ 0.9, 1}> , < (4/d), 0.7, 0.8, 0.9{ }> }, 􏽥H(e2) �

< (2/a), 0.2, 0.3, 0.4{ }{ > , < (3/b), 0.2, 0.4,{ 0.6}> , < (1/c),

0.4, 0.5, 0.6{ }> , < (4/d), 0.5, 0.7, 0.9{ }>}, 􏽥H(e3) � < (2/a),{

0.4, 0.6, 0.8{ }> , < (3/b), 0.1, 0.2, 0.5{ } > , < (1/c), 0.1, 0.3,{

0.5} > , < (4/d), 0, 0.5, 1{ }>}.

Definition 18. Intersection of two HFkSM sets (􏽥F, A) and
(􏽥G, B) over ( 􏽥X, E) is the HFkSM set ( 􏽥H, C), where
C � A∩B, for all e ∈ C,

􏽥HC(e) � 􏽥FA(e) 􏽥∩ 􏽥GB(e) � <(m/x), h
1
􏽥FA(e)

(x)∧h1
􏽥GB(e)

(x), h
2
􏽥FA(e)

(x)∧h2
􏽥GB(e)

(x), . . . , h
k

􏽥FA(e)
(x)∧hk

􏽥GB(e)
(x)􏼚 􏼛> : x∈mX, e ∈ C􏼚 􏼛.

(2)

It is written as (􏽥F, A) 􏽥⊓ (􏽥G, B) � ( 􏽥H, C).

Example 2. Let U � a, b, c, d{ }, E � e1, e2, e3􏼈 􏼉 and
X � (2/a), (3/b), (1/c), (4/d){ }. )e hesitant fuzzy soft msets
of dimension 3, (􏽥F, E), (􏽥G, E), are defined as
􏽥F(e1) � < (2/a), 0.1, 0.3, 0.3{ }> , <{ (3/b), 0.1, 0.4,{

0.6}> , < (1/c), 0.8, 0.8, 0.8{ }> , < (4/d), 0.7, 0.8, 0.9{ }> },
􏽥F(e2) � < (2/a), 0.2, 0.3, 0.4{ }> , <{ (3/b), 0.2, 0.4,{

0.6}> , < (1/c), 0.4, 0.5, 0.6{ }> , < (4/d), 0.5, 0.7, 0.9{ }> },
􏽥F(e3) � < (2/a), 0.4, 0.6, 0.8{ }> , < (3/b),{ 0.1, 0.2,{

0.5}> , < (1/c), 0.1, 0.3, 0.5{ }> , < (4/d), 0, 0.5, 1{ }> }.
􏽥G(e1) � < (2/a), 0.1, 0.2, 0.3{ }{ > , < (3/b), 0, 0.2, 0.7{ }> ,

< (1/c), 0.4, 0.9, 1{ }> , < (4/d), 0.5, 0.6, 0.7{ }> },
􏽥G(e2) � < (2/a), 0.1, 0.2, 0.3{ }> ,{ < (3/b), 0.2, 0.3,{

0.5}> , < (1/c), 0.1, 0.2, 0.3{ }> , < (4/d), 0.3, 0.5, 0.7{ }> },
􏽥G(e3) � < (2/a), 0.4, 0.5, 0.6{ }> , < (3/b), 0.1, 0.2, 0.3{ }{

> , < (1/c), 0.1, 0.2, 0.4{ }> , < (4/d), 0, 0.2, 0.4{ }> }. Hence,
( 􏽥H, E) � (􏽥F, E)􏽥⊓(􏽥G, E) such that
􏽥H(e1) � < (2/a), 0.1, 0.2, 0.3{ }{ > , < (3/b), 0, 0.2,{

0.6}> , < (1/c), 0.4, 0.8, 0.8{ }> , < (4/d), 0.5, 0.6, 0.7{ }> },
􏽥H(e2) � < (2/a), 0.1, 0.2, 0.3{ }> , <{ (3/b), 0.2, 0.3, 0.5{ }

> , < (1/c), 0.1, 0.2, 0.3{ }> , < (4/d), 0.3, 0.5, 0.7{ }> },
􏽥H(e3) � < 2/a, 0.4, 0.5, 0.6{ }> , < (3/b), 0.1, 0.2, 0.3{ }> , <{

(1/c), 0.1, 0.2, 0.4{ }> , < (4/d), 0, 0.2, 0.4{ }> }.

Theorem 2 Let (􏽥F, E), (􏽥G, E) and ( 􏽥H, E) be three elements
in HFkSM( 􏽥XE). 8en,

(1) (􏽥F, E) 􏽥⊔ (􏽥F, E) � (􏽥F, E)

(2) (􏽥F, E) 􏽥⊓ (􏽥F, E) � (􏽥F, E)

(3) (􏽥F, E) 􏽥⊔ 􏽥0E � (􏽥F, E)

(4) (􏽥F, E) 􏽥⊓ 􏽥0E � 􏽥0E

(5) (􏽥F, E) 􏽥⊔ 􏽥1E � 􏽥1E

(6) (􏽥F, E) 􏽥⊓ 􏽥1E � (􏽥F, E)

(7) (􏽥F, E) 􏽥⊔ (􏽥G, E) � (􏽥G, E) 􏽥⊔ (􏽥F, E)

(8) (􏽥F, E) 􏽥⊓ (􏽥G, E) � (􏽥G, E) 􏽥⊓ (􏽥F, E)

(9) ((􏽥F, E) 􏽥⊔ (􏽥G, E))􏽥⊔( 􏽥H, E) � (􏽥F, E)􏽥⊔((􏽥G, E)􏽥⊔( 􏽥H, E))

(10) ((􏽥F, E) 􏽥⊓ (􏽥G, E))􏽥⊓( 􏽥H, E) � (􏽥F, E)􏽥⊓((􏽥G, E)􏽥⊓( 􏽥H, E))

(11) ((􏽥F, E)􏽥⊔(􏽥G, E))c � (􏽥F, E)c 􏽥⊓(􏽥G, E)c

(12) ((􏽥F, E)􏽥⊓(􏽥G, E))c � (􏽥F, E)c 􏽥⊔(􏽥G, E)c

(13) (􏽥F, E)􏽥⊑(􏽥G, E) if and only if (􏽥F, E)􏽥⊔(􏽥G, E) � (􏽥G, E)

(14) (􏽥F, E)􏽥⊑(􏽥G, E) if and only if (􏽥F, E)⊓(􏽥G, E) � (􏽥F, E)

(15) If (􏽥F, E)􏽥⊓(􏽥G, E) � 􏽥0E, then (􏽥F, E)􏽥⊑(􏽥G, E)c

(16) (􏽥F, E)􏽥⊑(􏽥G, E) if and only if (􏽥G, E)c 􏽥⊑(􏽥F, E)c

Proof. Straightforward. □

Example 3. From Example 2, the complements of
(􏽥F, E), (􏽥G, E) are defined as 􏽥F

c
(e1) � < (2/a), 0.7, 0.7,{{

0.9}> , < (3/b), 0.4, 0.6, 0.9{ }> , < (1/c), 0.2, 0.2, 0.2{ }

> , < (4/d), 0.1, 0.2, 0.3{ }>}, 􏽥F
c
(e2) � < (2/a), 0.6,{{

0.7, 0.8}> , < (3/b), 0.4, 0.6, 0.8{ } > , < (1/c), 0.4,{

0.5, 0.6}> , < (4/d), 0.1, 0.3, 0.5{ }>}, 􏽥F
c
(e3) � < (2/a),{

0.2, 0.4, 0.6{ }> , < (3/b), 0.5, 0.8, 0.9{ }> , < (1/c), 0.5, 0.7,{

0.9}> , < (4/d), 0, 0.5, 1{ }> }. 􏽥G
c
(e1) � < (2/a), 0.7,{{

0.8, 0.9}> , < (3/b), 0.3, 0.8, 1{ }> , < (1/c), 0, 0.1, 0.6{ }> , <
(4/d), 0.3, 0.4, 0.5{ }> }, 􏽥G

c
(e2) � < (2/a), 0.7, 0.8, 0.9{ }> ,{

< (3/b), 0.5, 0.7, 0.8{ }> , < (1/c), 0.7, 0.8, 0.9{ }> , < (4/d),

0.3, 0.5, 0.7{ }> }, 􏽥G
c
(e3) � < (2/a),{ 0.4, 0.5, 0.6{ }> ,

< (3/b), 0.7, 0.8, 0.9{ }> , < (1/c), 0.6, 0.8, 0.9{ }> , < (4/d),

0.6, 0.8, 1{ }> }. )en, (􏽥F, E)c 􏽥⊔(􏽥G, E)c: � ( 􏽥M, E) such that
􏽥M(e1) � < (2/a), 0.7, 0.8, 0.9{ }> , < (3/b), 0.4, 0.8, 1{ }> , <{
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(1/c), 0.2, 0.2, 0.6{ }> , < (4/d), 0.3, 0.4, 0.5{ }> }, 􏽥M(e2) �

< (2/a), 0.7, 0.8, 0.9{ }> , <{ (3/b), 0.5, 0.7, 0.8{ }> ,

< (1/c), 0.7, 0.8, 0.9{ } > , < (4/d), 0.3, 0.5, 0.7{ }> }, 􏽥M(e3) �

< (2/a), 0.4, 0.5, 0.6{ }> ,{ < (3/b), 0.7, 0.8, 0.9{ }> , < (1/c),

0.6, 0.8, 0.9{ }> , < (4/d), 0.6, 0.8, 1{ }> }.
Also, ( 􏽥H, E) � (􏽥F, E)􏽥⊓(􏽥G, E) such that

􏽥H(e1) � < (2/a), 0.1, 0.2, 0.3{ }> , <{ (3/b),

0, 0.2, 0.6{ }> , < (1/c), 0.4, 0.8, 0.8{ }> , < (4/d),

0.5, 0.6, 0.7{ }> }, 􏽥H (e2) � < (2/a), 0.1, 0.2, 0.3{ }{

> , < (3/b), 0.2, 0.3, 0.5{ }> , < (1/c), 0.1, 0.2, 0.3{ }> ,

< (4/d), 0.3, 0.5, 0.7{ }> }, 􏽥H(e3) �

< (2/a), 0.4, 0.5, 0.6{ }> , <{ (3/b), 0.1, 0.2, 0.3{ }> , < (1/c),

0.1, 0.2, 0.4{ }> , < (4/d), 0, 0.2, 0.4{ }> }. )en, the comple-
ment of ( 􏽥H, E) is 􏽥H

c
(e1) � < (2/a), 0.7, 0.8, 0.9{ }> , <{

(3/b), 0.4, 0.8, 1{ }> , < (1/c), 0.2, 0.2, 0.6{ }> , < (4/d),

0.3, 0.4, 0.5{ }> }, 􏽥H
c
(e2) � < (2/a), 0.7, 0.8, 0.9{ }> , <{

(3/b), 0.5, 0.7, 0.8{ }> , < (1/c), 0.7, 0.8, 0.9{ }> , < (4/d),

0.3, 0.5, 0.7{ }> }, 􏽥H
c
(e3) � < (2/a),{

0.4, 0.5, 0.6{ }> , < (3/b), 0.7, 0.8, 0.9{ }> , < (1/c), 0.6,{

0.8, 0.9}> , < (4/d), 0.6, 0.8, 1{ }> }. Hence,
((􏽥F, E)􏽥⊓(􏽥G, E))c � (􏽥F, E)c 􏽥⊔(􏽥G, E)c.

Definition 19. Let HFkSM( 􏽥XE) and HFkSM(􏽥YE′) be two
families of hesitant fuzzy soft msets over msets X and Y with
dimension k and sets of parameters E and E′, respectively. Let
u: X∗ ⟶ Y∗ and p: E⟶ E′ be two mappings. Now,
a mapping f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM(􏽥YE′) is
defined as follows: for a hesitant fuzzy soft mset (􏽥F, A) in
HFkSM( 􏽥XE), f((􏽥F, A)) is a hesitant fuzzy soft mset in
HFkSM(􏽥YE′) obtained as follows: for e′ ∈ p(E)⊆E′ and
y ∈ Y∗,

h
f((􏽥F,A)) e′( )

(y) �
∨

x∈u− 1(y)

􏽥∪n∈p−1(e′)∩A
􏽥FA(n)􏼒 􏼓(h(x)), if u− 1(y)1ϕ, p− 1 e′( 􏼁∩A≠ϕ,

0, 0,k− times . . . , 0􏼈 􏼉, if otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(3)

Hence, f((􏽥F, A)) is called an image hesitant fuzzy soft
mset with dimension k of a hesitant fuzzy soft mset (􏽥F, A).

Example 4. Let X � (2/a), (3/b), (1/c), (4/d){ } and
Y � (3/x), (1/y), (2/z)􏼈 􏼉 be two msets, E � e1, e2, e3, e4􏼈 􏼉

and E′ � e1′, e2′, e3′􏼈 􏼉. Also, let u: X∗ ⟶ Y∗ and p: E⟶ E′
be two mappings defined as u(a) � y, u(b) � z, u(c) � x,
and u(d) � y and p(e1) � e3′, p(e2) � e3′, p(e3) � e1′, and
p(e4) � e2′. Choose a hesitant fuzzy soft mset (􏽥F, A) in

HF3SM( 􏽥XE) such as (􏽥F, A) � (e1, < (2/a){􏼈 , 0.1, 0.3,{

0.5}> , < (3/b), 0, 0, 0{ }> , < (1/c), 0, 0, 0{ }> , < (4/d),

0, 0, 0{ }> }), (e2, < (2/a), 0, 0, 0{ }> , < (3/b), 0, 0, 0{ }> , <{

(1/c), 0.2, 0.3, 0.4{ }> , < (4/d), 0.3, 0.7, 0.9{ }> })}. )en, the
hesitant fuzzy soft mset image of (􏽥F, A) under
f � (u, p): HF3SM( 􏽥XE)⟶ HF3SM(􏽥YE′

) is obtained as
h

f((􏽥F,A))(e1′)
(x) � 0, 0, 0{ } as p− 1(e1′)∩A � ϕ. Similarly,

h
f((􏽥F,A))(e1′

)(y) � h
f((􏽥F,A))(e1′

)(z) � 0, 0, 0{ }.

h
f((􏽥F,A)) e3′( )

(x) � ∨
q∈u− 1(x)

􏽥∪n∈ e1 ,e2{ }{
􏽥FA(n)􏼒 􏼓(h(q))

� ∨
q∈ c{ }

􏽥FA e1( 􏼁􏽥∪􏽥FA e2( 􏼁( 􏼁(h(q))

� ∨
q∈ c{ }

( <(2/a), 0.1, 0.3, 0.5{ }> , <(3/b), 0, 0, 0{ }> , <(1/c), 0.2, 0.3, 0.4{ }> , <(4/d), 0.3, 0.7, 0.9{ }>{ })(h(q))

� 0.2, 0.3, 0.4{ },

h
f((􏽥F,A)) e3′( )

(y) � ∨
q∈u− 1(y)

􏽥∪n∈ e1 ,e2{ }
􏽥FA(n)􏼒 􏼓(h(q))

� ∨
q∈ a,d{ }

􏽥FA e1( 􏼁􏽥∪􏽥FA e2( 􏼁( 􏼁(h(q))

� ∨
q∈ a,d{ }

( <(2/a), 0.1, 0.3, 0.5{ }> , <(3/b), 0, 0, 0{ }> , <(1/c), 0.2, 0.3, 0.4{ }> , <(4/d), 0.3, 0.7, 0.9{ }>{ })(h(q))

� 0.1, 0.3, 0.5{ }∨ 0.3, 0.7, 0.9{ }

� 0.3, 0.7, 0.9{ },

h
f((􏽥F,A)) e3′( )

(z) � ∨
q∈u− 1(z)

􏽥∪n∈ e1 ,e2{ }
􏽥FA(n)􏼒 􏼓(h(q))

� ∨
q∈ b{ }

􏽥FA e1( 􏼁􏽥∪􏽥FA e2( 􏼁( 􏼁(h(q))

� ∨
q∈ b{ }

( <(2/a), 0.1, 0.3, 0.5{ }> , <(3/b), 0, 0, 0{ }> , <(1/c), 0.2, 0.3, 0.4{ }> , <(4/d), 0.3, 0.7, 0.9{ }>{ })(h(q))

� 0, 0, 0{ }.

(4)
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)en, (f(((􏽥F, tA)), p(E)) � (e1′, < (3/x), 0, 0, 0{ }> , <{􏼈

(1/y), 0, 0, 0{ }> , < (2/z), 0, 0, 0{ }> }), (e’3), < (3/x),{

0.2, 0.3, 0.4{ } > , < (1/y), 0.3, 0.7, 0.9{ }> , <
(2/z), 0, 0, 0{ }> })}.

Definition 20. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) be a mapping such that u: X∗ ⟶ Y∗ and
p: E⟶ E′ be two mappings. If ( 􏽥H, B) is a hesitant fuzzy
soft mset in HFkSM(􏽥YE′), then the inverse image of ( 􏽥H, B)

is a hesitant fuzzy soft mset in HFkSM( 􏽥XE), denoted by
f− 1(( 􏽥H, B)), defined as follows: for e ∈ p− 1(B)⊆E and
x ∈ X∗,

h
f−1((􏽥H,B))(e)

(x) �
􏽥HB((p(e))(h(u(x))), if p(e) ∈ B,

0, 0, .k− times.., 0􏼈 􏼉, if otherwise.

⎧⎨

⎩

(5)

Example 5. From Example 4, let ( 􏽥H, B) � { (e1′, < (3/x),{􏼈

0.1, 0.5, 0.7{ }> , < (1/y), 0, 0.2, 0.4{ }> , < (2/z), 0.2, 0.3,{

0.4}> }), (e2′, < (3/x),{ 0.2, 0.4, 0.6{ }> , < (1/y),

0.1, 0.2, 0.3{ }> , < (2/z), 0, 0, 0.2{ }> })}. Since p(e1) �

p(e2) � e3′∈B, then h
f−1((􏽥H,B))(e1)

(a) � h
f−1((􏽥H,B))(e1)

(b) � h
f−1((􏽥H,B))(e1)

(c) � h
f−1((􏽥H,B))(e1)

(d) � 0, 0, 0{ } and
h

f−1((􏽥H,B))(e2)
(a) � h

f−1((􏽥H,B))(e2)
(b) � hf−1

(( 􏽥H, B))(e2)(c) � h
f−1((􏽥H,B))(e2)

(d) � 0, 0, 0{ }. Since
p(e3) � p(e4) � e1′, then

h
f−1((􏽥H,B)) e3( )

(a) � h
f−1((􏽥H,B)) e4( )

(a) � 0, 0.2, 0.4{ },

h
f−1((􏽥H,B)) e3( )

(b) � h
f−1((􏽥H,B)) e4( )

(b) � 0.2, 0.3, 0.4{ },

h
f−1((􏽥H,B)) e3( )

(c) � h
f−1((􏽥H,B)) e4( )

(c) � 0.1, 0.5, 0.7{ },

h
f−1((􏽥H,B)) e3( )

(d) � h
f−1((􏽥H,B)) e4( )

(d) � 0, 0.2, 0.4{ }.

(6)

Hence, the inverse image of ( 􏽥H, B) is f− 1(( 􏽥H, B)) �

(e1, < (2/a), 0, 0, 0{ }> , < (3/b),{􏼈 0, 0, 0{ }> , < (1/c),

0, 0, 0{ }> , < (4/d), 0, 0, 0{ }> }), (e2, < (2/a), 0, 0, 0{ }{

> , < (3/b), 0, 0, 0{ }> , < (1/c), 0, 0, 0{ }> , < (4/d),

0, 0, 0{ }> }), (e3, < (2/a), 0, 0.2, 0.4{ }> <{ (3/b), 0.2, 0.3,{

0.4}> , < (1/c), 0.1, 0.5, 0.7{ }> , < (4/d), 0, 0.2, 0.4{ }> }),

(e4, < (2/a),{ 0, 0.2, 0.4{ }> , < (3/b), 0.2, 0.3, 0.4{ }> , <
(1/c), 0.1, 0.5, 0.7{ }> , < (4/d), 0, 0.2, 0.4{ }> })}.

Definition 21. Let f � (u, p): HFkSM( 􏽥XE)⟶
HFkSM(􏽥YE′) be a mapping such that u: X∗ ⟶ Y∗ and
p: E⟶ E′ be two mappings. Let (􏽥F, A) and (􏽥G, B) be two
hesitant fuzzy soft msets in HFkSM( 􏽥XE). For e′∈ E′,
y ∈ Y∗: the union and intersection of two images f((􏽥F, A))

and f((􏽥G, B)) in HFkSM(􏽥YE′) are defined as

h
[f((􏽥F,A))􏽥⊔f((􏽥G,B))] e′( )

(y) � h
f((􏽥F,A)) e′( )

(y)∨ h
f((􏽥G,B)) e′( )

(y),

h
[f((􏽥F,A))􏽥⊓f((􏽥G,B))] e′( )

(y) � h
f((􏽥F,A)) e′( )

(y)∧ h
f((􏽥G,B)) e′( )

(y).

(7)

Definition 22. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) be a mapping such that u: X∗ ⟶ Y∗ and
p: E⟶ E′ be two mappings. Let (􏽥F, A) and (􏽥G, B) be two
hesitant fuzzy soft msets in HFkSM(􏽥YE′). For e ∈ E, x ∈ X∗:
the union and intersection of two inverse images
f− 1((􏽥F, A)) and f− 1((􏽥G, B)) in HFkSM( 􏽥XE) are defined as

h
f−1((􏽥F,A))􏽥⊔f−1((􏽥G,B))􏼂 􏼃(e)

(x) � h
f−1((􏽥F,A))(e)

(x)∨ h
f−1((􏽥G,B))(e)

(x),

h
f− 1((􏽥F,A))􏽥⊓f− 1((􏽥G,B))􏼂 􏼃(e)􏼁

(x) � h
f−1((􏽥F,A))(e)

(x)∧ h
f−1((􏽥G,B))(e)

(x).

(8)

Theorem 3. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) be a mapping such that u: X∗ ⟶ Y∗ and p: E⟶ E′
be two mappings. If (􏽥F, A), (􏽥G, B) are two hesitant fuzzy soft
msets in HFkS( 􏽥XE) and (􏽥Fi, Ai) is a family of hesitant fuzzy
soft msets in HFkSM( 􏽥XE), then

(1) f(􏽥0􏽥XE

) � 􏽥0􏽥Yp(E)

.
(2) f(􏽥1􏽥XE

)􏽥⊑􏽥1􏽥Y
E′
.

(3) f((􏽥F, A)􏽥⊔(􏽥G, B)) � f((􏽥F, A))􏽥⊔f((􏽥G, B)). In general,
f(􏽥⊔i(􏽥Fi, Ai)) � 􏽥⊔if((􏽥Fi, Ai)).

(4) f((􏽥F, A)􏽥⊓(􏽥G, B))􏽥⊑f((􏽥F, A))􏽥⊓f((􏽥G, B)). In general,
f(􏽥⊓i(􏽥Fi, Ai))􏽥⊑􏽥⊓if((􏽥Fi, A))i.

(5) If (􏽥F, A)􏽥⊑(􏽥G, B), then f((􏽥F, A))􏽥⊑f((􏽥G, B)).

Proof. )e proof of parts 1and 2 are obvious.
(3) For e′ ∈ p(E)⊆E′, y ∈ Y∗, let f((􏽥F, A)􏽥⊔(􏽥G, B)) �

f(( 􏽥H, C)), where C � A∪B, then

h
[f((􏽥H,C))](e′)

(y) �
∨

x∈u− 1(y)

􏽥∪n∈p−1(e′)∩C
􏽥HC(n)􏼒 􏼓(h(x)), if u− 1(y)≠ϕ, p− 1 e′( 􏼁∩C≠ϕ,

0, 0, ..k− times.., 0􏼈 􏼉, if otherwise.

⎧⎪⎨

⎪⎩
(9)

and

h
[f(􏽥H,C)](e′)

(y) �
∨

x∈u− 1(y)

􏽥∪n∈p−1(e′)∩ A∪B( )
􏽥HC(n)􏼒 􏼓(h(x)), if u− 1(y)≠ϕ, p− 1 e′( 􏼁∩A( 􏼁∪ p− 1 e′( 􏼁∩B( 􏼁≠ϕ,

0, 0, ..k− times.., 0􏼈 􏼉, if otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(10)

Considering only the nontrivial case, we have
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h
f 􏽥H,A∪B( 􏼁( 􏼁􏼂 􏼃(e′)

(y) � ∨x∈u−1(y)
􏽥∪

􏽥FA(n), if n ∈ (A − B)∩p− 1 e′( 􏼁,

􏽥GB(n), if n ∈ (B − A)∩p− 1 e′( 􏼁,

􏽥FA(n) 􏽥∪ 􏽥GB(n), if n ∈ A∩B∩p− 1 e′( 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(h(x)). (11)

By Definition 21, we have

h
[((􏽥F,A))􏽥⊔f((􏽥G,B))](e′)

(y) � h
f((􏽥F,A))(e′)

(y)∨h
f((􏽥G,B))(e′)

(y)

� ∨
x∈u− 1(y)

􏽥∪k∈p−1 e′( )∩A
􏽥FA(k)􏼒 􏼓(h(x))􏼠 􏼡∨ ∨

x∈u− 1(y)

􏽥∪m∈p−1 e′( )∩B
􏽥GB(m)􏼒 􏼓􏼠 􏼡(h(x))

� ∨
x∈u− 1(y)

􏽥∪

􏽥FA(n), if n ∈ (A − B)∩p− 1 e′( 􏼁,

􏽥GB(n), if n ∈ (B − A)∩p− 1 e′( 􏼁,

􏽥FA(n) 􏽥∪ 􏽥GB(n), if n ∈ A∩B∩p− 1 e′( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(h(x)).

(12)

Hence, the proof is complete. (4) Let (􏽥F, A) 􏽥⊓ (􏽥G, B) � ( 􏽥H, C), where C � A∩B. For
e′ ∈ p(E)⊆E′, y ∈ Y∗, and by using Definition 19 and
considering only the nontrivial case, we have

h
[f((􏽥F,A)􏽥⊓(􏽥G,B))](e′)

(y) � h
f((􏽥H,C))(e′)

(y)

� ∨
x∈u− 1(y)

􏽥∪n∈p−1(e′)∩C
􏽥HC(n)􏼒 􏼓(h(x))

� ∨
x∈u− 1(y)

􏽥∪n∈p−1(e′)∩A∩B
􏽥FA(n) 􏽥∩ 􏽥GB(n)􏼐 􏼑􏼒 􏼓(h(x))

􏽦≤ ∨
x∈u− 1(y)

􏽥∪n∈p−1(e′)∩A
􏽥FA(n)(h(x))􏼒 􏼓􏼠 􏼡∧ ∨

x∈u− 1(y)

􏽥∪n∈p−1(e′)∩B
􏽥GB(n)􏼒 􏼓(h(x))􏼠 􏼡

� h
f((􏽥F,A))(e′)

(y)∧h
f((􏽥G,B))(e′)

(y).

(13)

Hence, f((􏽥F, A)􏽥⊓(􏽥G, B))􏽥⊑f((􏽥F, A))􏽥⊓f((􏽥G, B)). (5) If (􏽥F, A) 􏽥⊑ (􏽥G, B) for nontrivial case in Definition 19,
e′ ∈ p(E)⊆E′, y ∈ Y∗, then

h
f((􏽥F,A))(e′)

(y) � ∨
x∈u− 1(y)

􏽥∪n∈p−1 e′( )∩A
􏽥FA(n)􏼒 􏼓(h(x))

� ∨
x∈u− 1(y)

􏽥∪n∈p−1 e′( )∩A
􏽥FA(n)􏼒 􏼓(h(x))

􏽦≤ ∨
x∈u− 1(y)

􏽥∪n∈p−1 e′( )∩B
􏽥GB(n)􏼒 􏼓(h(x))

� h
f((􏽥G,B)) e′( )

(y), which completes the proof .

(14)
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Remark 3.1. )e inclusion in )eorem 3, parts 2 and 4,
cannot be replaced by equality relation. Moreover, the
converse of part 5 is not necessarily true as shown in the
following example.

Example 6. Let X � (2/a), (3/b), (4/c){ } and
Y � (3/x), (4/y), (2/z)􏼈 􏼉 be two msets, E � e1, e2, e3, e4􏼈 􏼉

and E′ � e1′, e2′, e3′􏼈 􏼉. Also, let
f � (u, p): HF2SM( 􏽥XE)⟶ HF2SM(􏽥YE′) be a mapping
such that u: X∗ ⟶ Y∗ and p: E⟶ E′ be two mappings
defined as u(a) � x, u(b) � z, and u(c) � x and p(e1) � e2′,
p(e2) � e1′, p(e3) � e1′, and p(e4) � e1′. )en,

(1) f(􏽥1􏽥XE

) � (e1′, < (3/x), 1, 1{ }> , < (4/y),􏼈􏼈 0, 0{ }> , <
(2/z), 1, 1{ }> }), (e1′, < (3/x),{ 1, 1{ }> , < (4/y),

0, 0{ }> , < (2/z), 1, 1{ }> })}≠ 􏽥1􏽥Y
E′
.

(2) Let (􏽥F, A) � (e3, < (2/a), 0.6, 0.7{ }> , <{􏼈 (3/a),

0.2, 0.4{ }> , < (4/c), 0.5, 0.8{ }> })} and (􏽥G, B) �

(e3, { < (2/a), 0.2, 0.3{ }> , < (3/b),{􏼈 0.1, 0.6{ }> ,

< (4/c), 0.6, 0.7{ }> })} be two hesitant fuzzy soft
msets in HF2SM( 􏽥XE). Assume that
(􏽥F, A)􏽥⊓(􏽥G, B) � ( 􏽥H, C), where C � A∩B, then
( 􏽥H, C) � (e3, < (2/a),{􏼈 0.2, 0.3{ }> , < (3/b),

0.1, 0.4{ }> , < (4/c), 0.5, 0.7{ }> })}. )erefore,

h
f((􏽥H,C)) e1′( )

(x) � ∨
q∈u− 1(x)

􏽥∪n∈p−1 e1′( )∩C
􏽥HC(n)􏼒 􏼓(h(q))

� ∨
q∈ a,c{ }

􏽥∪n∈ e2 ,e3 ,e4{ }∩C
􏽥HC(n)􏼒 􏼓(h(q))

� 0.2, 0.3{ }∨ 0.5, 0.7{ }

� 0.5, 0.7{ }.

(15)

In similar way, h
f((􏽥H,C))(e1′)

(y) � 0, 0{ } and
h

f((􏽥H,C)))(e1′)
(z) � 0.1, 0.4{ }. Also, h

f((􏽥H,C))(e2′)
(x) �

h
f((􏽥H,C))(e2′)

(y) � h
f((􏽥H,C))(e2′)

(z) � 0, 0{ } as

p− 1(e2′)∩C � ϕ, but f((􏽥F, A)) � (e1′,􏼈

< (3/x), 0.6, 0.8{ }> , < (4/y), 0, 0{ }> , <􏼈 (2/z),

{0.2, 0.4> }), (e2′, {< (3/x), 0, 0{ }> , < (4/y),

0, 0{ }> , < (2/z), 0, 0{ }> })}, f((􏽥G, B)) �

, ( < (3/x), 0.6, 0.7{ }> , < (4/y),􏼈􏼈 0, 0{ }> ,

< (2/z), 0.1, 0.6{ }> }), (e2′, < (3/x), 0, 0{ }> ,{

< (4/y), 0, 0{ }> , < (2/z), 0, 0{ }> })}. Hence,
f((􏽥F, A)􏽥⊓(􏽥G, B)) ≠f((􏽥F, A))􏽥⊓ f((􏽥G, B)).

(3) Let (􏽥F, A) � (e3, < (2/a), 0.6, 0.7{ }> , <{􏼈

(3/b), 0.2, 0.4{ }> , < (4/c), 0.5, 0.8{ }> })} and
(􏽥G, B) � (e3,􏼈 < (2/a), 0.5, 0.6{ }> , < (3/b),{

0.3, 0.5{ }> , < (4/c), 0.7, 0.9{ } > })} be two hesitant
fuzzy soft msets in HF2SM( 􏽥XE). )en, f((􏽥F, A)) �

(e1′, < (3/x), 0.6, 0.8{ }> , <{􏼈 (4/y), 0, 0{ }> ,

< (2/z), 0.2, 0.4{ }> }), (e′, < (3/x), 0, 0{ }> , <{

(4/y), 0, 0{ }> , < (2/z), 0, 0{ }> })} and f((􏽥G, B)) �

(e1′, < (3/x),{􏼈 0.7, 0.9{ }> , < (4/y), 0, 0{ }> , <
(2/z), 0.3, 0.5{ }> }), (e1′, < (3/x),{

0, 0{ }> , < (4/y), 0, 0{ }> , < (2/z), 0, 0{ }> })}. Hence,
f((􏽥F, A))􏽥⊑ f((􏽥G, B)) but (􏽥F, A) 􏽥⊑(􏽥G, B).

Theorem 4. Let f � (u, p): HFkSM( 􏽥X

E)⟶ HFkSM(􏽥YE′
) be a mapping such that u: X∗ ⟶ Y∗

and p: E⟶ E′ be two mappings. If (􏽥F, A) and (􏽥G, B) are
two hesitant fuzzy soft msets in HFkSM(􏽥YE′

) and (􏽥Fi, Ai) is
a family of hesitant fuzzy soft msets in HFkSM(􏽥YE′

), then

(1) f− 1(􏽥0􏽥YE

) � 􏽥0􏽥XE

.

(2) f− 1(􏽥1􏽥Y
E′

) � 􏽥1􏽥XE

.
(3) f− 1((􏽥F, A)􏽥⊔(􏽥G, B)) � f− 1((􏽥F, A))􏽥⊔f− 1((􏽥G, B)). In

general, f− 1(􏽥⊔i(􏽥Fi, Ai)) � 􏽥⊔if− 1((􏽥Fi, Ai)).
(4) f− 1((􏽥F, A)􏽥⊓(􏽥G, B)) � f− 1((􏽥F, A))􏽥⊓f− 1((􏽥G, B)). In

general, f− 1(􏽥⊓i(􏽥Fi, Ai)) � 􏽥⊓if− 1((􏽥Fi, A))i.
(5) If (􏽥F, A)􏽥⊑(􏽥G, B), then f− 1((􏽥F, A))􏽥⊑f− 1((􏽥G, B)).

Proof. )e proof of parts 1and 2 is obvious.

(3) Let (􏽥F, A)􏽥⊔(􏽥G, B) � ( 􏽥H, C), where C � A∪B. For
e ∈ p− 1(C)⊆E, x ∈ X∗, and for nontrivial case, we
have

h
f− 1((􏽥H,C))(e)􏼁

(x) � 􏽥HC(p(e))(h(u(x)))

�

􏽥FA(p(e))(h(u(x))), if p(e) ∈ A − B,

􏽥GB(p(e))(h(u(x))), if p(e) ∈ B − A,

􏽥FA(p(e))􏽥∪􏽥GB(p(e))􏼐 􏼑(h(u(x))), if p(e) ∈ A∩B.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)
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By using Definition 22, we have

h
f−1((􏽥F,A))􏽥⊔f−1((􏽥G,B))􏼂 􏼃(e)

(x) � h
f−1((􏽥F,A))(e)

(x)∨h
f−1((􏽥G,B))(e)

(x)

� 􏽥FA(p(e)(h(u(x))))∨􏽥GB(p(e))(h(u(x)))

�

􏽥FA(p(e))(h(u(x))), if p(e) ∈ A − B,

􏽥GB(p(e))(h(u(x))), if p(e) ∈ B − A,

􏽥FA(p(e))􏽥∪􏽥GB(p(e)))(h(u(x)))􏼐 􏼑, if p(e) ∈ A∩B.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

Hence, f− 1((􏽥F, A)􏽥⊔(􏽥G, B)) � f− 1((􏽥F, A))􏽥⊔f− 1((􏽥G, B)).

(4) Let (􏽥F, A)􏽥⊓(􏽥G, B) � ( 􏽥H, C), where C � A∩B. For
e ∈ p− 1 (C)⊆E, x ∈ X∗, and for nontrivial case, we
have

h
f−1((􏽥H,C))(e)

(x) � 􏽥HC(p(e))(h(u(x)))

� 􏽥FA(p(e)) 􏽥∩ 􏽥GB(p(e))􏼐 􏼑(h(u(x)))

� 􏽥FA(p(e))( 􏼁 􏽥∩ 􏽥GB(p(e))(h(u(x)))

� 􏽥FA(p(e))( 􏼁(h(u(x)))􏼂 􏼃∧ 􏽥GB(p(e))(h(u(x)))􏽨 􏽩

� h
f−1((􏽥F,A))(e)

(x)∧h
f−1((􏽥G,B))(e)

(x).

(18)

Hence,
f− 1((􏽥F, A)􏽥⊓(􏽥G, B)) � f− 1((􏽥F, A))􏽥⊓f− 1((􏽥G, B)).

(5) If (􏽥F, A)􏽥⊑(􏽥G, B), then for p(e) ∈ A, we have

h
f−1((􏽥F,A))(e)

(x) � 􏽥FA(p(e))(h(u(x)))

􏽦≤ 􏽥GA(p(e))􏼐 􏼑(h(u(x)))

� h
f−1((􏽥G,A))(e)

(x), p(e) ∈ A

􏽦≤ h
f−1((􏽥G,B))(e)

(x), p(e) ∈ B.

(19)

Hence, f− 1((􏽥F, A))􏽥⊑f− 1((􏽥G, B)).

Remark 3.2. )e converse in )eorem 4 part 5 is not
necessarily true as shown in the following example.

Example 7. Let X � (1/a), (2/b), (3/c){ } and
Y � (4/x), (3/y), (2/z)􏼈 􏼉 be two msets, E � e1, e2, e3, e4􏼈 􏼉

and E′ � e1′, e2′, e3′􏼈 􏼉. Also, let u: X∗ ⟶ Y∗ and p: E⟶ E′
be two mappings defined as u(a) � y, u(b) � z, and u(c) �

z and p(e1) � e1′, p(e2) � e1′, p(e3) � e2′, and p(e4) � e2′.
Choose two hesitant fuzzy soft msets (􏽥F, A) and (􏽥G, B) in
HF2SM(􏽥YE′) such as ((􏽥F, A) � (e3′, < (4/x),{􏼈

0.3, 0.5{ }> , < (3/y), 0.5, 1{ }> , < (2/z), 0.8, 0.9{ }> })}) and
(􏽥G, B) � (e3′,􏼈 < (4/x), 0.4, 0.7{ }> , < (3/y), 0, 0.2{ }> , <􏼈

(2/z), 0.3, 1{ }> })}. )en, the inverse image of (􏽥F, A) under
f � (u, p): HF2SM( 􏽥XE)⟶ HF2SM(􏽥YE′) is obtained as
f− 1((􏽥F, A)) � 􏽥0􏽥XE

. Also, f− 1((􏽥G, B)) � 􏽥0􏽥XE

. Hence,
f− 1((􏽥F, A)) � f− 1((􏽥G, B)), but (􏽥F, A)􏽥⊑(􏽥G, B).

Definition 23. Let u: X∗ ⟶ Y∗ and p: E⟶ E′ be two
mappings. An HFSM mapping f � (u, p):

HFkSM( 􏽥XE)⟶ HFkSM(􏽥YE′) is called

(1) One-one (or injection) if p and u are one-one (or
injection)

(2) Onto (or surjection) if p and u are onto (or surjection)
(3) Bijection if p and u are bijection

Theorem 5. Let f � (u, p): HFkSM( 􏽥XE)⟶
HFkSM(􏽥YE′) and g � (r, t): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) be two HFSMmappings of dimension k. 8en, f and g

are equal if and only if u � r and p � t.

Proof. Immediate.

Definition 24. Let f � (u, p): HFkSM( 􏽥XE)⟶
HFkSM(􏽥YE′) and g � (r, t): HFkSM(􏽥YE′)⟶ HFkSM

(􏽥ZE″ ) be two HFSMmappings of dimension k. )eir
composition g∘fis also a hesitant fuzzy soft multimapping
with dimension k from HFkSM( 􏽥XE) into HFkSM(􏽥ZE″ )

such that, for every (􏽥F, A) in HFkSM( 􏽥XE),

(g∘f)(􏽥F, A) � g(f((􏽥F, A))). (20)

)is composition is defined as, for e″ ∈ t(E′)⊆E″ and
z ∈ Z∗,

h
g(f((􏽥F,A))) e″( )

(z) � ∨x∈u−1 r−1(z)( )
􏽥∪n∈t−1 e″( )∩p(A)

· (f((􏽥F, A)))(n)(h(x)).
(21)

Theorem 6. Let f � (u, p): HFkSM( 􏽥XE)⟶
HFkSM(􏽥YE′) and g � (r, t): HFkSM(􏽥YE′)⟶ HFkSM

(􏽥ZE″ ) be two HFSMmappings of dimension k. 8en,

(1) g∘f is injection if f and g are injection or, equiva-
lently, if r∘u and t∘p are injection

(2) g∘f is surjection if f and gare surjection or, equiv-
alently, if r∘u and t∘p are surjection

(3) g∘f is bijection if f and g are bijection or, equiva-
lently, if r∘u and t∘p are bijection

Proof

(1) Let (􏽥F, A), (􏽥G, B)􏽥∈HFkSM( 􏽥XE) such that
g∘f((􏽥F, A)) � g∘f((􏽥G, B)). )erefore, g(f
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((􏽥F, A))) � g(f((􏽥G, B))). Since g is injection, then
f((􏽥F, A)) � f((􏽥G, B)). Also, f is injection, so
(􏽥F, A) � (􏽥G, B). Hence, g∘f is injection.

(2) Let ( 􏽥H, C)􏽥∈HFkSM(􏽥ZE″), then there exists
(􏽥G, B)􏽥∈HFkSM(􏽥YE′) such that g((􏽥G, B)) � ( 􏽥H, C)

as g is surjection. Since f is also surjection, then
there exists (􏽥F, A)􏽥∈HFkSM( 􏽥XE) such that
f((􏽥F, A)) � (􏽥G, B). )us, g(f((􏽥F, A)))) � g

((􏽥G, B)) � ( 􏽥H, C) which completes the proof.
(3) Immediately by part 1 and 2.

Definition 25. A bijection hesitant fuzzy soft multimapping
f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM(􏽥YE′) is called
invertable. Also, the inverse of f, denoted by f− 1, is defined
as f− 1 � (u− 1, p− 1): HFkSM(􏽥YE′

)⟶ HFkSM( 􏽥XE), for
each (􏽥F, A) in HFkSM(􏽥YE′

), f− 1((􏽥F, A)) in HFkSM( 􏽥XE).

Theorem 7. Let f � (u, p): HFkSM( 􏽥XE)⟶
HFkSM(􏽥YE′ ) and g � (r, t): HFkSM(􏽥YE′)⟶ HFkSM

(􏽥ZE″) be two bijectionHFSMmappings of dimension k.8en,
(g∘f)− 1 � f− 1∘g− 1.

Proof. If f and gare bijection HFSMmappings with di-
mension k, then there exist f− 1: HFkSM(􏽥YE′)⟶

HFkSM( 􏽥XE) and g− 1: HFkSM(􏽥ZE″)⟶ HFkSM(􏽥YE′)

defined as f− 1((􏽥G, B)) � (􏽥F, A), whenever
f((􏽥F, A)) � (􏽥G, B), (􏽥F, A)􏽥∈HFkSM( 􏽥XE),
(􏽥G, B)􏽥∈HFkSM(􏽥YE′

), and g− 1(( 􏽥H, C)) � (􏽥G, B), whenever
g((􏽥G, B)) � ( 􏽥H, C) and ( 􏽥H, C)􏽥∈HFkSM(􏽥ZE″). Hence,
(g∘f)((􏽥F, A)) � g(f((􏽥F, A))) � g((􏽥G, B)) � ( 􏽥H, C). Since
f, g are bijection, then g∘f is also bijection. )erefore,
(g∘f)− 1exists such that (g∘f)− 1(( 􏽥H, C)) � (􏽥F, A). Also,
(f− 1∘g− 1)(( 􏽥H, C)) � f− 1(g− 1(( 􏽥H, C))) � f− 1((􏽥G, B)) �

(􏽥F, A). )en, (g∘f)− 1 � f− 1∘g− 1.

Theorem 8. Let f � (u, p): HFkSM( 􏽥XE)⟶
HFkSM(􏽥YE′) and g � (r, t): HFkSM(􏽥YE′

)⟶ HFkSM

(􏽥Z
E
’
′
) be two HFSMmappings of dimension k. 8en,

(1) f(f− 1((􏽥F, A)))􏽥⊑(􏽥F, A), where (􏽥F, A)􏽥∈HFkSM

(􏽥YE′
)

(2) (􏽥F, A)􏽥⊑f− 1(f((􏽥F, A))), where (􏽥F, A)􏽥∈HFkSM( 􏽥XE)

Proof

(1) For y ∈ Y∗, e′∈ p(E) ⊂ E′ and (􏽥F, A)􏽥∈HFkSM

(􏽥YE′
), we have

h
f f−1((􏽥F,A))(e′)􏼒 􏼓

(y) � ∨
x∈u− 1(y)

􏽥∪n∈p−1(e′)∩p
−1(A) f

− 1
((􏽥F, A))(n)􏼐 􏼑(h(x))􏼒 􏼓

� ∨
x∈u− 1(y)

􏽥∪n∈p−1(e′)∩p
−1(A) f

− 1
((􏽥F, A))􏼐 􏼑(n)􏼐 􏼑􏼒 􏼓(h(x))

� ∨
x∈u− 1(y)

∨
n∈p− 1(e′)∩p

− 1(A)
f

− 1
((􏽥F, A))(n)(h(x))

� ∨
x∈u− 1(y)

∨
n∈p− 1(e′)∩p

− 1(A)

􏽥FA(p(n)(h(u(x))))

� ∨
n∈p− 1(e′)∩p

− 1(A)

􏽥FA((p(n))(h(y)))

􏽦≤ ∨
n∈p− 1(e′)

􏽥FA(p(n))(h(y))

� h
(􏽥F,A)(e′)

(y).

(22)

Hence, f(f− 1((􏽥F, A)))􏽥⊑(􏽥F, A).
(2) )e proof is similar to that of part 1.

Remark 3.3. )e inclusion in )eorem 9 parts 1 and 2
cannot be replaced by equality relation as shown in the
following example.

Example 8

(1) From Example 7, f(f− 1(􏽥F, A)) � 􏽥0􏽥Yp(E)

≠ (􏽥F, A).
(2) From Example 6 part 2, f− 1(f( 􏽥H, C)) � (e1,􏼈

< (2/a), 0, 0{ }> , < (3/b),{ 0, 0{ }> , < (4/c), 0, 0{ }

> }), (e20, < (2/a), 0.5, 0.7{ }> , <{ (3/b), 0.1, 0.4{ }> ,

< (4/c), 0.5, 0.7{ }> }), (e3, < (2/a), 0.5, 0.7{ }> , <{

(3/b), 0.1, 0.4{ }> , < (4/c), 0.5, 0.7{ }> }), (e4,

< (2/a),{ 0.5, 0.7{ }> , < (3/b), 0.1, 0.4{ }> , <
(4/c), 0.5, 0.7{ }> })} but ( 􏽥H, C) � (e3, <{􏼈

(2/a), 0.2, 0.3{ }> , < (3/b), 0.1, 0.4{ }> , < 4/c,

0.5, 0.7{ }> })}. Hence, f− 1(f( 􏽥H, C))≠ ( 􏽥H, C).

Corollary 1. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) be an HFSM mapping of dimension k. 8en,

(1) f(f− 1((􏽥F, A))) � (􏽥F, A), where (􏽥F, A)􏽥∈HFkSM

(􏽥YE′) if f is surjection
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(2) (􏽥F, A) � f− 1(f((􏽥F, A))), where (􏽥F, A)􏽥∈HFkSM

( 􏽥XE) if f is injection

Proof. Immediate by using )eorem 8.

Definition 26. A hesitant fuzzy soft multimapping f with
dimension k, where f � (uo, po): HFkSM( 􏽥XE)⟶
HFkSM( 􏽥XE) is said to be identity if uo, po are identity
mappings.

Theorem 9. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′
) and g � (r, t): HFkSM(􏽥ZE″)⟶ HFkSM( 􏽥XE) be

two HFSMmappings of dimension k. 8en, for the identity
mapping i � (uo, po): HFkSM( 􏽥XE)⟶ HFkSM( 􏽥XE), we
have

(1) f∘i � f

(2) i∘g � g

Proof. Immediate.

4. Continuous Mappings on Hesitant Fuzzy
Soft Multispaces

)e aim of this section is to introduce the concept of hesitant
fuzzy soft multitopology. )erefore, some types of hesitant
fuzzy soft multimapping are presented in detail such as
continuity, open, closed, and homeomorphism. Also, their
properties and results are obtained.

Definition 27. )e subcollection 􏽥τE of members of
HFkSM(X)E is called a hesitant fuzzy soft multitopology of
dimension kon ( 􏽥X, E), if the following conditions are
satisfied:

(1) 􏽥0􏽥XE

, 􏽥1􏽥XE

􏽥∈ 􏽥τE

(2) If (􏽥A, E), (􏽥B, E)􏽥∈ 􏽥τE, then (􏽥A, E)􏽥⊓(􏽥B, E)􏽥∈ 􏽥τE

(3) If (􏽥Ai, E)􏽥∈ 􏽥τE, i ∈ I, then 􏽥⊔i∈I(􏽥Ai, E)􏽥∈ 􏽥τE

)e pair ( 􏽥XE, 􏽥τE) is called a hesitant fuzzy soft multi-
topological space. Each member of 􏽥τE is called an open
hesitant fuzzy soft mset. Also, the complement of an open
hesitant fuzzy soft mset is called closed. )e family of all
closed hesitant fuzzy soft msets is denoted by 􏽥τc

E.

Definition 28. Let ( 􏽥XE, 􏽥τE) be a hesitant fuzzy soft multi-
topological space. A subfamily 􏽥βE is called a hesitant fuzzy
soft multibasis for 􏽥τE if every member of 􏽥τE can be written as
arbitrary hesitant fuzzy soft multiunion of some elements of
􏽥βE.

Definition 29. Let ( 􏽥XE, 􏽥τE) be a hesitant fuzzy soft multi-
topological space and (􏽥F, A) be an HFkSMset over ( 􏽥X, E).
)e closure of (􏽥F, A) is denoted by (􏽥F, A) and defined as

(􏽥F, A) � 􏽥⊓ (􏽥G, B): (􏽥G, B)􏽥∈ 􏽥τc
E, (􏽥F, A)􏽥⊑(􏽥G, B)}.􏽮 (23)

Theorem 10. Let ( 􏽥XE, 􏽥τE) be a hesitant fuzzy soft multi-
topological space and (􏽥F, A) and (􏽥G, B) be two HFkSMsets
over ( 􏽥X, E), then

(1) (􏽥F, A) is the smallest closed hesitant fuzzy soft mset
containing (􏽥F, A)

(2) (􏽥F, A) is a closed hesitant fuzzy soft mset if and only if
(􏽥F, A) � (􏽥F, A)

(3) (􏽥F, A) � (􏽥F, A)

(4) If (􏽥F, A)􏽥⊑(􏽥G, B), then (􏽥F, A)􏽥⊑(􏽥G, B)

Proof. )e proof is omitted.

Definition 30. Let (f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′)) be a mapping such that u: X∗ ⟶ Y∗ and
p: E⟶ E′ be twomappings. Let 􏽥τE and 􏽥ηE′

be two hesitant
fuzzy soft multitopologies of dimension k over 􏽥XE and 􏽥YE′respectively. A function f is said to be

(1) Continuous if f− 1((􏽥G, B))􏽥∈ 􏽥τE for all (􏽥G, B)􏽥∈ 􏽥ηE′

(2) Open if f((􏽥F, A))􏽥∈ 􏽥ηE′ for all (􏽥F, A)􏽥∈ 􏽥τE

(3) Closed if f((􏽥F, A))􏽥∈ 􏽥ηc
E′ for all (􏽥F, A)􏽥∈ 􏽥τc

E

(4) Homeomorphism if it is bijection, continuous, and
its inverse f− 1 is also continuous

Theorem 11. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) be amapping such that u: X∗ ⟶ Y∗ and p: E⟶ E′
be two mappings. Let 􏽥τE and 􏽥ηE′

are two hesitant fuzzy soft
multitopologies of dimension k over 􏽥XE and 􏽥YE′

respectively.
8en, the following conditions are equivalent:

(1) f is continuous
(2) f− 1((􏽥G, B))􏽥∈ 􏽥τE for all (􏽥G, B)􏽥∈ 􏽥βE′ , where 􏽥βE′ is a base

for 􏽥ηE’

(3) f− 1((􏽥G, B)) is 􏽥τE−closed for all 􏽥ηE’−closed (􏽥G, B)

(4) f− 1((􏽥G, B)∘)􏽥⊑(f− 1((􏽥G, B)))∘ for all
(􏽥G, B)􏽥∈HFkSM(􏽥YE′)

(5) f((􏽥F, A))􏽥⊑f((􏽥F, A)), where (􏽥F, A)􏽥∈HFkSM( 􏽥XE)

(6) f− 1((􏽥G, B))􏽥⊑f− 1((􏽥G, B)), where
(􏽥G, B)􏽥∈HFkSM(􏽥YE′).

Proof. )e proof is omitted for parts 1, 2, and 3, and these
statements are equivalent.

(1) Since (􏽥G, B)∘􏽥⊑(􏽥G, B), by using )eorem 4, we get
f− 1((􏽥G, B)∘)􏽥⊑f− 1((􏽥G, B)). )erefore, by using
)eorem 1, (f− 1((􏽥G, B)∘))∘􏽥⊑(f− 1((􏽥G, B)))∘, but f is
continuous, so f− 1((􏽥G, B)∘) is 􏽥τE−open. Hence,
f− 1((􏽥G, B)∘)􏽥⊑(f− 1((􏽥G, B)))∘.

(2) By using part 4, f− 1(f((􏽥F, A))) is 􏽥τE−closed, but
(􏽥F, A)􏽥⊑f− 1(f((􏽥F, A))). )en,
(􏽥F, A)􏽥⊑f− 1(f((􏽥F, A))). Now, by using )eorems 3
and 8, we have f((􏽥F, A))) 􏽥⊑f((f− 1 ((f((􏽥F, A))))
􏽥⊑f((􏽥F, A)))).
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(3) Since (􏽥G, B)􏽥⊑(􏽥G, B), by using )eorem 4, we get
f− 1((􏽥G, B))􏽥⊑f− 1((􏽥G, B)) � f− 1((􏽥G, B)) as f is
continuous. )erefore, f− 1((􏽥G, B))􏽥⊑f− 1((􏽥G, B)).

Remark 4. )e inclusion in )eorem 11 parts 4, 5, and 6
cannot be replaced by equality relation as shown in the
following example.

Example 9. From Example 4, let ( 􏽥XE, 􏽥τE) �

􏼈􏽥0􏽥XE

, 􏽥1􏽥XE

, (􏽥F, E)} be a hesitant fuzzy soft multitopological
space with dimension 3, where (􏽥F, E) � (e1, 􏽥0􏼈 􏽥X), (e2, 􏽥0􏽥X),

(e3, < (2/a), 0, 0.2, 0.4{ }> ,{ < (3/b), 0.2, 0.3,{

0.4}> , < (1/c), 0.1, 0.5, 0.7{ }> , < (4/d), 0, 0.2, 0.4{ }> }), (e4,

< (2/a),{ 0, 0.2, 0.4{ }> , < (3/b), 0.2, 0.3, 0.4{ }> , < (1/c),

0.1, 0.5, 0.7{ }> , < (4/d), 0, 0.2, 0.4{ }> })}, (for short, 􏽥0􏽥X �

<{ (2/a), 0, 0, 0{ }> , < (3/b), 0, 0, 0{ }> , < 1/c, 0, 0, 0{ }> , <
(4/d), 0, 0, 0{ }> }) and (􏽥Y E′ , 􏽥ηE′) � 􏼈􏽥0􏽥Y

E′
, 􏽥1􏽥Y

E′
, ( 􏽥H, E′)} be

a hesitant fuzzy soft multitopological space with dimension
3, where ( 􏽥H, E′) � (e1′,􏼈 < (3/x), 0.1, 0.5, 0.7{ }> ,{

< (1/y), 0, 0.2, 0.4{ }> , < (2/z), 0.2, 0.3, 0.4{ }> }), (e2′,
< (3/x), 0.2, 0.4, 0.6{ }> , <{ (1/y), 0.1, 0.2, 0.3{ }> , < (2/z),

0, 0, 0.2{ }> }), (e3′, 􏽥0􏽥Y)}, then

(1) Choose (􏽥G, E′) � (e1′, 􏽥1􏽥Y), (e2′,􏽮

< (3/x), 0.3, 0.4, 0.7{ }> , < (1/y),􏼈

0.1, 0.3, 0.5{ }> , < (2/z), 0.2, 0.3, 0.5{ }> }), ((e3′, 􏽥1􏽥Y)}

is an element in HFkS(􏽥YE′), therefore
(􏽥G, E′)

∘ � ( 􏽥H, E′). )en, f− 1((􏽥G, E’)∘) � (􏽥F, E).
Now, we need to estimate f− 1((􏽥G, E′)); so,

h
f−1((􏽥G,E′)) e1( )

(a) � 􏽥GE′ p e1( 􏼁( 􏼁(h(u(a)))

� 􏽥GE′ e3′( 􏼁(h(y))

� 1, 1, 1{ }.

(24)

By the similar way, we get f− 1((􏽥G, E′)) � 􏽥1􏽥XE

.
Hence, (f− 1((􏽥G, E′)))

∘ � 􏽥1􏽥XE

. )en,
(f− 1((􏽥G, E′)))

∘ ≠f− 1((􏽥G, E′)
∘).

(2) Choose (􏽥G, E) � (e1, < (2/a), 0.1, 0.3, 0.5{ }> , <{􏼈

(3/b), 0, 0, 0{ }> , < 1/c, 0, 0, 0{ }> , < 4/d, 0, 0, 0{ }> }),

(e2, < (2/a), 0, 0, 0{ }> , < (3/b),{ 0, 0, 0{ }> , < (1/c),

0.2, 0.3, 0.4{ }> , < (4/d), 0.3, 0.7, 0.9{ }> }), (e3, 􏽥0􏽥X),

(e4, 􏽥0􏽥X)} is an element in HFkSM( 􏽥XE). )en,
(􏽥G, E) � (e1, 􏽥1􏽥X),􏽮 (e2, 􏽥1􏽥X), (e3, < (2/a), 0.6, 0.8, 1{ }{

> , < (3/b), 0.6, 0.7, 0.8{ }> , < (1/c), 0.3, 0.5,{

0.9}> , < (4/d), 0.6, 0.8, 1{ }> }), (e4, < (2/a),{

0.6, 0.8, 1{ }> , < (3/b), 0.6, 0.7, 0.8{ }> , < (1/c),

0.3, 0.5, 0.9{ }> , < (4/d), 0.6, 0.8, 1{ }> })}.

h
f((􏽥G,E))

e1′( 􏼁 (x) � ∨
q∈u− 1(x)

􏽥⊔n∈p−1 e1′( )∩E
􏽥GE(n)(h(x))􏼒 􏼓

� ∨
q∈ c{ }

􏽥⊔n∈ e3 ,e4{ }
􏽥GE(n)􏼒 􏼓(h(x))

� 0.3, 0.5, 0.9{ }.

(25)

By the similar way, we get f((􏽥G, E)) � (e1′, {􏼈

< (3/x), 0.3, 0.5, 0.9{ }> , < (1/y), 0.6, 0.8, 1{ }> , <􏼈

(2/z), 0.6, 0.7, 0.8{ }> }), (e3′, 􏽥1􏽥Y)}, but (f((􏽥G, E))) � (e3′,􏼈

< (3/x), 0.3, 0.5, 0.9{ }> , < (1/y), 0.6, 0.8, 1{ }> , <􏼈 (2/z),

0.6, 0.7, 0.8{ }> }), (e2′, < (3/x), 0.4, 0.6, 0.8{ }> , < (1/y),􏼈

0.7, 0.8, 0.9{ }> , < (2/z), 0.8, 1, 1{ }> }), (e3′, 􏽥1􏽥Y)}. Hence,
(f((􏽥G, E))) ≠f((􏽥G, E)). Also, one may extend an example
for part 6in )eorem 11 by the same technique.

Theorem 12. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) and g � (r, t): HFkSM(􏽥YE′)⟶ HFkSM(􏽥ZE″) be
two HFSMmappings of dimension k and 􏽥τE, 􏽥ηE′

, and 􏽥ζ
E
’
′
be

three topologies over 􏽥XE, 􏽥YE′
, and 􏽥Z

E
’
′
respectively. If f, gare

continuous, then g∘fis also continuous.

Proof. Immediate.

Theorem 13. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) be an HFSMmapping of dimension k and 􏽥τE and 􏽥ηE′
be

two topologies over 􏽥XE and 􏽥YE′
, respectively. If f((􏽥F, A))􏽥∈ 􏽥ηE′

for every (􏽥F, A)􏽥∈ 􏽥βE, where 􏽥βE is a base for 􏽥τE, then f is an
open hesitant fuzzy soft multimapping.

Proof. Let (􏽥G, B)􏽥∈ 􏽥τE.)en, (􏽥G, B) � 􏽥⊔ ( 􏽥H, C): ( 􏽥H, C)􏼈􏽮
􏽥∈ 􏽥βE}}. )erefore, f((􏽥G, B)) � f(􏽥⊔ ( 􏽥H, C): ( 􏽥H, C)􏼈
􏽥∈ 􏽥βE}) � 􏽥⊔ f(( 􏽥H, C)): ( 􏽥H, C)􏽥∈ 􏽥βE}􏽮 . According to the given
hypothesis, f(( 􏽥H, C))􏽥∈ 􏽥ηE′ ; hence, f((􏽥G, B))􏽥∈ 􏽥ηE′which
completes the proof.

Theorem 14. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) be amapping such that u: X∗ ⟶ Y∗ and p: E⟶ E′
be two mappings. Let 􏽥τE and 􏽥ηE′

are two hesitant fuzzy soft
multitopologies of dimension k over 􏽥XE and 􏽥YE′ , respectively.
If (􏽥F, A)􏽥∈HFkSM( 􏽥XE), then

(1) f is open if and only if f((􏽥F, A)∘)􏽥⊑(f((􏽥F, A)))∘

(2) f is closed if and only if f((􏽥F, A))􏽥⊑f((􏽥F, A))

Proof

(1) Let f be an open hesitant fuzzy soft multimapping and
since (􏽥F, A)∘􏽥⊑(􏽥F, A). )en, by using )eorem 3,
f((􏽥F, A)∘)􏽥⊑f((􏽥F, A)). By taking the interior for
both sides, (f((􏽥F, A)∘))∘􏽥⊑(f((􏽥F, A)))∘ but f is
open, then (f((􏽥F, A) ∘))∘ � f((􏽥F, A)∘). Hence,
f((􏽥F, A)∘) 􏽥⊑(f((􏽥F, A)))∘. Conversely, let
(􏽥G, B)􏽥∈ 􏽥τE and by using the given hypothesis, we
have f((􏽥G, B)∘)􏽥⊑(f((􏽥G, B)))∘. )en, f((􏽥G, B))􏽥⊑
(f((􏽥G , B))) ∘, but we know that
(f((􏽥G, B)))∘􏽥⊑f((􏽥G, B)). Hence, f is an open hes-
itant fuzzy soft multimapping.

(2) By the similar way of part 1.

Theorem 15. Let f � (u, p): HFkSM( 􏽥XE)⟶ HFkSM

(􏽥YE′) be amapping such that u: X∗ ⟶ Y∗ and p: E⟶ E′
be two mappings. Let 􏽥τE and 􏽥ηE′ are two hesitant fuzzy soft
multitopologies of dimension k over 􏽥XE and 􏽥YE′􏼈 􏼉, re-
spectively. 8en, the following conditions are equivalent:
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(1) f is a homeomorphism hesitant fuzzy soft
multimapping

(2) f is a bijection, open, and continuous hesitant fuzzy
soft multimapping

(3) f is a bijection, closed, and continuous hesitant fuzzy
soft multi mapping
Proof. Straightforward.

5. Connectedness on Hesitant Fuzzy Soft
Multitopological Spaces

)e aim of this section is to introduce the concept of hesitant
fuzzy soft multiconnected space and present their results and
properties in detail. Moreover, the concept of hesitant fuzzy
soft multi-subspace is introduced.

Definition 31. Let ( 􏽥XE, 􏽥τE) be a hesitant fuzzy soft multi-
topological space with dimension k. A hesitant fuzzy soft
multiseparation of 􏽥XE is a pair (􏽥F, E), (􏽥G, E)of no-null open
hesitant fuzzy soft msets over 􏽥XE such that

(􏽥F, E)􏽥⊔(􏽥G, E) � 􏽥1􏽥XE

,

(􏽥F, E)􏽥⊓(􏽥G, E) � 􏽥0􏽥XE

.
(26)

Definition 32. Let ( 􏽥XE, 􏽥τE) be a hesitant fuzzy soft multi-
topological space with dimension k. It is said to be hesitant
fuzzy soft multiconnected if there does not exist a hesitant
fuzzy soft multiseparation of 􏽥XE. Otherwise, ( 􏽥XE, 􏽥τE) is said
to be a hesitant fuzzy soft multi-disconnected.

Example 10. Let X � (2/a), (3/b){ } be an mset, E � e1, e2􏼈 􏼉

be a set of parameters, and 􏽥τE � 􏽥0􏽥XE

, 􏽥1􏽥XE

, (􏽥F, E), (􏽥G, E)􏼚 􏼛 be
a hesitant fuzzy soft multitopology with dimension 2 over
􏽥XE, where (􏽥F, E) � (e1,􏼈 < (2/a), 0.1, 0.3{ }> , <{

(3/b), 0.2, 0.5{ }> }), (e2, <{ (2/a), 0.2, 0.4{ }> , < (3/b),

0.3, 0.6{ }> })}, and (􏽥G, E) � (e1, < (2/a),{􏼈

0.2, 0.4{ }> , < (3/b), 0.3, 0.7{ }> }), (e2, < (2/a), 0.4,{{

0.6}> , < (3/b), 0.4, 0.8{ }> })}. Since, (􏽥F, E)
􏽥⊔(􏽥G, E) � (􏽥G, E)≠ 􏽥1􏽥XE

, and (􏽥F, E)􏽥⊓ (􏽥G, E) � (􏽥F, E)≠ 􏽥0 􏽥XE

,
then a hesitant fuzzy soft multitopological space ( 􏽥XE, 􏽥τE) is
connected.

Theorem 16. Let ( 􏽥X E, 􏽥τE) be a hesitant fuzzy soft multi-
topological space with dimension k. If the only hesitant fuzzy
soft msets over 􏽥X Ethat are both open and closed in ( 􏽥XE, 􏽥τE)

are 􏽥0􏽥XE

and 􏽥1 􏽥XE

, then a hesitant fuzzy soft multitopological
space ( 􏽥XE, 􏽥τE)is connected.

Proof. Let (􏽥F, E) and (􏽥G, E)be a hesitant fuzzy soft multi-
separation of 􏽥XE. If (􏽥F, E) � 􏽥1􏽥XE

, then (􏽥G, E) � 􏽥0􏽥XE

which is
a contradiction. Hence, (􏽥F, E)≠ 􏽥1􏽥XE

. Since (􏽥F, E)􏽥⊔(􏽥G, E) �
􏽥1􏽥XE

and (􏽥F, E)􏽥⊓(􏽥G, E) � 􏽥0􏽥XE

, then (􏽥F, E) � (􏽥G, E)c. )ere-
fore, (􏽥F, E) is both open and closed hesitant fuzzy soft mset
different from 􏽥0􏽥XE

and 􏽥1􏽥XE

which is a contradiction. Hence,
a hesitant fuzzy soft multitopological space ( 􏽥XE, 􏽥τE)is
connected.

Example 11. By using )eorem 16, the hesitant fuzzy soft
multi-indiscrete topological space ( 􏽥XE, 􏽥τE)with dimension
kis connected.

Remark 5. )e converse of )eorem 16 is not necessarily
true as shown in the following example.

Example 12. Let X � (2/a), (3/b){ } be an mset, E � e1, e2􏼈 􏼉

be a set of parameters, and 􏽥τE � 􏽥0􏽥XE

, 􏽥1􏽥XE

, (􏽥F, E)􏼚 􏼛 be
a hesitant fuzzy soft multitopology with dimension 2 over
􏽥XE, where (􏽥F, E) � (e1, < (2/a),{􏼈 0, 1{ }> , < (3/b),

0, 1{ }> }), (e2, < (2/a), 0, 1{ }> , < 3/b, 0, 1{ }>{ })}. )en,
a hesitant fuzzy soft multitopological space ( 􏽥XE, 􏽥τE) is
connected, but there exists an open and closed hesitant fuzzy
soft mset (􏽥F, E) different from 􏽥0􏽥XE

and 􏽥1􏽥XE

.

Example 13. Let X � (2/a), (3/b){ } be an mset, E � e1, e2􏼈 􏼉

be a set of parameters, and 􏽥τE � 􏼈􏽥0􏽥XE

, 􏽥1􏽥XE

, (􏽥F, E), (􏽥G, E)} be
a hesitant fuzzy soft multitopology with dimension 2 over
􏽥XE, where (􏽥F, E) � (e1, < (2/a),{􏼈 1, 1{ }> , < (3/b),

0, 0{ }> }), (e2, < (2/a), 0, 0{ }> , < (3/b), 1, 1{ }>{ })} and
(􏽥G, E) � (e1, < (2/a), 0, 0{ }> , <{􏼈 (3/b), 1, 1{ }> }),

(e2, < (2/a), 1, 1{ }> , < (3/b), 0, 0{ }>{ })}. Since, (􏽥F, E)≠ 􏽥0
􏽥XE

, (􏽥G, E)≠ 􏽥0􏽥XE

and (􏽥F, E)􏽥⊔(􏽥G, E) � 􏽥1􏽥XE

,

(􏽥F, E)􏽥⊓(􏽥G, E) � 􏽥0􏽥XE

, a hesitant fuzzy soft multitopological
space ( 􏽥XE, 􏽥τE) is disconnected.

Definition 33. Let ( 􏽥XE, 􏽥τE) be a hesitant fuzzy soft multi-
topological space with dimension k and 􏽥YE be a nonempty
hesitant fuzzy soft multi-subset of 􏽥XE. )e family 􏽥τ􏽥YE

�

(􏽥Y, E)􏽥⊓(􏽥F, E): (􏽥F, E)􏽥∈ 􏽥τE}􏼈 is said to be a hesitant fuzzy soft
multitopology with dimension k on 􏽥YE, and (􏽥YE, 􏽥τ􏽥YE

)is
called a hesitant fuzzy soft multi-subspace of ( 􏽥XE, 􏽥τE).

Theorem 17. If the hesitant fuzzy soft msets with dimension
k, (􏽥F, E) and (􏽥G, E), form a hesitant fuzzy soft multi-
separation of 􏽥XE and (􏽥YE, 􏽥τ􏽥YE

) is a hesitant fuzzy soft
multiconnected subspace of ( 􏽥XE, 􏽥τE), then 􏽥YE lies entirely
within either (􏽥F, E) or (􏽥G, E).

Proof. Since 􏽥YE
􏽥⊑(􏽥F, E)􏽥⊔(􏽥G, E) � 􏽥1􏽥XE

, then
(􏽥YE

􏽥⊓(􏽥F, E))􏽥⊔(􏽥YE
􏽥⊓(􏽥G, E)) � 􏽥YE, and 􏽥YE

􏽥⊓(􏽥F, E), 􏽥YE
􏽥⊓(􏽥G, E)

are 􏽥τ􏽥YE

−open. Suppose that 􏽥YE does not lie entirely within
neither (􏽥F, E) nor (􏽥G, E). )en, 􏽥YE

􏽥⊓(􏽥F, E)≠ 􏽥0􏽥YE

and
􏽥YE

􏽥⊓(􏽥G, E)≠ 􏽥0􏽥YE

. Also, (􏽥YE
􏽥⊓ (􏽥F, E))􏽥⊓(􏽥YE

􏽥⊓(􏽥G, E)) � 􏽥YE
􏽥⊓((􏽥F, E)􏽥⊓(􏽥G, E)) � 􏽥YE

􏽥⊓􏽥0􏽥XE

� 􏽥0􏽥YE

. Hence,
􏽥YE

􏽥⊓(􏽥F, E) and 􏽥YE
􏽥⊓(􏽥G, E) are two hesitant fuzzy soft

multiseparation of 􏽥YE, i.e., 􏽥YE is disconnected which is
a contradiction. )en, 􏽥YE lies entirely within either (􏽥F, E) or
(􏽥G, E).

6. Conclusions

)e fuzzy set theory, which was originally introduced by Zadeh
[1] in 1965, is one of the most efficient decision aid techniques
providing the ability to deal with imprecise and vague in-
formation. Nonetheless, to cope with imperfect or imprecise
information that two or more sources of vagueness appear
simultaneously, the traditional fuzzy set shows some
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limitations. Hence, it has been extended into several different
forms, such as the type 2fuzzy set, the type nfuzzy set, the
interval-valued fuzzy set, and the fuzzy multisets. All these
extensions are based on the same rationale that it is not clear
to assign the membership degree of an element to a fixed set.
Recently, the concept of hesitant fuzzy sets is introduced
firstly in 2010 by Torra [23] which permits the membership to
have a set of possible values and presents some of its basic
operations in expressing uncertainty and vagueness. Torra
andNarukawa [24] established the similarities and differences
with the hesitant fuzzy sets and the previous generalization of
fuzzy sets such as intuitionistic fuzzy sets, type 2 fuzzy sets,
and type n fuzzy sets. )erefore, other authors [25, 26] in-
troduced the concept of hesitant fuzzy soft sets, and they
presented some of the applications in decision-making
problems. In 2015, Dey and Pal [27] presented the concept of
a hesitant multifuzzy soft topological space. In 2019, Kandil
et al. [28] introduced some important and basic issues of
hesitant fuzzy soft multisets and studied some of its structural
properties such as the neighborhood hesitant fuzzy soft
multisets, interior hesitant fuzzy soft multisets, hesitant fuzzy
soft multitopological spaces, and hesitant fuzzy soft multi-
basis. Finally, they showed how to apply the concept of
hesitant fuzzy soft multisets in decision-making problems.

In this paper, we introduced some important and basic
issues of hesitant fuzzy soft multisets. )e main properties of
the current branch are studied, and some operations of this
type of sets are established. Also, the concept of hesitant fuzzy
soft multitopological spaces is defined. It should be mentioned
that the concept of hesitant fuzzy soft multisets is a general-
ization of the previous concepts such as hesitant fuzzy soft sets,
hesitant fuzzy multisets, hesitant fuzzy sets, and fuzzy sets. )e
concept of mapping on hesitant fuzzy soft multisets is in-
troduced, and some results for this type of mappings are
presented. )e notions of inverse image and identity mapping
are introduced, and their basic properties are investigated in
detail. Also, the types of mappings on hesitant fuzzy soft
multisets are given, and their properties are established.
)erefore, the composition of two hesitant fuzzy soft multi
mapping with the same dimension is presented. Moreover, we
introduce the concepts of hesitant fuzzy soft multitopologies
and hesitant fuzzy soft multi-subspaces. Some types of hesitant
fuzzy soft multimapping such as continuity, open, closed, and
homeomorphism are presented in detail. Also, their properties
and results are investigated. Finally, the concept of hesitant
fuzzy soft multiconnected space is introduced.)e future work
in this approach is introducing the near continuous hesitant
fuzzy soft multimappings. Also, we will investigate the concepts
of locally connected, hyperconnected in hesitant fuzzy soft
multispaces and their applications in real-life problems.
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