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)is article provides a representation of the double inverted pendulum system that is shaped and regulated in response to torque
application at the top rather than the bottom of the pendulum, given that most researchers have controlled the double inverted
pendulum based on the lower part or the base. To achieve this objective, we designed a dynamic Lagrangian conceptualization of
the double inverted pendulum and a state feedback representation based on the simple convex polytypic transformation. Finally,
we used the fuzzy state feedback approach to linearize the mathematical nonlinear model and to develop a fuzzy controller H∞,
given its great ability to simplify nonlinear systems in order to reduce the error rate and to increase precision. In our virtual
conceptualization of the inverted pendulum, we used MATLAB software to simulate the movement of the system before applying
a command on the upper part of the system to check its stability. Concerning the nonlinearities of the system, we have found a
state feedback fuzzy control approach. Overall, the simulation results have shown that the fuzzy state feedback model is very
efficient and flexible as it can be modified in different positions.

1. Introduction

A double pendulum is made up of two individual pendulums
which mimic a nonlinear and unstable dynamic system
[1–5]. It displays a perfect model of nonlinear and chaotic
movements. Unlike the previous system, the simple pen-
dulum is not as sophisticated and advanced as the double
pendulum although its simple structure and instability are
highly utilized for experimental research [6–8]. A double
pendulum or the underactuated system has more joints than
actuators, and its control is a subject of great interest for
researchers because of its high applicability in robotics.

One of the well-known models is the double pendulum
on a cart [9–12]. It poses a control problem regarding its
architecture which is composed of a straight-line moving
cart, one rotary inverted pendulum around the cart’s mass
center, and another around the mass center of the first
inverted pendulum. To reach the desired equilibrium state,
Neusser and Valášek [13] tried to control this system by

applying the nonlinear quadratic regulator. Bogdanov [9]
also tested a combination between the linear quadratic
regulator, the neural network, and the Riccati equation in
order to reach the overall stability of this model. )e key
downside of this approach lies in the large number of
complex calculations. Concerning the double-pendulum
crane model, the system consists of a payload attached to a
hook.)e combination of the double pendulum system with
a crane became interesting because of its high utility and
applicability in the industry. To provide more details about
the functionality of this model, Chen et al. [14] presented the
dynamics of the double-pendulum crane and proposed a
time-optimal trajectory planning approach in order to
achieve the control objectives. Muhammad et al. [15],
moreover, focused on stabilizing the double-pendulum
crane by using the linear matrix inequality method. Even-
tually, the simulation results proved a high effectiveness of
this controller. Jaafar et al. [16] also employed this system
and improved its vibration control by designing the model
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reference command shaping (MRCS) approach. In addition
to this, Wu et al. and Yang et al. [17, 18] developed an
adaptive output-feedback controller to avoid the instability
and disturbances of this system.

)e stabilization of the Furuta double pendulum is one of
highly recommended examples to study the double pendulum
system. It is equipped with two pendulums and a rotating
arm. Ismail and Liu [19] depicted a new optimal control
technique to swing up the Furuta double pendulum model.

From another point of view, a double inverted pendulum
system represents a typical group of underactuated me-
chanical systems used in control theory which includes the
modeling of an unstable chaotic system by formulating its
motion equations, designing a stabilizing controller for the
nonlinear systems, and establishing a numerical stability state
simulation in order to show the good stability of this system.

In this regard, Slavka and Anna [20] aimed at presenting
the double inverted pendulum (DIP) modeling and control
by developing a Simulink block library in MATLAB soft-
ware. Demirci [21], furthermore, laid down the pole
placement and the linear quadratic regulator (LQR)methods
to achieve the satisfactory stability results in very small
regions of this system equilibrium. Zhang and Zhang [22]
also based their model on the LQR self-adjusting technique
in order to maintain control over the planar DIP. Moysis
[23], as well, focused on keeping the DIP on the upright
equilibrium position by first employing the linear quadratic
regulator and Laguerre functions.

Other researchers [24–26] dealt with swinging up the
DIP at the upright vertical position by creating a simulation
prototype of this system and trying to maintain it on the
vertical point.

Since the DIP is a nonlinear model with a high level of
nonlinearities widely applied in testing new control ap-
proaches, different nonlinear and intelligent methods have
been used to control it. Al-Hadithi et al. [27], for instance,
contributed to the stabilization of the DIP by employing a new
optimal fuzzy controller. Lo and Lin [28] proposed a new
approach that is based on the sliding mode controller to
eliminate the chattering-generated phenomenon. Yang et al.
[29] also employed the adaptive backstepping technique and
the fuzzy logic system to form the fuzzy logic system-based
adaptive fault-tolerant controller to stabilize a wheeled system.

)e state feedback fuzzy approach is regarded as the
most effective device for explaining the dynamic behavior of
the nonlinear system in an adequate way. Consequently, the
novelty and the efficiency of this method are manifested in
relevance to the following factors: the dynamic response, the
complexity degree of the algorithm, the number of detectors,
and the implementation cost.

)e majority of the researchers interested in the
double pendulum system has used algorithms to achieve
control over this system while applying a torque on both
pendulums. Stabilizing the model through applying a
torque on the second pendulum rather than the first is still
a mystery to researchers; eventually, in this study, we aim
to surmount such a challenge while making use of the state
feedback fuzzy theory to control the DIP on the upright

position. )e second part presents a mathematical for-
mulation of the DIP based on the Lagrangian approach,
illustrated by a graphical modeling, which is rooted in the
virtual reality and MATLAB software, as displayed in the
third part. )e fourth part provides a general overview of
the state feedback fuzzy technique simulation results
using MATLAB/Simulink, while the fifth and last part
sum up all significant results and perspectives of this
study.

2. Modeling of the System

)e objective of this section is to determine motion equations
of the system and to establish the graphical model of the DIP.
As a matter of fact, Lagrangian was firstly calculated. After
that, the system was drawn using MATLAB software.

Figure 1 illustrates our conceptualization of the double
inverted pendulum system; once a torque F was applied on
the upper part of the double inverted pendulum, both
pendulums deviated on their gravity centers.

Table 1 shows the technical parameters for using this
system.

2.1. DIP Mathematical Modeling. Lagrangian of a me-
chanical system is extracted by the difference between its
kinetic energy and its potential energy. From this La-
grangian, the equations of the DIP system are derived using
Euler–Lagrange, as shown in the following.

)e kinetic energy of the system is

T �
1
2

· m1 ·
L1

2
· _α􏼒 􏼓

2
+
1
2

· m2 · L1 · _α( 􏼁
2

+
L2

2
· _β􏼒 􏼓

2
􏼢

− L1 · L2 · _α · _β(cos α · cos β + sin α · sin β)􏼣

+
1
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· J1 · _α2 +
1
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2
.

(1)

)e potential energy of the system is

V �
m1

2
+ m2􏼒 􏼓 · g · L1 · cos α −

m2

2
· g · L2 · cos β. (2)

Lagrangian is given by

L � T − V. (3)
In accordance with the Lagrangian formulation, the

entire dynamic model of the DIP system is provided by
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1
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ξ
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λ
a
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2

+ ] · sin α􏼒 􏼓􏼢 􏼣, (5)

with
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(6)

Note. We will consider m1 � (3/4) · m2 and L1 � (3/4) · L2.
According to the dynamic model presented in (5) and

(7), the nonlinear state-space representation can take the
following form:

Q � [α _αβ _β]
T

� q1q2q3q4􏼂 􏼃
T
.

(7)

)e double inverted pendulummodel can be depicted by
its nonlinear state-space form as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(8)

So, the nonlinear representation of the DIP can be given
as _Q � f(q) + g(q) · u, where

Table 1: Parameters of the double inverted pendulum system.

Parameters and value Description
m1 Mass of the first pendulum
m2 Mass of the second pendulum
L1 Length of the first pendulum
L2 Length of the second pendulum
g � 9.81N/kg Coefficient of the gravity
J1 � (m1.L

2
1/12) Inertia moment of the first pendulum

J2 � (m2.L
2
2/12) Inertia moment of the second pendulum

α Rotation angle of the first inverted pendulum
β Rotation angle of the second inverted pendulum
F Applied torque on the second pendulum (the upper part)

L2

L1
α

β

m2 ; j2

m 1 
; j 1

F

X

Y

Figure 1: Double inverted pendulum system.
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.

(9)

3. Initial Unstable Equilibrium Position

Regarding continuous system (10), the most complicated
task is to achieve stability at its equilibrium point. We,
therefore, need to select a convenient initial position to
implement a controller that enables the system tomove from
an unstable equilibrium position to a stable one.

As illustrated in Figure 2, the Lyapunov approach is used
for the examination of the equilibrium point stability
movement in consonance with the DIP system’s motion
while focusing on one positive scalar function.

By way of explanation, a continuous scalar function
V(x) is 0 at the origin and positive at a certain point sur-
rounding the origin, i.e.,

V(0) � 0, V(x)> 0,∀x> 0,

‖x‖⟶∞⟹V(x)⟶∞,

_V(x)< 0,∀x≠ 0.

⎧⎪⎪⎨

⎪⎪⎩
(10)

Since the potential energy (3) is a positive and contin-
uous scalar function, we consider it as a Lyapunov function.

So, based on the Lyapunov approach, the initial unstable
equilibrium position is determined by

VConvex �
z
2
U

zt
2􏼨 􏼩 ∈ R

+
. (11)

Accordingly,

β � arccos
m1/2( 􏼁 + m2 · g · L1

m2/2( 􏼁 · g · L2
· cos α􏼠 􏼡. (12)

4. Virtual Reality via MATLAB Software

)e visual representation of the movement of the double
inverted pendulum is highly required for its design devel-
opment. Such a representation is not only used for regu-
lating this system’s degrees of freedom but also crucial for
picking up a convenient controller. In this regard, the
creation of a virtual prototype of this model on MATLAB
requires using V-Realm builder for model’s drawing and
MATLAB/Simulink (M-Script) for its animation.

Figure 3 captures the motion of the created model in
various positions. )e double inverted pendulum rotates
when a torque is applied on the top of the model, causing the
pendulums to move left and right.

5. State Feedback Fuzzy Problem Formulation
and Controller Design

5.1. DIP State Feedback Fuzzy Problem Formulation. )e
fuzzy controller system operates according to the so called
fuzzy rules, namely, the if-then statements, fuzzy sets, logic,
and inference. )ese rules are extremely useful for depicting
sophisticated controls and models and for connecting input
and output variables of fuzzy controllers. )e most well-
known types of fuzzy rules are Mamdani and T-S (state
feedback).

In fact, it has been shown that state feedback fuzzy
models represent precisely some nonlinear systems using
fuzzy if-then rules. )us, these state feedback fuzzy models
provide a simple and efficient method to complement other
nonlinear control strategies and to decrease the complexity
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of the system in order to optimize the error rate in the
simulation results and using mathematical nonlinear
models.

Consequently, we are more concerned in this paper with
the state feedback fuzzy approach. So, the total membership
state feedback fuzzy functions are set according to the
following conditions:

􏽘
4

i�1
hi z1(t), z3(t)( 􏼁,

0≤ hi z1(t), z3(t)( 􏼁≤ 1, i � 1, . . . , 4,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

where

z1 � q1,

z3 � q3,
􏼨 (14)

where the parameters qi are the input variables. Generally
speaking, these variables are theoretically defined as either
continuous or discrete, yet in practical terms, only the
continuous variables are the most feasible because all fuzzy
controllers and models are applied using digital computers.

min2,min4,max2,max4 are, respectively, the minimum
and the maximum of q2 and q4, so

min2 < q2 <max2,

min4 < q4 <max4.
(15)

)e membership functions Mk,min and Mk,max assigned
each variable are given as follows:

M
1
1 q2( 􏼁 �

q2 − min2
max2 − min2

, (16)

M
2
1 q2( 􏼁 �

max2 − q2

max2 − min2
, (17)

M
1
2 q4( 􏼁 �

q4 − min4
max4 − min4

, (18)

M
2
2 q4( 􏼁 �

max4 − q4

max4 − min4
. (19)

)e weighting functions of the state feedback fuzzy
model are

h1 � M
1
1 q2( 􏼁 · M

1
2 q4( 􏼁,

h2 � M
1
1 q2( 􏼁 · M

2
2 q4( 􏼁,

h3 � M
2
1 q2( 􏼁 · M

1
2 q4( 􏼁,

h4 � M
2
1 q2( 􏼁 · M

2
2 q4( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(20)

So, the global state feedback fuzzy model is

_q(t) � 􏽘

4

i�1
hi(z(t)) Ai · q(t) + Bi · q(t) + D · w(t)( 􏼁,

z(t) � 􏽘
4

i�1
hi Ci · q(t)( 􏼁, i � 1, . . . , 4,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

where the subsystems are established as
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μξ
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0 0 0 1

−
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−
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cq4
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.

(22)

Potential energy, U
Unstable equilibrium d2U/dt2 > 0

Stable equilibrium d2U/dt2 < 0

Position

Figure 2: Convex and concave region of the Lyapunov function.

Figure 3: DIP system representation in V-Realm builder.
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,

B � B1 � B2 � B3 � B4.

(23)

Lemma 1 (see [26]). 0e following statements concerning the
continuous-time unforced nominal system are equivalent:

(1) 0ere exists a matrix P � PT > 0 such that

PAij + A
T
ijP PEi C

T
i

∗ −c
2
I D

T
i

∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (24)

(2) _x � Aijx(t) is a stable system, and the disturbed
system _x � Aijx(t) + Eiω(t) satisfies the H∞
performance.

5.2. State Feedback Fuzzy Controller Design. Assessing the
previous matrices for each T-S fuzzy model linear subsystem
for the double inverted pendulum system and taking into
consideration the parameters of nonlinear system (10)
provided m1 � 0.5 kg, m2 � 0.75 kg, L1 � 0.5m, and
L2 � 0.75 kg and presuming that the pair (Ai, Bi) is con-
trollable and observable, it will be feasible to develop the
stable state feedback fuzzy controller design.

)e T-S controller design is based on establishing the
feedback gain Ki for the linear pair (Ai, Bi) that satisfies the
following theorem of stability.

Theorem 1. Consider closed-loop fuzzy system (17) and a
scalar c> 0; the system is asymptotically stable with the H∞
performance c if there exist symmetric matrix Q and matrices
Yi such that the following LMIs hold:

Ωii < 0, i � 1, 2, . . . , r, (25)

Ωij +Ωji < 0, i< j � i + 1, 2, . . . , r, (26)

where

Ωij �

Ω11ij Ei QC
T
i

∗ −c
2
I D

T
i

∗ ∗ −I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

Ω21ij � AiQ + QA
T
i + BiYj + Yj

T
B

T
i ,

(27)

and the gain matrices are given by Ki � YQ− 1.

Obviously, the LMI conditions (24) and (25) can be
rewritten as follows:

􏽘

r

i�1
h
2
iΩii + 􏽘

r−1

i�1
􏽘

r

j�i+1
hihj Ωij +Ωij􏼐 􏼑< 0, (28)

which is verified if

Ωij �

Ω11ij Ei QC
T
i

∗
−c

2
I D

T
i

∗ ∗
−I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0. (29)

Before and after multiplying both sides of (28) by
diag Q− 1, I, I􏼈 􏼉 and applying the change of variables Q− 1 � P

and Yj � KjQ, we obtain inequality (19). )is completes the
proof.

To represent the stability study and design techniques of
the T-S fuzzy output feedback controller for the developed
system, we should design the feedback gain Ki of the linear
submodels as follows:
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K1 � −9.3504 −0.4311 1.0867 1.1527􏼂 􏼃,

K2 � −9.3754 −0.4321 1.0868 1.1552􏼂 􏼃,

K3 � −9.3750 −0.4309 1.0868 1.1551􏼂 􏼃,

K4 � −9.3501 −0.4299 1.0867 1.1526􏼂 􏼃.

(30)

MATLAB/Simulink was implemented to simulate the
performance of the state feedback fuzzy controller. Figure 4
shows the block diagram of the DIP system.

6. Numerical Simulations

In this section, tracking the effectiveness and balance of the
double inverted pendulum is simulated by the imple-
mentation of the state feedback fuzzy model.

6.1. Results. To verify the suggested state feedback fuzzy
model of the DIP system, simulations were implemented via
Simulink as shown in Figure 4. )e results showed that the
double inverted pendulum can be balanced at the upright
position regardless of the presence or the absence of per-
turbation as shown in Figures 5 and 6. )e DIP system is
incarnated into Matlab/Simulink based on nonlinear dy-
namic formulation (10). )e linearized subsystems are also

T-S
control

u (t) q1

q3

Figure 4: State feedback fuzzy block diagram for the DIP system.
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represented in Simulink based on the obtained data of the
linearized model in equations, as illustrated in Section 5.

6.1.1. Discussion. )e effectiveness of the state feedback
fuzzy controller has been verified by the simulation of the
double inverted pendulum in MATLAB software.

)e injected perturbationw(t) � 2 · sin(2 · π · t) and the
used state feedback fuzzy control effort are shown in Fig-
ures 7 and 8.

As mentioned in Figures 5 and 9, the selected state
feedback fuzzy model brings up the system to the equilib-
rium point in [0, 10] s, without applying a perturbation,
while in Figure 7, the controller with applying perturbation
brings up the system to the equilibrium point in [0, 20] s.

Eventually, the state feedback fuzzy model selected
without perturbation not only ensured the fast response but
also provided good precision of controlling the DIP system.

7. Conclusion

In the present paper, we introduced a nonlinear dynamic
model of a double inverted pendulum. )e modeling of the
DIP system was based on two representations: a mathe-
matical representation by applying the Lagrangian approach
and, at the same time, a graphic illustration using the virtual
reality for drawing the system in MATLAB/Simulink in
order to check the motion of the double inverted pendulum.
A nonlinear model was developed, and a state feedback fuzzy
model was established, so as to achieve good stability of the
system. Finally, results showed the validity of this approach.
In future works, we aim to add two pendulums to the
inverted pendulum in a way to increase the number of
pendulums until arriving to control n pendulums in dif-
ferent equilibrium positions.

8. Limitations

)e major limitation of this system is the nonlinearity
resulting from the integration of more than one arm in the
system and to be controlled by the state feedback fuzzy
approach.

Data Availability
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Individual requests for further information on the study can
be sent to the corresponding author.
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