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,is research work aims to study a capacitated transportation problem (CTP) with penalty cost, supplies, and demands rep-
resented by hexagonal fuzzy numbers. Based on ranking function, the supplies and demands are converted to the crisp form.
,rough the use of the α-level, the problem is converted into interval linear programming. To optimize the interval objective
function, we define the order relations represented by policy maker’s choice between intervals. ,e maximization (minimization)
problem considering the interval objective function is transformed to multiobjective optimization problem based on order
relations introduced by the preference of policy makers between interval profits (costs). A numerical example is given for il-
lustration and to check the validity of the suggested approach.

1. Introduction

Transportation problem (TP) is considered as a particular
case of linear programming (LP) problem, where the de-
cision maker wants to minimize the cost of the distributing
product from m sources or origins to n distributions, and
their capacities are u1, u2, . . . , um and v1, v2, . . . , vn, re-
spectively. Additionally, there is a provision for charging the
penalty cij, which consists of transportation of a unit of
product from origin i to destination j. ,is penalty is
generally of the form of cost, delivery time of safety, delivery,
etc. A variable xij denotes the unknown quantity to be
shipped from origin i to destination j [1].

,ere are so many difficulties in dealing a TP. One of
them is that the parameters in the problem formulation are
not constants but fluctuating and uncertain. Transportation
or shipping problem (TP) involves determining the amount
of goods or items to be transported from a number of origins
to a number of destinations. TP is a specific case of linear
programming (LP) problems, and a special algorithm has
been developed to solve it. Oheigeartaigh [2] presented a

fuzzy transportation algorithm with some applications.
Vajda [3] developed an algorithm for a multiindex TP which
is the extension of the distribution modification method-
ology. Pandian and Anuradha [4] discussed in their research
work, a new method to find an optimal solution of STP
related to the principle of zero-point methodology, which
was first developed by Pandian and Natarajan [5].

Zadeh [6] introduced the fuzzy set theory that has been
applied to solve numerous practical models, including fi-
nancial engineering and risk management.,e reason is that
this theory permits the decision maker to investigate and
deal the uncertain elements present. ,en, the imperfect
knowledge of the returns on the assets and the uncertainty
involved in the behavior of financial markets may also be
introduced by means of fuzzy quantities and/or fuzzy
constraints. Fuzzy numerical data can be represented by
means of fuzzy subsets of the real line, known as fuzzy
numbers. Dubois and Prade [7] extended the use of algebraic
operations on real numbers to fuzzy numbers by use of a
fuzzification principle. Sakawa and Yano [8] introduced the
concept of α-Pareto optimality of fuzzy parametric
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programs. Chanas and Kuchta [9] studied a concept for
determining the optimal solution of the transportation
problem with fuzzy cost coefficients. Pandian and Natrajan
[5] developed an optimal solution method for more or less
type solution to a TP with mixed constraints, in fuzzy en-
vironment. A method for solving fuzzy TP was developed by
Basirzadeh [10].

Kaur and Kumar [11] described a novel methodology to
solve fuzzy TP by applying the ranking function. Kaur and
Kumar [12] also developed a novel methodology to solve TP.
,ey applied the generalized trapezoidal fuzzy numbers.
Zangiabadi and Maleki [13] applied the fuzzy goal pro-
gramming method for determining the multiple objective
TP with some nonlinear membership functions. Khalaf [14]
presented a solution method for fuzzy transportation
problems. Dutta and Kumar [15] presented the fuzzy goal
programming approach to solve the inventory model. ,ey
considered the fractional programmingmodel in their study.
Kumar and Dutta [16] studied a multiobjective fractional
inventory model with price-dependent demand rate in fuzzy
environment. Shu and Deng [17] presented the fuzzy
mathematical programming approach to heterogeneous
multiattribute decision-making problems. ,ey considered
the interval-valued intuitionistic fuzzy truth degrees’ ap-
proach in their mathematical model. Shu and Dong [18]
investigated the interval-valued intuitionistic fuzzy mathe-
matical programming method to solve the hybrid multi-
criteria group decision-making problem. ,ey considered
the interval-valued intuitionistic fuzzy truth degrees.
Hunwisai and Kumam [19] proposed a method for solving a
fuzzy transportation problem through the robust ranking
technique. Kumar et al. [20] proposed a novel computational
procedure to solve the fuzzy Pythagorean TP, where they
further developed the interval basic feasible solution, fol-
lowed by the existing optimality method for obtaining the
transportation cost.

Bit [21] applied the fuzzy programming approach with
hyperbolic membership functions for linear multiobjective
capacitated transportation problem (MOCTP). In their re-
search, they considered the supply and demand constraints
as equality type; capacity restrictions on each route are
specified, and the objectives are noncommensurable and
conflicting in nature so as to obtain efficient solutions as well
as the best compromise solution. ,e capacitated trans-
portation model is important to handle the capacity con-
straints efficiently, and it occurs frequently in applications. A
TP with capacity restriction is an LP problem. A basic so-
lution to a CTP may contain more than m + n − 2 positive
values on account of capacity constraints that are additional
to the m + n − 2 independent equations [22]. Dahiya and
Verma [23] introduced a class of the CTP with bounds on
total availabilities at sources and total destination require-
ments. Sharma et al. [24] studied capacitated two-stage time
minimization TP in which the total availability of a ho-
mogeneous product at various resources is more than the
total requirement of the same at destination. Shu and Jiu [25]
presented the possibility linear programming under fuzzi-
ness.,ey considered the trapezoidal fuzzy numbers in their
research work. Shu and Deng [26] studied Atanassov’s

intuitionistic fuzzy programming method for heterogeneous
multiattribute group decision-making. ,ey considered
Atanassov’s intuitionistic fuzzy truth degrees’ approach.

Shu et al. [27] studied the intuitionistic fuzzy pro-
gramming technique to solve the group decision-making.
,ey considered the interval-valued fuzzy preference rela-
tions in their mathematical model. Shu et al. [28] discussed
the hesitant fuzzy mathematical programmingmethod.,ey
considered an application in the area of hybrid multicriteria
group decision-making with hesitant fuzzy truth degrees.
Gupta et al. [29] formulated a new model of MOCTP
considering the mixed constraints in which few objective
functions are linear, while the others are assumed to be
fractional. ,is situation is conflicting by nature. Ahmadi
[30] applied the simplex method for bounded variables to
obtain the optimal solution of the CTP. Shu and Dong [31]
presented their research work on pythagorean fuzzy
mathematical programming method, where they considered
the multiattribute group decision-making problems. Dong
and Wan [32] proposed a novel fuzzy linear programming
method considering the acceptance degree of fuzzy con-
straints violated. ,ey incorporated the trapezoidal fuzzy
numbers to investigate the same. Dong and Shu [33] pre-
sented a new approach to solve the multiobjective linear
programming problem under fuzziness.

,e rest of the paper is organized as follows: In Section 2,
we introduce the basic concepts and results related to fuzzy
numbers, hexagonal fuzzy numbers, and its α-level. Section 3
formulates capacitated transportation problem in fuzzy
environment. Section 4 proposes solution procedure for
obtaining α-best compromise solution. In Section 5, a nu-
merical example to illustrate the efficiency of the solution
procedure is given. In Section 6, the results and discussions
are presented. In the end, some concluding remarks are
mentioned in Section 7.

2. Preliminaries

,is section introduces some of basic concepts and results
related to fuzzy numbers, hexagonal fuzzy numbers and
their arithmetic operations, and its α-cut.

Definition 1. A fuzzy set 􏽥P defined on the set of real numbers
R is said to be fuzzy numbers if its membership function,
μ􏽥P(x): R⟶ [0, 1], has the following properties:

(1) μ􏽥P(x) is an upper semicontinuous membership
function

(2) 􏽥P is convex fuzzy set, i.e., μ􏽥P(δx + (1−

δ)y)≥min μ􏽥P(x), μ􏽥P(y)􏽮 􏽯, for all x, y ∈ R; 0≤ δ ≤ 1
(3) 􏽥P is normal, i.e., ∃x0 ∈ R for which μ􏽥P(x0) � 1
(4) Supp(􏽥P) � x ∈ R: μ􏽥P(x)> 0􏽮 􏽯 is the support of 􏽥P,

and the closure cl(Supp(􏽥P)) is a compact set

Definition 2 (see [34–36]). A fuzzy number 􏽥PH is a hex-
agonal fuzzy number denoted by 􏽥PH � (p1, p2, p3,

p4, p5, p6), where p1 ≤p2 ≤p3 ≤p4 ≤p5 ≤p6 are real
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numbers satisfying p2 − p1 ≤p3 − p2, and p5 − p4 ≥p6 − p5,
if its membership function μ􏽥PH

is given by

μ􏽥PH

�

0, x<p1,

1
2

x − p1

p2 − p1
􏼠 􏼡, p1 ≤x≤p2,

1
2

+
1
2

x − p2

p3 − p2
􏼠 􏼡, p2 ≤x≤p3,

1, p3 ≤x≤p4,

1 −
1
2

p5 − x

p5 − p4
􏼠 􏼡, p4 ≤x≤p5,

1
2

p6 − x

p6 − p5
􏼠 􏼡, p5 ≤x≤p6,

0, x>p6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Definition 3 (see [34–36]). A hexagonal fuzzy number is
defined as 􏽥PH � (A1(u), B1(v), B2(v), A2(u)), for
u ∈ [0, 0.5] and v ∈ [0.5, 1], where

(i) A1(u) is a bounded left continuous nondecreasing
function over [0, 0.5]

(ii) B1(v) is a bounded left continuous nondecreasing
function over [0.5, 1]

(iii) B2(v) is a bounded left continuous nonincreasing
function over [1, 0.5]

(iv) A2(u) is a bounded left continuous nonincreasing
function over [0.5, 0]

,e graphical representation of a hexagonal fuzzy
number is shown is in Figure 1.

Definition 4 (see [34–36]). The α-cut set of hexagonal fuzzy
numbers 􏽥PH is referred as follows:

􏽥PH( 􏼁α �
2α p2 − p1( 􏼁 + p1, −2α p6 − p5( 􏼁 + p6, α ∈ [0, 0.5]􏼂 􏼃;

2α p3 − p2( 􏼁 − p3 + 2p2, −2α p5 − p4( 􏼁 + 2p5 − p4􏼂 􏼃, α ∈ [0.5, 1].
􏼨 (2)

Definition 5 (see [34–36]). Let 􏽥PH � (p1, p2, p3, p4, p5, p6)

and 􏽥QH � (q1, q2, q3, q4, q5, q6) be two hexagonal fuzzy
numbers. 9e arithmetic operations on 􏽥PH, and 􏽥QH are

􏽥PH ⊕ 􏽥QH � p1 + q1, p2 + q2, p3 + q3, p4 + q4, p5 + q5, p6 + q6( 􏼁,

􏽥PH ⊖ 􏽥QH � p1 − q6, p2 − q5, p3 − q4, p4 − q3, p5 − q2, p6 − q1( 􏼁,

k􏽥PH � kp1, kp2, kp3, kp4, kp5, kp6( 􏼁, k> 0,

􏽥PH ⊙ 􏽥QH �
p1

6
δq,

p2

6
δq,

p3

6
δq,

p4

6
δq,

p5

6
δq,

p6

6
δq􏼒 􏼓,

where δq � q1 + q2 + q3 + q4 + q5 + q6.

(3)

Definition 6. If 􏽥pH � (p1, p2, p3, p4, p5, p6) is a hexagonal
fuzzy number, then its associated ordinary number is given
by 􏽢p � ((p1 + p2 + p3 + p4 + p5 + p6)/6). ,e same ordinary
number can be found by 􏽢p � ((p1 + p2 + 2p3+

2p4 + p5 + p6)/8).

Definition 7 (see [37]). An interval on R is defined as A �

[aL, aR] � a: , aL ≤ a≤ aR, a ∈ R􏼈 􏼉, where aL and aR are left
side limit and right limit of A, respectively.

Definition 8 (see [37]). The interval is also defined by A �

aC, aW � a: aC − aW ≤ a≤ aC + aW, a ∈ R􏼈 􏼉, where aC �

(1/2)( aR + aL) is the center and aW � (1/2)(aR − aL) is the
width of A.

3. Problem Statement and Solution Concepts

Consider the following CTP with fuzzy cost, supply, and
demand as

P1( 􏼁min 􏽥ZH � 􏽘
i∈I

􏽘
j∈J

􏽥cij􏼐 􏼑
H

x ij, (4)

subject to

􏽘
i∈I

xij(≤ , �, ≥ ) 􏽥ai( 􏼁H, i ∈ I � 1, 2, . . . , m,

􏽘
i∈I

xij(≤ , �, ≥ ) 􏽥bj􏼐 􏼑
H

, j ∈ J � 1, 2, . . . , n,

lij ≤xij ≤ uij,

integers, for all i ∈ I, j ∈ J.

(5)

Here, xij is the quantity transported from source i to
destination j, (􏽥cij)H is the cost of transporting one unit
between source i and destination j, (􏽥ai)H ± 0(i ∈ I) is the
supply of the source i, and (􏽥bj)H ± 0(j ∈ J) is the demand of
destination j. We assume that 􏽐i∈I(􏽥ai)H � 􏽐j∈J(􏽥bj)H. To
make the problem consistent, we have 􏽐i∈Ilij°(􏽥ai)
H, 􏽐i∈Ilij°(􏽥bj)H, 􏽐i∈Iuij ± (􏽥ai)H, and􏽐i∈Iuij ± (􏽥bj)H.

Advances in Fuzzy Systems 3



Problem (P1) is equivalent to

P2( 􏼁min 􏽥ZH � 􏽘
i∈I

􏽘
j∈J

􏽥cij􏼐 􏼑
H

yij + 􏽥UH, (6)

subject to

􏽘
i∈I

yij(≤ , �, ≥ ) 􏽥ci( 􏼁H, i ∈ I � 1, 2, . . . , m,

􏽘
i∈I

yij(≤ , �, ≥ ) 􏽥dj􏼐 􏼑
H

, j ∈ J � 1, 2, . . . , n,

0≤yij ≤ uij − lij,

integers, for all i ∈ I, j ∈ J,

(7)

where 􏽥UH � 􏽐i∈I􏽐j∈J(􏽥cij)H lij, (􏽥ci)H � (􏽥ai)H − 􏽐j∈Jlij, and
(􏽥dj)H � (􏽥bj)H − 􏽐i∈Ilij.

It is clear that there is a fuzzy feasible solution xij �

yij + lij of problem (P1) corresponding to the fuzzy feasible
solution yij of problem (P2). Also, the fuzzy optimum value
of problem (P1) corresponding to the fuzzy feasible solution
xij � yij + lij is equal to the fuzzy optimum value of problem
(P2) corresponding to the fuzzy feasible solution yij. In
addition, there is one-one and onto relation between fuzzy

optimal solutions of P1 and P2. ,us, we consider the fol-
lowing problem instead of problem P1 as follows:

P3( 􏼁min 􏽥ZH � 􏽘
i∈I

􏽘
j∈J

􏽥cij􏼐 􏼑
H

xij, (8)

subject to

􏽘
i∈I

xij(≤ , �, ≥ ) 􏽥ai( 􏼁H, i ∈ I � 1, 2, . . . , m,

􏽘
i∈I

xij(≤ , �, ≥ ) 􏽥bj􏼐 􏼑
H

, j ∈ J � 1, 2, . . . , n,

0≤ xij ≤ uij,

integers, for all i ∈ I, j ∈ J.

(9)

For a certain degree of αand based on the ranking of
hexagonal fuzzy number in Definition 6, problem (P3) can be
rewritten as in the following nonfuzzy form

P4( 􏼁minZ � 􏽘
i∈I

􏽘
j∈J

cij xij, (10)

subject to

x ∈ X �

􏽐
i∈I

xij(≤ , �, ≥ )R 􏽥ai( 􏼁H( 􏼁 i ∈ I � 1, 2, . . . , m

􏽘
I∈I

xij(≤ , �, ≥ )R 􏽥bj􏼐 􏼑
H

􏼐 􏼑 j ∈ J � 1, 2, . . . , n

cij ∈ 􏽥cij􏼐 􏼑
H

􏼐 􏼑α α ∈ [0, 1]

0≤xij ≤ uij integers for all i ∈ I, j ∈ J

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (11)

Lemma 1. Problem (P4) is feasible if and only if
((R((􏽥ai)H)R((􏽥bj)H))/v)≤ uij, for all i ∈ I, j ∈ J, where v �

􏽐i∈IR((􏽥ai)H) � 􏽐j∈JR((􏽥bj)H).

Proof. Similar to the proof introduced by [30].
From the properties of the α−cut set, (􏽥cij)H can be

denoted by the interval confidence:

μPH~

~

B1 (v) B2 (v)

A2 (u)
A1 (u)

0 p1 p2 p3 p4 p5 p6 PH

Figure 1: Graphical representation of a hexagonal fuzzy number.
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􏽥cij􏼐 􏼑
H

􏼐 􏼑α �
2α c

2
ij − c

1
ij􏼐 􏼑 + c

1
ij, −2α c

6
ij − c

5
ij􏼐 􏼑 + c

6
ij, α ∈ [0, 0.5]􏽨 􏽩;

2α c
3
ij − c

2
ij􏼐 􏼑 − c

3
ij + 2c

2
ij, −2α c

5
ij − c

4
ij􏼐 􏼑 + 2c

5
ij − c

4
ij􏽨 􏽩, α ∈ [0.5, 1].

⎧⎪⎨

⎪⎩
(12)

,erefore, problem (P4) may be written as

P5( 􏼁minZ � 􏽘
i∈I

􏽘
j∈J

􏽥cij􏼐 􏼑
H

􏼐 􏼑
L

α, 􏽥cij􏼐 􏼑
H

􏼐 􏼑
R

α􏼔 􏼕xij, α ∈ [0, 1],

(13)

subject to

x ∈ X′ �

􏽐
i∈I

xij(≤ , �, ≥ )R 􏽥ai( 􏼁H( 􏼁 i ∈ I � 1, 2, . . . , m

􏽐
I∈I

xij(≤ , �, ≥ )R 􏽥bj􏼐 􏼑
H

􏼐 􏼑 i ∈ I � 1, 2, . . . , n

0≤ xij ≤ uij integers for all i ∈ I, j ∈ J

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (14)

□
Definition 9. x ∈ X′ is an α−solution of problem (P5) if and
only if there is no 􏽢x ∈ X′ satisfies Z(􏽢x)≤ LRZ(x)

orZ(􏽢x)< CWZ.

In order to specify Definition 9, let us define the order
relation ≤ RC as follows:

A≤ RCB⟺aR ≤ bR, aC ≤ bC,

A< RCB⟺A≤ RCB, A≠B.
(15)

Proposition 1 (see [37]). It follows that

A≤ RCB⇔A≤ LRB orA≤ CWB,

A< RCB⇔A≤ LRB orA< CWB.
(16)

According to Proposition 1, Definition 9 can be simplified
as in Definition 10.

Definition 10. x ∈ X′ is an α-efficient solution of problem
(P5) if and only if there is no 􏽢x ∈ X′ which satisfies
Z(􏽢x)≤ RCZ(x).

,e solution set of problem (P5) can be obtained as the
α-efficient solution of the following multiobjective problem:

P6( 􏼁min ZR (x), ZC(x)( 􏼁

subject to x ∈ X′.
(17)

Using the weighting Tchebycheff problem [38], problem
(P6) can be written in the following form:

P6( 􏼁minψ, (18)

subject to w1[ZR − 􏽢ZR]≤ψ,

w2 ZC − 􏽢ZC􏽨 􏽩≤ψ,

x ∈ X′,
(19)

where w1, w2 ≥ 0; 􏽢Z1 and 􏽢Z2 are the ideal targets.

Remark 1. Problem (P6) may be rewritten as in the
equivalent form:

P7( 􏼁min ZR − 􏽢ZR􏼐 􏼑, (20)

subject to
wC ZC − 􏽢ZC􏽨 􏽩 − ZR + 􏽢ZR

x ∈ X′,
(21)

where wC ≥ 0; 􏽢Z1 and 􏽢Z2 are said to be the ideal targets.

4. Solution Procedure

,e steps of the solution procedure for solving the
capacitated transportation problem in fuzzy environment
can be summarized as follows:

Step 1: formulate problem (P3)
Step 2: estimate the ideal points 􏽢ZR and 􏽢ZC from the
following relation:

􏽢ZR � minZR, (22)

subject to x ∈ X′ and

􏽢ZC � minZC (23)

subject to x ∈ X′

Step 3: calculate the individual maximum and mini-
mum of each objective function subject to the given
constraints for α � 1 and α � 0, respectively
Step 4: compute the weights from the relation

wR �
ZR − ZR

ZR − ZR􏼐 􏼑 + ZC − ZC􏼐 􏼑
,

wC �
ZC − ZC

ZR − ZR􏼐 􏼑 + ZC − ZC􏼐 􏼑
,

(24)

here ZR, ZC and ZR , ZC are the individual maximum
and minimum of ZR andZC,respectively
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Step 5: ask the decision maker (DM) to
specifyα (0≤ α≤ 1),
Step 6: formulate the problem (P7), and then applying
the software GAMS to obtain the α-optimal compro-
mise solution, and hence the fuzzy cost.
Step 7: stop

5. Numerical Example

Consider the following fuzzy CTP:

min 􏽥ZH � 􏽘
3

i�1
􏽘

3

j�1
􏽥cij􏼐 􏼑

H
xij, (25)

subject to

􏽘

3

j�1
x1j � 􏽥a1( 􏼁H,

􏽘

3

j�1
x2j � 􏽥a2( 􏼁H,

􏽘

3

j�1
x1j � 􏽥a3( 􏼁H,

􏽘

3

i�1
xi1 � 􏽥b1􏼐 􏼑

H
,

􏽘

3

i�1
xi2 � 􏽥b2􏼐 􏼑

H
,

􏽘

3

i�1
xi3 � 􏽥b3􏼐 􏼑

H
,

xij ∈ X′ �

x11 + x12 + x13 � 13, x21 + x22 + x23 � 14, x31 + x32 + x33 � 16,

x11 + x21 + x31 � 14, x12 + x22 + x32 � 13, x13 + x23 + x33 � 16

2≤ x11 ≤ 5.5, 5.5≤x12 ≤ 9, 4.5≤ x13 ≤ 12,

3≤ x21 ≤ 7, 2≤x22 ≤ 8, 5≤ x23 ≤ 10,

1≤x31 ≤ 5, 4≤ x32 ≤ 9, 2≤ x33 ≤ 7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(26)

where

Supplies:

􏽥a1( 􏼁H � (8, 9, 11, 14, 16, 20 ),

􏽥a2( 􏼁H � (9, 10, 12, 15, 18, 20),

􏽥a3( 􏼁H � (8, 11, 14, 18, 20, 25).

(27)

Demands:

􏽥b1􏼐 􏼑
H

� (6, 8, 11, 14, 20, 25),

􏽥b2􏼐 􏼑
H

� (7, 9, 11, 13, 16, 20),

􏽥b3􏼐 􏼑
H

� (10, 12, 14, 16, 20, 24).

(28)

,e values of (􏽥cij)H are

􏽥cij􏼐 􏼑
H

�

(3, 7, 11, 15, 19, 24, )(3, 5, 7, 9, 10, 12)(11, 14, 17, 21, 25, 30)

(3, 5, 7, 9, 10, 12)(5, 7, 10, 13, 17, 21)(7, 9, 11, 14, 18, 22)

(7, 9, 11, 14, 18, 22)(2, 3, 4, 6, 7, 9)(5, 7, 8, 11, 14, 17)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (29)
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It is clear that

R 􏽥a1( 􏼁H( 􏼁 � 13,

R 􏽥a2( 􏼁H( 􏼁 � 14,

R 􏽥a3( 􏼁H( 􏼁 � 16,

R 􏽥b1􏼐 􏼑
H

􏼐 􏼑 � 14,

R 􏽥b2􏼐 􏼑
H

􏼐 􏼑 � 13,

R 􏽥b3􏼐 􏼑
H

􏼐 􏼑 � 16.

(30)

Suppose the decision maker selects α � 0.85, then

􏽥cij􏼐 􏼑
H

􏼐 􏼑α �

[9.8, 16.2] [6.4, 9.3] [16.1, 22.2]

[6.4, 14.2] [10.4, 15.2] [10.4, 15.2]

[10.4, 15.2] [3.7, 6.3] [11.1, 11.9]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(31)

Step 3: solve the following problems individually:

ZR � min
16.2x11 + 9.3x12 + 22.2 x13 + 14.2 x21 + 15.2 x22

15.2 x23 + 15.2x31 + 6.3x32 + 11.9x33
􏼠 􏼡,

ZC � min
13x11 + 7.85x12 + 19.15x13 + 10.3 x21 + 12.8x22

12.8x23 + 12.8 x31 + 5 x32 + 11.5x33
􏼠 􏼡,

(32)

subject to

xij ∈ X′ �

x11 + x12 + x13 � 13, x21 + x22 + x23 � 14, x31 + x32 + x33 � 16,

x11 + x21 + x31 � 14, x12 + x22 + x32 � 13, x13 + x23 + x33 � 16
2≤x11 ≤ 5.5, 5.5≤x12 ≤ 9, 4.5≤ x13 ≤ 12,

3≤ x21 ≤ 7, 2≤ x22 ≤ 8, 5≤x23 ≤ 10,

1≤ x31 ≤ 5, 4≤ x32 ≤ 9, 2≤ x33 ≤ 7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ZR � 588.15,

ZC � 493.8,

ZR � 578.25,

ZC � 483.5.

(33)

Step 4:

wR �
ZR − ZR

ZR − ZR􏼐 􏼑 + ZC − ZC􏼐 􏼑
�

9.9
20.2

� 0.4901,

wC �
ZC − ZC

ZR − ZR􏼐 􏼑 + ZC − ZC􏼐 􏼑
�
10.3
20.2

� 0.50991.

(34)

Step 6: solve the following problem:

minψ; (35)

subject to

7.9396x11 + 4.5579x12 + 10.8802x13 + 6.9594x21 + 7.4495x22

7.4495x23 + 7.4495 x31 + 3.0876 x32 + 5.8322 x33 − ψ
􏼢 􏼣

6.6287x11 + 4.0027x12 + 9.7646x13 + 5.25198x21 + 6.5267x22

6.5267x23 + 6.5267 x31 + 2.5495 x32 + 5.8639 x33 − ψ
􏼢 􏼣

x ∈ X′.

(36)

Advances in Fuzzy Systems 7



,e solution is as follows:
X � (3, 5.5, 4.5, 7, 2, 5, 4, 5, 6), and the corresponding

objective value is (􏽥ZH)α � [381.35, 569.15] � 475.25, 93.9,

and hence
􏽥ZH � (209, 298.5, 384, 531.5, 609.5, 744). (37)

6. Result and Discussion

In the Section 5, the hexagonal optimum value is
(209, 298.5, 384, 531.5, 609.5, 744). In the optimum com-
promise solution, the total minimum cost will be greater
than 209 and less than 744. And as the total minimum cost
lies between 384 and 531.5, μ􏽥ZH

is given as follows:

μ􏽥ZH

�

0, x< 209,

1
2

x − 209
89.5

􏼒 􏼓, 209≤x≤ 298.5,

1
2

+
1
2

x − 298.5
85.5

􏼒 􏼓, 298.5≤x≤ 384,

1, 384≤x≤ 531.5,

1 −
1
2

609.5 − x

78
􏼒 􏼓, 531.5≤x≤ 609.5,

1
2

744 − x

134.5
􏼒 􏼓, 609.5≤x≤ 744,

0, x> 744.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

7. Concluding Remarks

In this paper, the capacitated transportation problem with
hexagonal fuzzy costs has converted into the corresponding
capacitated transportation problem with interval-valued
costs and hence into the multiobjective model with two
objective functions that are to minimize the right limit and
the center. ,ese two objectives are studied as the mini-
mization of worst and average cases, respectively. ,e set of
solution for this CTP with interval-valued costs is as the
efficient solution of the corresponding multiobjective model.
,erefore, the obtained efficient solution set includes the
optimal compromise solutions against the worst and average
cases. As a further research, we are planning to implement
this solution method to solve the real-life transportation
problem.
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