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In this paper, we introduce the concept of μ-fuzzy filters in distributive lattices. We study the special class of fuzzy filters called
μ-fuzzy filters, which is isomorphic to the set of all fuzzy ideals of the lattice of coannihilators. We observe that every μ-fuzzy filter
is the intersection of all prime μ-fuzzy filters containing it. We also topologize the set of all prime μ-fuzzy filters of a distributive
lattice. Properties of the space are also studied. We show that there is a one-to-one correspondence between the class of μ-fuzzy
filters and the lattice of all open sets in Xμ. It is proved that the space Xμ is a T0 space.

1. Introduction

In 1970, Mandelker [1] introduced the concept of relative
annihilators as a natural generalization of relative pseudo-
complement and he characterized distributive lattices with
the help of these annihilators. -e concept of coannihilators
and μ-filters in a distributive lattice with greatest element “1”
was introduced by Rao and Badawy [2] and they charac-
terized μ-filters in terms of coannihilators. For a filter F in L,
μ(F) � (x)++: x ∈ F􏼈 􏼉 is an ideal in the set A+(L) of all
coannihilators, and conversely μ

←
(I) � x ∈ L: (x)++ ∈ I􏼈 􏼉 is

a filter in L when I is any ideal in A+(L). A filter F of L is
called a μ-filter if μ

←
μ(F) � F.

In 1965, Zadeh [3] mathematically formulated the fuzzy
subset concept. He defined fuzzy subset of a nonempty set as
a collection of objects with grade of membership in a con-
tinuum, with each object being assigned a value between
0 and 1 by a membership function. Fuzzy set theory was
guided by the assumption that classical sets were not natural,
appropriate, or useful notions in describing the real-life
problems, because every object encountered in this real
physical world carries some degree of fuzziness. A lot of
work on fuzzy sets has come into being with many appli-
cations to various fields such as computer science, artificial
intelligence, expert systems, control systems, decision-
making, medical diagnosis, management science, operations

research, pattern recognition, neural network, and others
(see [4–7]).

In 1971, Rosenfeld used the notion of a fuzzy subset of
a set to introduce the concept of a fuzzy subgroup of a group
[8]. Rosenfeld’s paper inspired the development of fuzzy
abstract algebra. Since then, several authors have developed
interesting results on fuzzy subgroups (see [9–17]), fuzzy
ideals of rings (see [16, 18–21]), and fuzzy ideals of lattices
(see [22–28]).

Alaba and Norahun [29] studied the concept of α-fuzzy
ideals of a distributive lattice in terms of annulates.-ey also
studied the space of prime α-fuzzy ideals of a distributive
lattice. In this paper, we introduce the dual of the concept of
α-fuzzy ideals which is called μ-fuzzy filters in a distributive
lattice with greatest element “1.”We study the special class of
fuzzy filters called μ-fuzzy filters. We prove that the set of all
μ-fuzzy filters of a distributive lattice forms a complete
distributive lattice isomorphic to the set of all fuzzy ideals of
A+(L). We also show that there is a one-to-one corre-
spondence between the class of prime μ-fuzzy filters of L and
the set of all prime ideals of A+(L). We prove that every
μ-fuzzy filter is the intersection of all prime μ-fuzzy filters
containing it. Moreover, we study the space of all prime
μ-fuzzy filters in a distributive lattice. -e set of prime
μ-fuzzy filters of L is denoted by Xμ. For a μ-fuzzy filter θ of
L, open subset of Xμ is of the form X(θ) � η ∈ Xμ: θ⊈ η􏽮 􏽯
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andV(θ) � η ∈ Xμ: θ⊆ η􏽮 􏽯 is a closed set.We also show that
the set of all open sets of the form X(xβ) �

η ∈ Xμ: xβ ⊈ η, x ∈ L, β ∈ (0, 1]􏽮 􏽯 forms a basis for the open
sets of Xμ.-e set of all μ-fuzzy filters of L is isomorphic with
the set of all open sets in Xμ.

2. Preliminaries

We refer to Birkhoff [30] for the elementary properties of
lattices.

Definition 1 (see [2]). For any set S of a lattice L, define S+ as
follows:

S
+

� x ∈ L: s∨ x � 1, for all s ∈ S{ }. (1)
Here, S+ is called the coannihilator of S. If S � x{ }, we

write (x)+ instead of ( x{ })
+. -en, clearly L+ � 1{ } and

(1)+ � L. For any subset S of a lattice L, it is clear that S+ is
a filter in L.

Lemma 1 (see [2]). For any x, y ∈ L, the following conditions
hold.

(1) x≤y⟹(x)+ ⊆ (y)+

(2) (x∧y)+ � (x)+ ∩ (y)+

(3) (x∨y)++ � (x)++ ∩ (y)++

(4) (x)+ � L if and only if x � 1

*e set of all coannihilator denotes A+(L). Each coan-
nihilator is a coannihilator filter, and hence, for two coan-
nihilators (x)+ and (y)+, their supremum and infimum in
A+(L) are

(a∨ b)
++

� (a)
++ ∩ (b)

++
,

(a)
++ ∨ (b)

++
� (a∧ b)

++
a,

(2)

respectively.
In a distributive lattice L with 1, the set of all coanni-

hilators A+(L) of L is a lattice (A+(L), ∩ , ∨ ) and a sub-
lattice of the Boolean algebra of coannihilator filters of L.

For a filter F in L,

μ(F) � (x)
++

: x ∈ F􏼈 􏼉 (3)

is an ideal in A+(L) and the set

μ
←

(I) � x ∈ L: (x)
++ ∈ I􏼈 􏼉 (4)

is a filter of L when I is any ideal in A+(L). A filter F of L is
called a μ-filter if μ

←
μ(F) � F.

Definition 2 (see [3]). Let X be any nonempty set. A
mapping μ: X⟶ [0, 1] is called a fuzzy subset of X.

-e unit interval [0, 1] together with the operations min
and max form a complete lattice satisfying the infinite meet
distributive law.We often write ∧ for minimum or infimum
and ∨ for maximum or supremum. -at is, for all
α, β ∈ [0, 1], we have, α ∧ β � min α, β􏼈 􏼉 and
α ∨ β � max α, β􏼈 􏼉.

-e characteristic function of any set A is defined as

χA(x) �
1, if x ∈ A,

0, if x ∉ A.
􏼨 (5)

Definition 3 (see [8]). Let μ and θ be fuzzy subsets of a set A.
Define the fuzzy subsets μ∪ θ and μ∩ θ of A as follows: for
each x ∈ A,

(μ∪ θ)(x) � μ(x)∨ θ(x) and (μ∩ θ)(x) � μ(x)∧ θ(x).

(6)

-en, μ∪ θ and μ∩ θ are called the union and in-
tersection of μ and θ, respectively.

For any collection, μi: i ∈ I􏼈 􏼉 of fuzzy subsets ofX, where
I is a nonempty index set, and the least upper bound ∪ i∈Iμi

and the greatest lower bound ∩ i∈Iμi of the μi’s are given for
each x ∈ X,

∪
i∈I

μi􏼒 􏼓(x) � ∨ i∈Iμi(x) and ∩
i∈I

μi􏼒 􏼓(x) � ∧ i∈Iμi(x),

(7)

respectively.
For each t ∈ [0, 1], the set

μt � x ∈ A: μ(x)≥ t􏼈 􏼉 (8)

is called the level subset of μ at t [3].

Definition 4 (see [27]). A fuzzy subset μ of a lattice L is called
a fuzzy ideal of L if; for all x, y ∈ L, the following conditions
are satisfied:

(1) μ(0) � 1
(2) μ(x∨y)≥ μ(x)∧ μ(y)

(3) μ(x∧y)≥ μ(x)∨ μ(y)

Definition 5 (see [27]). A fuzzy subset μ of a lattice L is called
a fuzzy filter of L if, for all x, y ∈ L, the following condition is
satisfied:

(1) μ(1) � 1
(2) μ(x∨y)≥ μ(x)∨ μ(y)

(3) μ(x∧y)≥ μ(x)∧ μ(y)

In [27], Swamy and Raju observed the following:

(1) A fuzzy subset μ of a lattice L is a fuzzy ideal of L if
and only if

μ(0) � 1 and μ(x∨y) � μ(x)∧ μ(y), for allx, y ∈ L. (9)

(2) A fuzzy subset μ of a lattice L is a fuzzy filter of L if
and only if

μ(1) � 1 and μ(x∧y) � μ(x)∧ μ(y), for all x, y ∈ L.

(10)

Let μ be a fuzzy subset of a lattice L. -e smallest fuzzy
filter of L containing μ is called a fuzzy filter of L induced by
μ and denoted by [μ) and
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[μ) � ∩ θ ∈ FF(L): μ⊆ θ􏼈 􏼉. (11)

Lemma 2 (see [23]). For any two fuzzy subsets μ and θ of
a distributive lattice L, we have

(μ · θ] � (μ]∧ (θ]. (12)

-e above result works dually.
For any two fuzzy subsets μ and θ of a distributive lattice

L, we have

[μ + θ) � [μ)∧ [θ). (13)

-e binary operations “+” and “·” on the set of all fuzzy
subsets of a distributive lattice L are as follows:

(μ + θ)(x) � Sup μ(y)∧ θ(z): y, z ∈ L, y∨ z � x􏼈 􏼉 and (μ · θ)(x)

� Sup μ(y)∧ θ(z): y, z ∈ L, y∧ z � x􏼈 􏼉.

(14)

If μ and θ are fuzzy ideals of L, then μ · θ � μ∧ θ � μ∩ θ
and μ + θ � μ∨ θ
If μ and θ are fuzzy filters of L, then μ + θ � μ∧ θ and
μ · θ � μ∨ θ

-e set of all fuzzy filters of L is denoted by FF(L).

3. μ-Fuzzy Filters

In this section, we introduce the concept of μ-fuzzy filters in
a distributive lattice with greatest element “1.” We study
some basic properties of the class of μ-fuzzy filters. We prove
that the class of μ-fuzzy filters forms a complete distributive
lattice isomorphic to the class of fuzzy filters of A+(L). We
also show that there is a one-to-one correspondence between
the set of all prime μ-fuzzy filters of L and prime fuzzy ideals
of A+(L). Finally, we observe that every μ-fuzzy filter is the
intersection of all prime μ-fuzzy filters containing it.

-roughout the rest of this paper, L stands for the
distributive lattice with greatest element “1” unless otherwise
mentioned.

Theorem 1. Let θ be a fuzzy filter of L. *en, the fuzzy subset
μ(θ) of A+(L) defined by

μ(θ) (x)
++

( 􏼁 � Sup θ(y): (y)
++

� (x)
++

, y ∈ L􏼈 􏼉 (15)

is a fuzzy ideal of A+(L).

Proof. Let θ be a fuzzy filter of L. Clearly, μ(θ)((1)++) � 1.
For any (x)++, (y)++ ∈ A+(L),

μ(θ) (x)
++

( 􏼁∧ μ(θ) (y)
++

( 􏼁 � Sup θ(a): (a)
++

� (x)
++

, a ∈ L􏼈 􏼉

∧ Sup θ(b): (b)
++

� (y)
++

, b ∈ L􏼈 􏼉

� Sup θ(a) ∧ θ(b): (a)
++

� (x)
++

, (b)
++

� (y)
++

􏼈 􏼉

≤ Sup θ(a) ∧ θ(b): (a)
++ ∨ (b)

++
� (x)

++ ∨ (y)
++

􏼈 􏼉

� Sup θ(a∧ b): (a∧ b)
++

� (x∧y)
++

􏼈 􏼉

≤ Sup θ(c): (c)
++

� (x∧y)
++

􏼈 􏼉 � μ(θ) (x)
++ ∨ (y)

++
( 􏼁.

(16)

-us, μ(θ)((x)++ ∨ (y)++)≥ μ(θ)((x)++)∧ μ(θ)

((y)++).
On the other hand,

μ(θ) (x)
++

( 􏼁 � Sup θ(a): (a)
++

� (x)
++

􏼈 􏼉

≤ Sup θ(a ∨y): (a)
++ ∧ (y)

++
� (x)

++ ∧ (y)
++

􏼈 􏼉

≤ Sup θ(c): (c)
++

� (x∨y)
++

􏼈 􏼉

� μ(θ) (x)
++ ∧ (y)

++
( 􏼁.

(17)

Similarly, μ(θ)((y)++)≤ μ(θ)((x)++ ∧ (y)++). So,

μ(θ) (x)
++ ∧ (y)

++
( 􏼁≥ μ(θ) (x)

++
( 􏼁∨ μ(θ) (y)

++
( 􏼁. (18)

Hence, μ(θ) is a fuzzy ideal of A+(L).

Lemma 3. Let η be a fuzzy ideal of A+(L). *en, the fuzzy
subset μ

←
(η) of L defined as μ

←
(η)(x) � η((x)++) is a fuzzy

filter of L.

Proof. Let η be a fuzzy ideal of A+(L). Since (1)++ is the
smallest element of A+(L), we get μ

←
(η)(1) � 1. For any

x, y ∈ L,

μ
←

(η)(x∨y) � η (x)
++

( 􏼁∧ η (y)
++

( 􏼁 � μ
←

(η)(x)∧ μ←(η)(y).

(19)

-us, μ
←

(η) is a fuzzy filter of L.

Lemma 4. If θ and η are fuzzy filters of L, then θ⊆ η implies
μ(θ) ⊆ μ(η).

Lemma 5. If θ, η are fuzzy ideals of A+(L), then θ⊆ η implies
μ
←

(θ)⊆ μ←(η).

Theorem 2. *e set FI(A+(L)) of all fuzzy ideals of A+(L)

forms a complete distributive lattice, where the infimum and
supremum of any family θj: j ∈ J􏽮 􏽯 of fuzzy ideals are given
by
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∧ ηj � ∩ ηj and ∨ ηj � ⋃ ηj􏽨 􏼑. (20)

Theorem 3. *e mapping μ is a homomorphism of FF(L)

into FI(A+(L)).

Proof. Let η and θ be two fuzzy filters of L. -en, by Lemma
4, we have μ(η∩ θ) ⊆ μ(η)∩ μ(θ) and
μ(η) ∨ μ(θ) ⊆ μ(η∨ θ). For any (x)++ ∈ A+(L),

μ(η) (x)
++

( 􏼁∧ μ(θ) (y)
++

( 􏼁 � Sup η(a): (a)
++

� (x)
++

􏼈 􏼉

∧ Sup θ(b): (b)
++

� (y)
++

􏼈 􏼉.

(21)

Since (a)++ � (x)++ and (b)++ � (y)++, we get
(a∧ b)++ � (x)++. Based on this, we have

μ(η) (x)
++

( 􏼁∧ μ(θ) (x)
++

( 􏼁≤ Sup η(a∧ b): (a∧ b)
++

� (x)
++

􏼈 􏼉

∧ Sup θ(a∧ b): (a∧ b)
++

� (x)
++

􏼈 􏼉 � Sup η(a∧ b)∧ θ(a∧ b): (a∧ b)
++

� (x)
++

􏼈 􏼉

� Sup (η∩ θ)(a ∧ b): (a∧ b)
++

� (x)
++

􏼈 􏼉≤ Sup (η∩ θ)(c): (c)
++

� (x)
++

􏼈 􏼉

� μ(η∩ θ) (x)
++

( 􏼁.

(22)

-us, μ(η)∩ μ(θ) ⊆ μ(η∩ θ). So, μ(η)∩ μ(θ) � μ(η∩ θ). On the other hand,

μ(η∨ θ) (x)
++

( 􏼁 � Sup (η∨ θ)(a): (a)
++

� (x)
++

􏼈 􏼉

� Sup Sup η(y)∧ θ(z): a � y∧ z􏼈 􏼉, (y∧ z)
++

� (x)
++

􏼈 􏼉

≤ Sup Sup η b1( 􏼁∧ θ b2( 􏼁: b1( 􏼁
++

� (y)
++

, b2( 􏼁
++

� (z)
++

􏼈 􏼉, (y∧ z)
++

� (x)
++

􏼈 􏼉

� Sup Sup η b1( 􏼁: b1( 􏼁
++

� (y)
++

􏼈 􏼉∧ Sup θ b2( 􏼁: b2( 􏼁
++

� (z)
++

􏼈 􏼉, (y∧ z)
++

� (x)
++

􏼈 􏼉

� Sup μ(η)(y)
++ ∧ μ(θ)(z)

++
: (y∧ z)

++
� (x)

++
􏼈 􏼉

� Sup μ(η)(y)
++ ∧ μ(θ)(z)

++
: (y)

++ ∨ (z)
++

� (x)
++

􏼈 􏼉 � μ(η) ∨ μ(θ)( 􏼁 (x)
++

( 􏼁.

(23)

-en, μ(η∨ θ)⊆ μ(η) ∨ μ(θ). -us, μ(η∨ θ) � μ(η) ∨
μ(θ). So, μ is a homomorphism.

Corollary 1. For any two fuzzy filters θ and η of L, we have

μ
←
μ(θ∩ η) � μ

←
μ(θ)∩ μ←μ(η). (24)

Proof. For any x ∈ L, μ
←
μ(η∩ θ)(x) � μ(η∩ θ)((x)++)).

Since μ is a homomorphism, we have μ
←
μ(η∩ θ) �

μ
←
μ(η)∩ μ←μ(θ).

Lemma 6. For any fuzzy ideal θ of A+(L), μμ
←

(θ) � θ.

Proof. Since θ is a fuzzy ideal of A+(L), by Lemma 3, μ
←

(θ) is
a fuzzy filter of L and μμ

←
(θ) is a fuzzy ideal of A+(L). Now,

we proceed to show μμ
←

(θ) � θ.

μμ
←

(θ) (x)
++

( 􏼁 � Sup μ
←

(θ)(a): (a)
++

� (x)
++

􏼚 􏼛

� Sup θ (a)
++

( 􏼁: (a)
++

� (x)
++

􏼈 􏼉 � θ (x)
++

( 􏼁.

(25)

-us, μμ
←

(θ) � θ.

Lemma 7. For any fuzzy filter θ of L, the map θ⟶ μ
←
μ(θ) is

a closure operator on FF(L). *at is,

(1) θ⊆ μ←μ(θ)

(2) μ
←
μ(μ
←
μt(θ)) � μ

←
μ(θ)

(3) θ⊆ η⟹μ
←
μ(θ)⊆ μ←μ(η), for any two fuzzy filters θ, η

of L

Now, we define μ-fuzzy filter.

Definition 6. A fuzzy filter θ of L is called a μ-fuzzy filter of L

if θ � μ
←
μ(θ).

-us, μ-fuzzy filters are simply the closed elements with
respect to the closure operator of Lemma 7, and μ

←
μ(θ) is the

smallest μ-fuzzy filter containing θ, for any fuzzy filter θ of L.

Theorem 4. For a nonempty fuzzy subset θ of L, θ is a μ-
fuzzy filter if and only if each level subset of θ is a μ-filter of L.

Proof. Let θ be a μ-fuzzy filter of L. -en, θt � (μ
←
μt(θ))t.

Now, we proceed to show μ
←
μ(θt) � (μ

←
μt(θ))t for all

t ∈ [0, 1]. We know that (μ
←
μt(θ))t ⊆ μ

←
μ(θt). To show the

other inclusion, let x ∈ μ←μ(θt). -en, (x)++ ∈ μ(θt), and
there is y ∈ θt such that (x)++ � (y)++. -us, μ

←
μ(θ)(x)≥ t.

So, θt � μ
←
μ(θt). -erefore, each level subset of θ is a μ-filter

of L.
Conversely, assume that each level subset of θ is a μ-filter.

-en, θ is a fuzzy filter and θ⊆ μ←μ(θ). To prove our claim, let
t � μ
←
μ(θ)(x). -en, for each ϵ> 0, there is a ∈ L such that
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(a)++ � (x)++ and θ(a) > t − ϵ, which implies a ∈ θt−ϵ,

(a)++ � (x)++ and x ∈ μ←μ(θt−ϵ) � θt−ϵ. -is shows that x ∈
∩ ϵ>0θt−ϵ � θt. -us, μ→μ(θ)⊆ θ. So, θ is a μ-fuzzy filter of L.

Corollary 2. For a nonempty subset F of L, F is a μ-filter if
and only if χF is a μ-fuzzy filter of L.

Theorem 5. Let θ be a fuzzy filter of L. *en, θ is a μ-fuzzy
filter if and only if, for each x, y ∈ L, (x)+ � (y)+ implies
θ(x) � θ(y).

Proof. Let θ be a μ-fuzzy filter of L and x, y ∈ L such that
(x)++ � (y)++. -en,

θ(x) � Sup θ(a): (a)
++

� (x)
++

, a ∈ L􏼈 􏼉

� Sup θ(a): (a)
++

� (y)
++

, a ∈ L􏼈 􏼉 � μ
←
μ(θ)(y) � θ(y).

(26)

Conversely, suppose that for each x, y ∈ L,

(x)++ � (y)++ implies θ(x) � θ(y). For any x ∈ L,

μ
←
μ(θ)(x) � Sup θ(a): (a)

++
� (x)

++
, a ∈ L􏼈 􏼉 � θ(x).

(27)

-us, θ is a μ-fuzzy filter of L.

Theorem 6. A fuzzy filter θ of L is a μ-fuzzy filter if and
only if

∧ a∈(x)++θ(a) ≥ θ(x), for allx ∈ L. (28)

Proof. Suppose a fuzzy filter θ of L is a μ-fuzzy filter. -en,
by -eorem 4, every level subset is a μ-filter of L. Let x ∈ L

such that θ(x) � t. Since θt is a μ-filter of L, then (x)++ ⊆ θt,
which implies a ∈ θt for all a ∈ (x)++. -us, θ(a) ≥ θ(x) for
each a ∈ (x)++. So,

∧ a∈(x)++θ(a) ≥ θ(x), for allx ∈ L. (29)

Suppose conversely that the condition holds. To prove
θ is a μ-fuzzy filter, it suffices to show that μ

←
μ(θ) ⊆ θ. For

any x ∈ L, μ
←
μ(θ)(x) � Sup θ(b): (b)++ � (x)++

􏼈 􏼉. If
(b)++ � (x)++, then x ∈ (b)++. By the assumption,
θ(x) ≥ θ(b) for each (b)++ � (x)++. -is shows that θ(x) is
an upper bound of θ(b): (b)++ � (x)++

􏼈 􏼉. -us,
μ
←
μ(θ)(x)≤ θ(x) for all x ∈ L. So, μ

←
μ(θ) ⊆ θ. Hence, θ is

a μ-fuzzy filter of L.
Let us denote the set of all μ-fuzzy filters of L by FFμ(L).

Theorem 7. *e class (FFμ(L),∧, ∨ ) of all μ-fuzzy filters of
L forms a complete distributive lattice with respect to set
inclusion.

Proof. Clearly, (FFμ(L), ⊆ ) is a partially ordered set. For
η, θ ∈ FFμ(L), define

η∧ θ � η∩ θ,

η ∨ θ � μ
←
μ(η∨ θ).

(30)

-en, clearly η∧ θ, η ∨ θ ∈ FFμ(L). We need to show
η ∨ θ is the least upper bound of η, θ􏼈 􏼉. Since
θ, η⊆ η∨ θ ⊆ η ∨ θ, η ∨ θ is an upper bound of μ, θ􏼈 􏼉. Let
λ be any upper bound for η, θ in FFμ(L). -en, η∨ θ⊆ λ,
which implies that μ

←
(η∨ θ)⊆ μ←μ(λ) � λ. -erefore,

μ
←
μ(η∨ θ) is the supremum of both η, θ􏼈 􏼉 in FFμ(L).

Hence, (FFμ(L), ∧ , ∨ ) is a lattice.
We now prove the distributivity. Let η, θ, λ ∈ FFμ(L).

-en,

η ∨ (θ∩ λ) � μ
←
μ(η∨ (θ∩ λ)) � μ

←
μ((η∨ θ)∩ (η∨ λ))

� μ
←
μ(η∨ θ)∩ μ←μ(η∨ λ) � η ∨ θ( 􏼁∩ η ∨ λ( 􏼁.

(31)

-us, FFμ(L) is a distributive lattice.
Now, we proceed to show the completeness. Since 1{ }

and L are μ-filters, χ 1{ } and χL are least and greatest elements
of FFμ(L), respectively. Let θi: i ∈ I􏼈 􏼉⊆ FFμ(L). -en, ∩ i∈Iθi

is a fuzzy filter of L and ∩ i∈Iθi ⊆ μ
←
μ(∩ i∈Iθi).

∩
i∈I

θi ⊆ θi, ∀i ∈ I⟹ μ
←
μ ∩

i∈I
θi􏼒 􏼓⊆ θi,

∀i ∈ I⟹ μ
←
μ ∩

i∈I
θi􏼒 􏼓⊆ ∩

i∈I
θi.

(32)

-us, μ
←
μ(∩ i∈Iθi) � ∩ i∈Iθi. So, FFμ(L), ∧ , ∨ is a com-

plete distributive lattice.

Theorem 8. *e set FFμ(L) is isomorphic to the lattice of
fuzzy ideals of A+(L).

Proof. Define

f: FFμ(L)⟶ FI A
+
(L)( 􏼁,

f(η) � μ(η), ∀θ ∈ FFμ(L).
(33)

Let η, θ ∈ FFμ(L) and f(η) � f(θ). -en, μ(η) � μ(θ).
-us, μ

←
μ(η) � μ

←
μ(θ). So, η � θ. Hence, f is one to one.

Let λ ∈ FI(A+(L)). -en, by Lemma 3, μ
←

(λ) is a fuzzy
filter of L. Now, we proceed to show that μ

←
(λ) is a μ-fuzzy

filter of L. Let x ∈ L. -en, μ
←
μ(μ
←

(λ))(x) � μμ
←

(λ)((x)++).
-us, by Lemma 6, we get that μμ

←
(λ)((x)++) � μ

←
(η)(x). So,

μ
←

(λ) � μ
←
μ(μ
←

(λ)). -us, for each λ ∈ FI(A+(L)),

f(μ
←

(λ)) � λ. -erefore, f is onto.
Now, for any η, θ ∈ FIμ(L), f(η ∨ θ) � f(μ

←
μt(η∨ θ)) �

μ(μ
←
μt(η∨ θ)) � μ(η∨ θ) � μ(η)∨ μ(θ) � f(η)∨f(θ).

Similarly, f(η∩ θ) � f(η)∩f(θ). -erefore, f is an iso-
morphism of FFμ(L) onto the lattice of fuzzy filters of A+(L).

Theorem 9. *e following are equivalent for each non-
constant μ-fuzzy filter λ of L.

(1) For all θ, η ∈ FF(L),

θ∩ η⊆ λ⇒θ⊆ λ or η⊆ λ. (34)

(2) For any fuzzy points xc and yβ of L,
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xc + yβ ⊆ λ⇒xc ⊆ λ oryβ ⊆ λ. (35)

(3) For all θ, η ∈ FFμ(L),

θ∩ η⊆ λ⇒θ⊆ λ or η⊆ λ. (36)

Proof

1⟹2. Let x, y ∈ L such that xc + yβ ⊆ λ. -en,
[xc + yβ)⊆ λ. Since L is a distributive lattice, by dual of
Lemma 2, we have [xc)∩ [yβ)⊆ λ. Since [xc) and [yβ)

are fuzzy filters of L, by the assumption, [xc)⊆ λ or
[yβ)⊆ λ. -is shows that xc ⊆ λ or yβ ⊆ λ.
2⇒3. Let θ, η ∈ FFμ(L) such that θ∩ η⊆ λ. Now, we
need to show θ⊆ λ or η⊆ λ. Suppose not.-en, θ⊈λ and
η⊈λ, which implies there exist x, y ∈ L such that
θ(x) > λ(x) and η(y)> λ(y). Put θ(x) � c and
η(y) � β. -en, xc⊈λ and yβ⊈λ. Since xc + yβ ⊆ θ∩ η,
we have xc + yβ ⊆ λ. By the assumption, we get that
xc ⊆ λ or yβ ⊆ λ, which is a contradiction. -us, θ⊆ λ or
η⊆ λ.
3⇒1. Suppose θ, η ∈ FF(L) such that θ∩ η⊆ λ. -en, by
Corollary 1 we have μ

←
μ(θ)∩ μ←μ(η)⊆ λ. Since μ

←
μ(θ)

and μ
←
μ(η) are μ-fuzzy filters, by the assumption, we get

that μ
←
μ(θ)⊆ λ or μ

←
μ(η)⊆ λ, which implies θ⊆ λ or

η⊆ λ.

Definition 7. By a prime μ-fuzzy filter, we mean a non-
constant μ-fuzzy filter of L satisfying (1) and hence all of the
conditions of -eorem 9.

We have proved in -eorem 8 that there is an order
isomorphism between the class of μ-fuzzy filters and the set
of fuzzy ideals of A+(L). Now, we show that there is an
isomorphism between the prime μ-fuzzy filters and the
prime fuzzy ideals of the lattice of coannihilators.

Theorem 10. *ere is an isomorphism between the prime
μ-fuzzy filters and the prime fuzzy ideals of the lattice of
coannihilator.

Proof. By -eorem 8, the map f is an isomorphism from
FFμ(L) into FI(A+(L)). Let σ be a prime μ-fuzzy filter of L.
-en, μ(σ) ∈ FI(A+(L)). Now, we prove μ(σ) is a prime
fuzzy ideal of FI(A+(L)). Let θ, η ∈ FI(A+(L)) such that
θ∩ η⊆ μ(σ). Since f is onto, there exist λ, c ∈ FFμ(L) such
that f(λ) � θ and f(c) � η. -us, μ(λ∩ c)⊆ μ(σ). Since μ

⟵

is an isotone, we have μ
←
μ(λ∩ c)⊆ μ←μ(σ). -us, λ∩ c⊆ σ.

Since σ is a prime fuzzy filter, either λ⊆ σ or c⊆ σ.-is shows
that either μ(λ)⊆ μ(σ) or μ(c)⊆ μ(σ). -us, θ⊆ μ(σ) or
η⊆ μ(σ). Hence, μ(σ) is a prime fuzzy ideal of A+(L).

Conversely, suppose that θ is a prime fuzzy ideal in
A+(L). Since f is onto, there exists a μ-fuzzy filter σ in
FFμ(L) such that θ � μ(σ). Let η, λ ∈ FF(L) such that
η∩ λ⊆ σ. Since μ is an isotone, we get μ(η∩ λ)⊆ μ(σ) � θ.
-us, μ(η)∩ μ(λ)⊆ μ(σ). Since μ(σ) is a prime fuzzy ideal of

A+(L), either μ(η)⊆ μ(σ) or μ(λ)⊆ μ(σ). -is implies
η⊆ μ
⟵

μ(σ) or λ⊆ μ←μ(σ). Since σ is a μ-fuzzy filter, we get
η⊆ σ or λ⊆ σ. -us, σ is prime fuzzy filter in FFμ(L). So, the
prime μ-fuzzy filters correspond to prime fuzzy ideals of
A+(L).

Theorem 11. Let θ be a μ-fuzzy filter of L and η be a fuzzy
ideal of L such that θ ∩ η≤ α, α ∈ [0, 1). *en, there exists
a prime μ-fuzzy filter λ of L such that θ ⊆ λ and λ∩ η≤ α.

Proof. Put P � σ ∈ FFμ(L): σ ⊆ η and η∩ σ ≤ α􏽮 􏽯. Since
θ ∈ P,P is nonempty, and it forms a poset together with the
inclusion ordering of fuzzy sets. LetA � θi􏼈 􏼉i∈I be any chain
in P. -en, clearly ∪ i∈Iθi is a μ-fuzzy filter. Since θi ∩ η≤ α
for each i ∈ I, we get that (∪ i∈Iθi)∩ η≤ α. -us, ∪ i∈Iθi ∈ A.
By applying Zorn’s lemma, we get a maximal element, say
σ ∈ P; that is, σ is a μ-fuzzy filter of L such that θ ⊆ σ and
σ ∩ η≤ α.

Now, we proceed to show σ is a prime fuzzy filter.
Assume that σ is not prime fuzzy filter. Let c1 ∩ c2 ⊆ σ such
that c1⊈σ and c2⊈σ, c1, c2 ∈ FF(L). If we put
σ1 � μ
←
μ(c1 ∨ σ) and σ2 � μ

←
μ(c2 ∨ σ), then both σ1 and σ2

are μ-fuzzy filters of L properly containing σ. Since σ is
maximal in P, we get σ1, σ2 ∉ P. -us, σ1 ∩ η≰α and
σ2 ∩ η≰α. -is implies there exist x, y ∈ L such that
(σ1 ∩ η)(x)> α and (σ2 ∩ η)(y)> α, which implies
((σ1 ∩ σ2)∩ η)(x∧y)> α⇒(μ

←
)μ(σ ∨ (c1 ∧ c2))

(x∧y)∧ η(x∧y)> α. -is shows that (θ∩ η)(x∧y)> α.
-is is a contradiction. -us, σ is prime μ-fuzzy filter of L.

Corollary 3. Let θ be a μ-fuzzy filter of L, a ∈ L and
α ∈ [0, 1). If θ(a) ≤ α, then there exists a prime μ-fuzzy filter η
of L such that θ⊆ η and η(a)≤ α.

Proof. Put P � σ ∈ FFμ(L): σ ⊆ η and η∩ σ ≤ α􏽮 􏽯. Since
θ ∈ P,P is nonempty, and it forms a poset together with the
inclusion ordering of fuzzy sets. LetA � θi􏼈 􏼉i∈I be any chain
in P. Clearly, ∪ i∈Iθi is a μ-fuzzy filter. Since θi(a)≤ α for
each i ∈ I, α is an upper bound of θi(a): i ∈ I􏼈 􏼉. -us,
∪ i∈Iθi(a)≤ α. So, ∪ i∈Iθi is a μ-fuzzy filter containing θ and
∪ i∈Iθi(a)≤ α. Hence, ∪ i∈Iθi ∈ P. By applying Zorn’s
lemma, we get a maximal element, say σ ∈ P; that is, σ is a μ-
fuzzy filter of L such that θ⊆ σ and σ(a)≤ α.

Now, we proceed to show σ is a prime fuzzy filter.
Assume that σ is not prime fuzzy filter. Let c1 ∩ c2 ⊆ σ and
c1⊈σ and c2⊈σ, c1, c2 ∈ FF(L). If we put σ1 � μ

←
μ(c1 ∨ σ)

and σ2 � μ
←
μ(c2 ∨ σ), then both σ1 and σ2 are μ-fuzzy filters

of L properly containing σ. Since σ is maximal in P, we get
σ1, σ2 ∉ P. -us, σ1(a)> α and σ2(a)> α. Now,
(sigma1 ∩ σ2)(a) � μ

←
μ((c1 ∨ σ)∩ (c2 ∨ σ))(a) �

μ
←
μ((c1 ∩ c2) ∨ σ))(a) � σ(a)> α. -is is a contradiction.

Hence, σ is prime μ-fuzzy filter.

Corollary 4. Any μ-fuzzy filter of L is the intersection of all
prime μ-fuzzy filters containing it.

Proof. Let θ be a proper μ-fuzzy filter of L. Consider the
following.
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λ � ∩ η: η is a prime μ − fuzzy filter and θ⊆ η􏼈 􏼉. (37)

Clearly, θ⊆ λ. Assume that λ⊈θ. -en, there is a ∈ L such
that λ(a)> θ(a). Let θ(a) � α. Consider the set

P � η ∈ FIμ(L): θ⊆ η and η(a)≤ α􏽮 􏽯. (38)

By the above corollary, we can find a prime μ-fuzzy filter
c of L such that θ⊆ c and c(a)≤ α. -is implies λ⊆ c. -is
shows that λ≤ α, which is a contradiction. -us, λ⊆ θ. So,
λ � θ.

4. The Space of Prime μ-Fuzzy Filters

In this section, we study the space of prime μ-fuzzy filters of
a distributive lattice and some properties of the space also.

Let Xμ be the set of all prime μ-fuzzy filters of a dis-
tributive lattice. Let V(θ) � η ∈ Xμ: θ⊆ η􏽮 􏽯, where θ is
a fuzzy subset of L and X(θ) � η ∈ Xμ: θ⊈η􏽮 􏽯 � Xμ − V(θ).
We let μ∗ � μ1, i.e., μ∗ � x ∈ L: μ(x) � 1􏼈 􏼉.

Lemma 8. For any fuzzy filters λ and θ of L, we have

(1) λ⊆ θ⇒X(λ) ⊆X(θ)

(2) X(λ∨ θ) � X(λ)∪X(θ)

(3) X(λ∩ θ) � X(λ)∩X(θ)

Proof

(1) Let λ⊆ θ and η ∈ X(λ). -en, λ⊈η and θ⊈η. -us,
η ∈ X(θ).

(2) Since λ, θ⊆ λ∨ θ, by (1), we have
X(λ)∪X(θ) ⊆X(λ∨ θ). Now, we proceed to show
the other inclusion; let η ∈ X(λ∨ θ). -en, λ∨ θ⊈η.
-is shows that either λ⊈η or θ⊈η. So,
η ∈ X(λ)∪X(θ). Hence, X(λ∨ θ) � X(λ)∪X(θ).

(3) By (1), we have X(λ∩ θ)⊆X(λ)∩X(θ). On the
other hand, let η ∈ X(λ)∩X(θ). -en, λ⊈η and θ⊈η.
Since η is a prime fuzzy filter, we get that λ∩ θ⊈η.
-is shows that η ∈ X(λ∩ θ). -us, X(λ∩ θ) �

X(λ)∩X(θ).

Lemma 9. Let θ be a fuzzy subset of L. *en, X(θ) � X([θ)).

Proof. To prove our claim, it suffices to show X([θ)) ⊆X(θ).
Let η ∈ X([θ)). -en, [θ)⊈η. We need to show θ⊈η. Suppose
not. -en, θ⊆ η, which implies that [θ)⊆ η, which is
a contradiction. -us, θ⊈η. So, X(θ) � X([θ)).

Theorem 12. Let x, y ∈ L and β ∈ (0, 1]. *en,

(1) X((x∧y)β) � X(xβ)∪X(yβ)

(2) X((x∨y)β) � X(xβ)∩X(yβ)

(3) ∪ x∈L, β∈(0,1]X(xβ) � Xμ

Proof

(1) If λ ∈ X(xβ)∪X(yβ), then either xβ⊈λ or yβ⊈λ. -is
shows that β> λ(x) or β> λ(y). -us,
β> λ(x)∧ λ(y) � λ(x∧y). So, (x∧y)β⊈λ. Hence,
λ ∈ X((x∧y)β).
On the other hand, let λ ∈ X(x∧y)β. -en,
β> λ(x∧y) � λ(x)∧ λ(y). -is implies either xβ⊈λ
or yβ⊈λ. -us, λ ∈ X(xβ)∪X(yβ).

(2) If λ ∈ X(xβ)∩X(yβ), then xβ⊈λ and yβ⊈λ. -is
implies β> λ(x) and β> λ(y). -is shows that
x, y ∉ λ∗. Since λ is prime fuzzy filter, card Im λ � 2
and λ∗ is prime. -us, x∨y ∉ λ∗, which implies
β> λ(x∨y). -us, (x∨y)β⊈λ and hence
X(xβ)∩X(yβ)⊆X((x∧y)β).
Conversely, let λ ∈ X((x∨y)β). -en, (x∨y)β⊈λ,
which implies β> λ(x∨y)≥ λ(x)∨ λ(y). -us,
β> λ(x) and β> λ(y). -is shows that xβ⊈λ and
yβ⊈λ. -us, λ ∈ X(xβ)∩X(yβ). So, X((x∨y)β)⊆
X(xβ)∩X(yβ). -erefore, X((x∨y)β) �

X(xβ)∩X(yβ).
(3) Clearly, ∪ x∈L, β∈(0,1]X(xβ)⊆Xμ. Let λ ∈ Xμ. -en,

Im λ � 1, c􏼈 􏼉, c ∈ [0, 1). -is implies there is x ∈ L

such that λ(x) � c. If we take some β ∈ (0, 1) such
that β> c, then xβ⊈λ. -us, Xμ ⊆ ∪ x∈L, β∈(0,1]X(xβ).
So, Xμ � ∪ x∈L, β∈(0,1]X(xβ).

Lemma 10. Let β1, β1 ∈ (0, 1]; β � min β1, β2􏼈 􏼉; and
x, y ∈ L. *en,

X xβ1􏼐 􏼑∩X yβ2􏼐 􏼑 � X (x∨y)β􏼐 􏼑. (39)

Proof. Let λ ∈ X(xβ1)∩X(yβ2). -en, xβ1⊈λ and xβ2⊈λ. -is
implies that β1 > λ(x) and β2 > λ(y). Since λ∗ is prime filter
and x, y ∉ λ∗, we have x∨y ∉ λ∗ and
λ(x) � λ(y) � λ(x∨y). -is shows that β> λ(x∨y). -us,
(x∨y)β⊈λ. So, λ ∈ X((x∨y)β). To show the other in-
clusion, let λ ∈ X((x∨y)β). -en,
β> λ(x∨y)≥ λ(x)∨ λ(y). -is implies β1 > λ(x) and
β2 > λ(y). -us, xβ1⊈λ and yβ2⊈λ. So, λ ∈ X(xβ1)∩X(yβ2).
Hence, X(xβ1)∩X(yβ2) � X((x∨y)β).

Lemma 11. Let θi: i ∈ I􏼈 􏼉 be any family of fuzzy filters of L.
*en,

∩
i∈I

V θi( 􏼁 � V ∪
i∈I

θi􏼔 􏼓􏼒 􏼓. (40)

Proof. Since θi ⊆ [∪ i∈Iθi) for each i ∈ I, we have
V([∪ i∈Iθi))⊆V(θi) for each i ∈ I. -us, V([∪ i∈Iθi))⊆
∪ i∈IV(θi).

Conversely, let λ ∈ ∪ i∈IV(θi). -en, λ ∈ V(θi) for each
i ∈ I. -is implies θi ⊆ μ. -us, for any x ∈ L, μ(x) is an
upper bound of θi(x): i ∈ I􏼈 􏼉. -is implies that
Sup θi(x): i ∈ I􏼈 􏼉≤ λ(x). -is shows that ∪ i∈Iθi ⊆ λ and
[∪ i∈Iθi)⊆ λ. So, μ ∈ V([∪ i∈Iθi)). -us, ∩ i∈IV(θi)⊆
V((∪ i∈Iθi]). Hence, ∩ i∈IV(θi) � V([∪ i∈Iθi)).
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Theorem 13. *e collection T � X(θ): θ{

is a fuzzy filter of L} is a topology onXμ.

Proof. First, we define two fuzzy subsets η1, η2 of L as fol-
lows: η1(x) � 0 and η2(x) � 1 for all x ∈ L. -en, [η1) and
η2 are fuzzy filters of L. Since [η1)⊆ λ, for all λ ∈ Xμ, we get
that V([η1)) � Xμ. -is shows that X(η1) � ϕ. Since each
λ ∈ Xμ is nonconstant, η2⊈λ for all λ ∈ Xμ. So X(η2) � Xμ.
Hence, ϕ, Xμ ∈ T.

Next, let X(θ1), X(θ2) ∈ T. -en, by Lemma 8, we get
that X(θ1)∩X(θ2) � X(θ1 ∩ θ2). -is shows that T is
closed under finite intersection.

Now, we proceed to show that T is closed under ar-
bitrary union. Let θi: i ∈ I􏼈 􏼉 be any family of fuzzy filters of
L. -en, by Lemma 11 we have

∩
i∈I

V θi( 􏼁 � V ∪
i∈I

θi􏼔 􏼓􏼒 􏼓, (41)

which implies ∪ i∈IX(θi) � X([∪ i∈Iθi)). -us, by
Lemma 9, we get that

X ∪
i∈I

θi􏼒 􏼓 � X ∪
i∈I

θi􏼔 􏼓􏼒 􏼓. (42)

So, T is closed under arbitrary union. -erefore, T is
a topology on Xμ. -e space (Xμ,T) will be called the space
of prime μ-fuzzy filters in L.

In the above theorem, we proved that the family of X(θ)

is a topology on Xμ. In the following result, we show that the
set of all open sets of the form X(xβ) is a basis for the
topology on Xμ.

Theorem 14. *e collectionB � X(xβ): x ∈ L, β ∈ (0, 1]􏽮 􏽯

forms base for some topology Xμ.

Proof. Let X(θ) be any open set in Xμ and λ ∈ X(θ). -en,
θ⊈λ and there is x ∈ L such that θ(x) > λ(x). Put θ(x) � β;
then xβ ⊆ θ and λ ∈ X(xβ). To show X(xβ)⊆X(θ), let
η ∈ X(xβ). -en, xβ⊈η and θ(x) > η(x). -is shows that
η ∈ X(θ). -us, λ ∈ X(xβ)⊆X(θ). Hence, for any open set
X(θ) in Xμ we can find X(xβ) inB such that X(xβ)⊆X(θ).
-erefore, B is a base for T.

Theorem 15. *e space Xμ is a T0-space.

Proof. Take any two different elements η and θ in Xμ. -en,
either η⊈θ or θ⊈η. Without loss of generality, we can assume
that η⊈θ. -en, θ ∈ X(η) and η ∉ X(η). -us, Xμ is a T0-
space.

Theorem 16. For any fuzzy filter η of L, X(η) � X(μ
←
μ(η)).

Proof. For any fuzzy filter η of L, we have η⊆ μ←μ(η) and
X(η)⊆X(μ

←
μ(η)). Now we proceed to show the other in-

clusion; let θ ∈ X(μ
←
μ(η)). -en, μ

←
μ(η))⊈θ. Suppose

θ ∉ X(η); then η⊆ θ. -is implies μ
←
μ(η)⊆ μ←μ(θ)) � θ, which

is impossible. -us, θ ∈ X(η) and hence X(η) � X(μ
←
μ(η)).

In the following result, we show that there is a one-to-
one correspondence between the class of μ-fuzzy filters and
the lattice of all open sets in Xμ.

Theorem 17. *e lattice FFμ(L) is isomorphic with the
lattice of all open sets in Xμ.

Proof. -e lattice of all open sets in Xμ is (T, ∩ , ∪ ). Define
the mapping

f: FFμ(L)⟶ T byf(λ) � X(λ), for all λ ∈ Xμ. (43)

Since X(λ) � X( μ
⟵

μt(λ)) and μ
←
μ(λ) is a μ-fuzzy filter,

every open subset of Xμ is of the form X(θ) for some
θ ∈ FFμ(L). -is shows that the map is onto.

Let f(λ) � f(θ). Now, we need to show λ � θ. Suppose
not. -en, λ≠ θ, which implies that there is x ∈ L such that
either λ(x)< θ(x) or θ(x) < λ(x). Without loss of generality,
we can assume that λ(x)< θ(x). Put λ(x) � β. -en by
Corollary 3, we can find a prime μ-fuzzy filter η such that
λ⊆ η and η(x)≤ β. -us, η ∉ X(λ) and θ⊈η. So, η ∉ X(λ)

and η ∈ X(θ). -is is a contradiction. Hence, λ � θ.
Now, we show that f is homomorphism. Let

λ, θ ∈ FFμ(L). -en,

f λ ∨ θ( ) � X(μ
←
μ(λ∨ θ)) � X(λ∨ θ) � f(λ)∪f(θ).

(44)

Similarly, f(λ∩ θ) � f(λ)∩f(θ). -is shows that f is
a homomorphism. Hence, f is an isomorphism.

For any fuzzy subset η of L, X(θ) � η ∈ Xμ: θ⊈η􏽮 􏽯 is an
open set of Xμ and V(θ) � η ∈ Xμ: θ⊆ η􏽮 􏽯 � Xμ − V(θ) is
a closed set of Xμ. In the following result, we prove the
closure of a fuzzy set.

Theorem 18. For any familyF⊆Xμ, closure ofF is given by
F � V(∩ λ∈Fλ).

Proof. We know that closure of F is the smallest closed set
containing F. To prove our claim, it is enough to show that
V(∩ λ∈Fλ) is the smallest closed set containingF. Since the
set of all μ-fuzzy filter is a complete distributive lattice,
∩ λ∈Fλ is a μ-fuzzy filter and V(∩ λ∈Fλ) is a closed set in Xμ.
If η ∈ F; then ∩ μ∈Fλ⊆ η. -us, η ∈ V(∩ λ∈Fλ). -is implies
that F⊆V(∩ λ∈Fλ). Let V(θ) be any closed set in Xμ
containing F. -en, θ⊆ λ, for each λ ∈F. -us, θ⊆ ∩ λ∈Fλ
and V(∩ λ∈Fλ)⊆V(θ). So, V(∩ λ∈Fλ) is the smallest closed
set containing F. Hence, F � V(∩ λ∈Fλ).

5. Conclusion

In this work, we studied the concept of μ-fuzzy filters of
a distributive lattice. We proved that the set of all μ-fuzzy
filters of a distributive lattice forms a complete distrib-
utive lattice isomorphic to the set of all fuzzy ideals of
A+(L). We observed that every μ-fuzzy filter is the in-
tersection of all μ-fuzzy filters containing it. We also
studied the space of all prime μ-fuzzy filters in a distrib-
utive lattice. Our future work will focus on α-fuzzy ideals
of a C-algebra.
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