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Coloring of fuzzy graphs has many real-life applications in combinatorial optimization problems like traffic light system, exam
scheduling, and register allocation. +e coloring of total fuzzy graphs and its applications are well studied. +is manuscript
discusses the description of 2-quasitotal graph for fuzzy graphs. +e proposed concept of 2-quasitotal fuzzy graph is explicated by
several numerical examples. Moreover, some theorems related to the properties of 2-quasitotal fuzzy graphs are stated and proved.
+e results of these theorems are compared with the results obtained from total fuzzy graphs and 1-quasitotal fuzzy graphs.
Furthermore, it defines 2-quasitotal coloring of fuzzy total graphs and which is justified.

1. Introduction

As of its emerging, the graph theory rapidly moved into the
mainstream of mathematics. It has diverse applications in
the fields of science and technology [1, 2]. In 1965, the total
coloring of the graph was introduced by Behazad [3], which
is followed by Harary, who contributed the concept of total
graphs [4]. Jayaraman studied the total chromatic number of
total graphs [5]. Besides, Sastry and Raju defined quasitotal
graphs [6], and Sirnivasarao and Rao introduced 1-quasi-
total graphs and bounds for its total chromatic number [7].
Nowadays, many real-world problems cannot be properly
modeled by a crisp graph theory as the problems contain
uncertain information. +e fuzzy set theory, anticipated by
Zadeh [8], is used to handle the phenomena of uncertainty
and real-life situation. Coloring of fuzzy graphs plays a vital
role in both theory and practical applications. It is mainly
studied in combinatorial optimization problems such as
traffic light control, exam scheduling, and register allocation.

After Zadeh’s paper on fuzzy sets [9], Rosenfeld intro-
duced fuzzy graphs [10]. Later, Bhattacharya [11] gave some
remarks on fuzzy graphs. Some operations on fuzzy graphs
were introduced by Mordeson and Peng [12]. As an ad-
vancement, the fuzzy coloring of the fuzzy graph was defined
by Eslahchi and Onagh in 2004 and later developed by

themselves as fuzzy vertex coloring in 2006 [13]. Lavanay
and Sattanathan extended the concept of fuzzy vertex col-
oring into a family of fuzzy sets [14]. Kavitha [15] defined the
total fuzzy graph and studied the total chromatic number of
total graphs of fuzzy graphs [1]. Kavitha derived fuzzy
chromatic numbers for various graphs of complete fuzzy
graphs [15]. Nevethana studied about fuzzy total coloring
and its chromatic number of complete fuzzy graphs [16].
Sitara and Akram studied fuzzy graph structures and their
applications [17]. +e total coloring of 1-quasitotal graph for
crisp graph was studied. Recently Fekadu and SrinivasaRao
Repalle have established the definition of 1-quasitotal fuzzy
graph and its total coloring [18]. Koam and Akram described
decision making analysis in the real-life applications like
marine crimes and road crimes by using graph structures
[19]. Akram and Sitara introduced the concept of Residue
Product of Fuzzy Graph Structures and studied their
properties [20]. Akram covers both theories and applications
of introduction to m-polar fuzzy graphs and m-polar fuzzy
hypergraphs [21].

+is paper is being organized as follows: In Section 2,
some basic definitions and elementary concepts of the fuzzy
set, fuzzy graph, and coloring of fuzzy graphs have been
reviewed. In Section 3, 2-quasitotal fuzzy graph is defined
and the concept is justified with numerous examples. Section
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4 describes and proves some properties of 2-quasitotal fuzzy
graphs and compares the result with the properties of total
fuzzy graphs and 1-quasitotal fuzzy graphs. Furthermore,
Section 5 introduces the concept of 2-quasitotal fuzzy col-
oring and deliberates some of its properties. Finally, the
paper is concluded in Section 6.

2. Preliminaries

In this section, some basic definitions that are necessary for
this paper have been included. Unless otherwise mentioned,
the concepts are from Mordeson and Nair (see [22]).

Definition 1. Fuzzy Graph
A fuzzy graph is defined as an ordered triple f, where V is

the set of vertices v1, v2, . . . , vn􏼈 􏼉, σ is a fuzzy subset of V,
such that σ: V⟶ [0, 1] and μ are a fuzzy relation on σ with
μ: V⟶ [0, 1] and that μ: V × V⟶ [0, 1] such that.
μ(u, v)≤σ(u)Λ σ(v)∀ u, v ∈ V.

Definition 2. Crisp Graph
+e underlying crisp graph of the fuzzy graph

G � (V, σ, μ) is denoted by G∗ � (V, E), where E⊆V × V.
+e crisp graph (V, E) is a special fuzzy graph G with each
vertex, and each edge of G has the same degree of mem-
bership equal to 1.

Definition 3. Order and Size of Fuzzy Graph
Let G � (V, σ, μ) be a fuzzy graph with the underlying set

V. +en, the order of G denoted by Order (G) is defined as
follows:

Order (G) � 􏽘
u∈V

σ(u), (1)

and the size of G denoted by Size(G) and defined as follows:

Size(u) � 􏽘
u, v∈V

μ(u, v). (2)

Definition 4. Degree of a Vertex.
Let G � (V, σ, μ) be a fuzzy graph. +e degree of a vertex

u ∈ V is defined as follows:

dG(u) � 􏽘
v≠u,v∈V

μ(u, v). (3)

Definition 5. Busy Value of a Vertex.
Let G � (V, σ, μ) be a fuzzy graph. +e busy value of the

vertex v in G is D(v) � 􏽐iσ(v)Λ σ(vi) where vi are
neighbors of v and the busy value of G is D(G) � 􏽐iD(vi)

where vi are the vertexes of G.

Definition 6. Adjacent Vertices
If μ(u, v)> 0, then u and v are said to be adjacent to each

other and lie on the edge, e � (u, v). A path ρ in a fuzzy graph
G � (V, σ, μ) is a sequence of distinct nodes v0, v1, v2, . . . , vn

such that μ(vi−1, vi)> 0, 1≤ i≤ n. Here n is called the length
of the path.

Definition 7 (see [23]). Path in Fuzzy Graph
A path P in a fuzzy graph G � (σ, μ) is a sequence of

distinct vertices u0, u1, . . . , un (except possibly u0 and un )
such that μ(ui−1, ui)> 0, i � 1, 2, . . . , n. Here, n is called the
length of the path.

Definition 8. Connected Vertices
If u, v are vertices in G and if they are connected by

means of a path, then the strength of that path is defined as
∧i�1n μ(vi−1, vi). If u, v are connected by means of paths of
length k, then

μk
(u, v) � sup μ u, v1( 􏼁Λ μ v1, v2( 􏼁Λ μ v2, v3( 􏼁Λ ,􏼈

. . . , Λ μ vk−1, v( 􏼁 : u, v1, v2, . . . , vk−1, v ∈ V􏼉,

(4)

If u, v ∈ V, then, the strength of connectedness between
u and v μ∞(u, v) � sup μk(u, v): k � 1, 2, . . . ,􏼈 􏼉

Definition 9. Connected Fuzzy Graph
Let G � (V, σ, μ) be a fuzzy graph. +en, G is said to be

connected if μ∞(u, v)> 0 for all u, v ∈ σ∗. An arc (u, v) is
said to be a strong arc if μ(u, v)≥ μ∞(u, v) and a node u is
said to be an isolated node, if. μ(u, v) � 0, for all u≠ v.

Definition 10 (see [24]) Cyclic Fuzzy Graph
G � (V, σ, μ) is a fuzzy cycle if and only if (σ∗, μ∗) is a

cycle and there does not exist a unique (x, y) ∈ μ∗ such that
μ(x, y) � Λ μ(u, v): (u, v) ∈ μ∗􏼈 􏼉.

Definition 11 (see [25]). Total Coloring
A family Γ � c1, c2, c3, . . . , ck􏼈 􏼉 of fuzzy sets on V∪E is

called a k− fuzzy total coloring of G � (V, σ, μ), if

(a) Max ci(v)􏼈 􏼉 � σ(v) for all v ∈ V and Max ci(u, v)􏼈 􏼉 �

μ(u, v) for all edges (u, v) ∈ E

(b) ci Λ cj � 0
(c) For every adjacent vertex u, v of G,

Min ci(u), ci(v)􏼈 􏼉 � 0

+e least value of k for which there exists a k− fuzzy
coloring is called the fuzzy total chromatic number of G and
is denoted by χf

T(G).

Definition 12 (see [18]). 1-Quasitotal Fuzzy Graph
Let G � (V, σ, μ) be a fuzzy graph with its underlying set

V and crisp graph G∗ � (σ∗, μ∗). +e pair
Q1Tf(G) � (σQ1Tf

, μQ1Tf
) of the fuzzy graph G is defined as

follows:
Let the node set of Q1Tf(G) be V∪E, where V is the

vertex set and E is the edge set of the underlying crisp graph.
+e fuzzy subset σQ1Tf

is defined on V∪E as follows:

σQ1Tf
(u) � σ(u), if u ∈ V,

σQ1Tf
(e) � μ(e), if e ∈ E.

(5)

+e fuzzy relation μQ1Tf
is defined on (V∪E) × (V∪E),

called edges of Q1Tf(G) as follows:
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μQ1Tf
(u, v) � μ(u, v), if u, v ∈ V

μQ1Tf
ei, ej􏼐 􏼑 � μ ei( 􏼁Λ μ ej􏼐 􏼑, if ei and ej have a node in common between them

� 0, Otherwise.

(6)

By definition, μQ1Tf
(u, v)≤ σQ1Tf

(u)Λ σQ1Tf
(v) for all

u, v ∈ V∪E. Hence, μQ1Tf
is a fuzzy relation on the fuzzy

subset σQ1Tf
. +us, the pair Q1Tf(σQ1Tf

, μQ1Tf
) is a fuzzy

graph, and it is termed as 1-Quasitotal fuzzy graph of G.

3. 2-Quasitotal Fuzzy Graph

+is section introduces the definition of 2-quasitotal fuzzy
graph and sketches the 2-quasitotal fuzzy graph of a given
fuzzy graph.

Definition 13. Let G � (V, σ, μ) be a fuzzy graph with its
underlying set V and crisp graph G∗ � (σ∗, μ∗). +e pair

Q2Tf(G) � (σQ2Tf
, μQ2Tf

) of the fuzzy graph G is defined as
follows:

Let the node set of Q2Tf(G) be the union of the vertex
set and the edge set of the underlying crisp graph. +at is
V∪E.

Let the fuzzy subset σQ2Tf
be defined on V∪E as follows:

σQ2Tf
(u) � σ(u), if u ∈ V,

σQ2Tf
(e) � μ(e), if e ∈ E.

(7)

Let the fuzzy relation μQ2Tf
be defined on

(V∪E) × (V∪E), called edges of Q2Tf(G) as follows:

μQ2Tf
(u, v) � μ(u, v), if u, v ∈ V

μQ2Tf
(u, e) � σ(u)Λ μ(e), if u ∈ V e ∈ E and the node u lies on the edge e

� 0, otherwise.

(8)

By the definition of the fuzzy graph,
μQ2Tf

(u, v)≤ σQ2Tf
(u)Λ σQ2Tf

(v) for all u, v ∈ V∪E. Hence,
μQ2Tf

is a fuzzy relation on the fuzzy subset σQ2Tf
. +erefore,

the pair Q2Tf(σQ2Tf
, μQ2Tf

) is a fuzzy graph, and it is termed
as 2-Quasitotal Fuzzy Graph of G.

Example 1. Let G � (V, σ, μ) be a fuzzy graph with its
underlying crisp graph G∗ � (V, E), where V � v1, v2, v3􏼈 􏼉

and edge set E � v1v2, v2v3, v3v1􏼈 􏼉. Let the fuzzy vertex set
defined on V be as σ: S⟶ [0, 1] such that

σ v1( 􏼁 �
1
3
,

σ v2( 􏼁 �
1
2
,

σ v3( 􏼁 �
1
4
.

(9)

Let the fuzzy relation defined on the fuzzy edge set be as
μ: SXS⟶ [0, 1] such that

μ v1, v2( 􏼁 �
1
3
,

μ v2, v3( 􏼁 �
1
5
,

μ v3, v1( 􏼁 �
1
4
.

(10)

However,

1
3

� μ v1, v2( 􏼁≤ σ v1( 􏼁Λ σ v2( 􏼁 �
1
3
Λ

1
2

�
1
3
,

1
5

� μ v2, v3( 􏼁≤ σ v2( 􏼁Λ σ v3( 􏼁 �
1
2
Λ

1
4

�
1
4
,

1
4

� μ v3, v1( 􏼁≤ σ v3( 􏼁Λ σ v1( 􏼁 �
1
4
Λ

1
3

�
1
4
.

(11)

+en, we have μ(vi, vj)≤ σ(vi)Λ σ(vj) for all vi, vj ∈ V,
and hence the graph G � (V, σ, μ) is a fuzzy graph and its
graph is as shown in Figure 1.

Now, let us construct the 2-quasitotal fuzzy graph of the
fuzzy graph in Example 1 as follows.

+at is, Q2Tf(σQ2Tf
, μQ2Tf

) of the fuzzy graph G, where
the node set of Q2Tf is V∪E, which is the set
v1, v2, v3, v1v2, v2v3, v3v1􏼈 􏼉. Hence, we define the fuzzy subset
δQ2Tf

as follows:

σQ2Tf
(u) � σ(u), if u ∈ V,

σQ2Tf
(e) � μ(e), if e ∈ E.

(12)

+us, we have the following fuzzy subsets σQ2T:
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σQ2Tf
v1( 􏼁 � σ v1( 􏼁 �

1
3
,

σQ2Tf
v2( 􏼁 � σ v2( 􏼁 �

1
2
,

σQ2Tf
v3( 􏼁 � σ v3( 􏼁 �

1
4
,

σQ2Tf
v1v2( 􏼁 � μ v1, v2( 􏼁 �

1
3
,

σQ2Tf
v2v3( 􏼁 � μ v2, v3( 􏼁 �

1
5
,

σQ2Tf
v3v1( 􏼁 � μ v3, v1( 􏼁 �

1
4
.

(13)

+e fuzzy relations μQ2Tf
will be as follows:

μQ2Tf
(u, v) � μ(u, v), if u, v ∈ V

μQ2Tf
(u, e) � σ(u)Λ μ(e), if u ∈ V, e ∈ E and u lies on the edge e

� 0, otherwise.

(14)

Hence,

μQ2Tf
v1, v2( 􏼁 � μ v1, v2( 􏼁 �

1
3
,

μQ2Tf
v2, v3( 􏼁 � μ v2, v3( 􏼁 �

1
5
,

μQ2Tf
v3, v1( 􏼁 � μ v3, v1( 􏼁 �

1
4
,

μQ2Tf
v1, v1v2( 􏼁 � σ v1( 􏼁Λ μ v1, v2( 􏼁 �

1
3
,

μQ2Tf
v1, v3v1( 􏼁 � σ v1( 􏼁Λ μ v3, v1( 􏼁 �

1
4
,

μQ2Tf
v1, v2v3( 􏼁 � 0,

μQ2Tf
v2, v2v3( 􏼁 � σ v2( 􏼁Λ μ v2, v3( 􏼁 �

1
5
,

μQ2Tf
v2, v2v1( 􏼁 � σ v2( 􏼁Λ μ v2, v1( 􏼁 �

1
3
,

μQ2Tf
v2, v3v1( 􏼁 � 0,

μQ2Tf
v3, v3v1( 􏼁 � σ v3( 􏼁Λ μ v3, v1( 􏼁 �

1
4
,

μQ2Tf
v3, v3v2( 􏼁 � σ v3( 􏼁Λ μ v3, v2( 􏼁 �

1
5
,

μQ2Tf
v3, v1v2( 􏼁 � 0.

(15)

However,

1
3

� μQ2Tf
v1, v2( 􏼁≤ σ v1( 􏼁Λ σ v2( 􏼁 �

1
3
,

1
5

� μQ2Tf
v2, v3( 􏼁≤ σ v2( 􏼁Λ σ v3( 􏼁 �

1
4
,

1
4

� μQ2Tf
v3, v1( 􏼁≤ σ v3( 􏼁Λ σ v1( 􏼁 �

1
4
,

1
3

� μQ2Tf
v1, v1v2( 􏼁≤ σ v1( 􏼁Λ μ v1, v2( 􏼁 �

1
3
,

1
4

� μQ2Tf
v1, v3v1,􏼐 􏼑≤ σ v1( 􏼁Λ μ v3, v1( 􏼁 �

1
4
,

1
5

� μQ2Tf
v2, v2v3( 􏼁≤ σ v2( 􏼁Λ μ v2, v3( 􏼁 �

1
5
,

1
3

� μQ2Tf
v2, v2v1( 􏼁≤ σ v2( 􏼁Λ μ v2, v1( 􏼁 �

1
3
,

1
4

� μQ2Tf
v3, v3v1( 􏼁≤ σ v3( 􏼁Λ μ v3, v1( 􏼁 �

1
4
,

1
5

� μQ2Tf
v3, v3v2( 􏼁≤ σ v3( 􏼁Λ μ v3, v2( 􏼁 �

1
5
.

(16)

+us, we conclude that μQ2Tf
(vi, vj)≤ σQ2Tf

(vi)

Λ σQ2Tf
(vj) for all vi, vj ∈ V∪E; thus the graph

Q2Tf(σQ2Tf
, μQ2Tf

) is a fuzzy graph and is called 2-quasitotal
fuzzy graph of the fuzzy graph G in Example 1.

Now, based on the node sets V∪E, fuzzy subsets σQ2Tf
,

and fuzzy relations μQ2Tf
, the 2-quasitotal fuzzy graph of G is

as shown in Figure 2.

Example 2. Consider the following graph G � (V, σ, μ) with
the fuzzy vertex set:

σ(v1) � 1, σ(v2) � 0.75, σ(v3) � 1, σ(v4) � 0.25 and
fuzzy edge set:

μ v1, v2( 􏼁 � 0.5,

μ v2, v3( 􏼁 � 0.5,

μ v3, v4( 􏼁 � 0.25,

μ v4, v1( 􏼁 � 0.25.

(17)

Clearly, μ(vi, vj)≤ σ(vi)Λ σ(vj) for all vi, vj ∈ V, the
graph G � (V, σ, μ) is a fuzzy graph and its graph is as shown
in Figure 3.

Now, the construction of 2-quasitotal fuzzy graph
Q2Tf(σQ2Tf

, μQ2Tf
) of the graph G in Example 2 will be as

follows.

(i) +e node set of σQ2Tf
will be as follows:

V∪E � v1, v2, v3, v4, v1v2, v2v3, v3v4, v4v1􏼈 􏼉. (18)

(ii) +e fuzzy subset σQ2Tf
(G) will be as follows:
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σQ2Tf
(u) � σ(u), if u ∈ V,

σQ2Tf
(e) � μ(e), if e ∈ E.

(19)

Hence,

σQ2Tf
v1( 􏼁 � σ v1( 􏼁 � 1,

σQ2Tf
v2( 􏼁 � σ v2( 􏼁 � 0.75,

σQ2Tf
v3( 􏼁 � σ v3( 􏼁 � 1,

σQ2Tf
v4( 􏼁 � σ v4( 􏼁 � 0.25,

σQ2Tf
v1v2( 􏼁 � μ v1, v2( 􏼁 � 0.5,

σQ2Tf
v2v3( 􏼁 � μ v2, v3( 􏼁 � 0.5,

σQ2Tf
v3v4( 􏼁 � μ v3, v4( 􏼁 � 0.25,

σQ2Tf
v4v1( 􏼁 � μ v4, v1( 􏼁 � 0.25.

(20)

(iii) +e fuzzy relation μQ2Tf
will be as follows:

μQ2Tf
(u, v) � μ(u, v), if u, v ∈ V,

μQ2Tf
(u, e) � σ(u)Λ μ(e), if u lies on the edge of e,

� 0, Otherwise.
(21)

Hence,

μQ2Tf
v1, v2( 􏼁 � μ v1, v2( 􏼁 � 0.5,

μQ2Tf
v2, v3( 􏼁 � μ v2, v3( 􏼁 � 0.5,

μQ2Tf
v3, v4( 􏼁 � μ v3, v4( 􏼁 � 0.25,

μQ2Tf
v4, v1( 􏼁 � μ v4, v1( 􏼁 � 0.25,

μQ2Tf
v1, v1v2( 􏼁 � σ v1( 􏼁Λ μ v1, v2( 􏼁 � 1Λ 0.5 � 0.5,

μQ2Tf
v1, v2v3( 􏼁 � 0,

μQ2Tf
v1, v3v4( 􏼁 � 0,

μQ2Tf
v1, v4v1( 􏼁 � σ v1( 􏼁Λ μ v4, v1( 􏼁 � 1Λ 0.25 � 0.25,

μQ2Tf
v2, v2v3( 􏼁 � σ v2( 􏼁Λ μ v2, v3( 􏼁 � 0.75Λ 0.5 � 0.5,

μQ2Tf
v2, v3v4( 􏼁 � 0,

μQ2Tf
v2, v4v1( 􏼁 � 0,

μQ2Tf
v2, v1v2( 􏼁 � σ v2( 􏼁Λ μ v1, v2( 􏼁 � 0.75Λ 0.5 � 0.5,

μQ2Tf
v3, v3v4( 􏼁 � σ v3( 􏼁Λ μ v3, v4( 􏼁 � 1Λ 0.25 � 0.25,

μQ2Tf
v3, v4v1( 􏼁 � 0,

μQ2Tf
v2, v1v2( 􏼁 � 0,

μQ2Tf
v3, v2v3( 􏼁 � σ v3( 􏼁Λ μ v2, v3( 􏼁 � 1Λ 0.5 � 0.5,

μQ2Tf
v4, v4v1( 􏼁 � σ v4( 􏼁Λ μ v4, v1( 􏼁 � 0.25Λ 0.25 � 0.25,

μQ2Tf
v4, v1v2( 􏼁 � 0,

μQ2Tf
v4, v2v3( 􏼁 � 0,

μQ2Tf
v4, v3v4( 􏼁 � σ v4( 􏼁Λ μ v3, v4( 􏼁 � 0.25Λ 0.25 � 0.25.

(22)

Clearly, μQ2Tf
(vi, vj)≤ σQ2Tf

(vi)Λ σQ2Tf
(vj) for all

vi, vj ∈ V∪E and hence the graph Q2Tf(δQ2Tf
, μQ2Tf

) is a
fuzzy graph and it is a 2-quasitotal fuzzy graph of a graph in
the above Example 2, and its graph is as shown in Figure 4.

4. Properties of 2-Quasitotal Fuzzy Graph

Theorem 1. Let G � (V, σ, μ) be a fuzzy graph. 5en,

Order Q2Tf(G)􏼐 􏼑 � Order(G) + Size(G). (23)

( v3, 1/4)

( v2v3, 1/5)

( v2, 1/2)( v2, 1/2)

( v3v1, 1/4)

( v1v2, 1/3)

Figure 1: Fuzzy graph G.

v1

v2v3

v1v2

v2v3

v3v1

Figure 2: 2-Quasitotal fuzzy graph of G.

(v3v4, 0.25)
(v4, 0.25)

(v4v1, 0.25)

(v1v2, 0.5)
(v1, 1)

(v3, 1)

(v2v3, 0.5)

(v2, 0.75)

Figure 3: Fuzzy graph.G
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Proof. From the definition of 2-quasitotal fuzzy graph, we
have the node set of Q2Tf(G) as VUE and the fuzzy subset
σQ2Tf

(u) � σ(u), if u ∈ V and σQ2Tf
(e) � μ(e), if e ∈ E.

Now,

Order Q2Tf(G)􏼐 􏼑 � 􏽘
u∈V∪E

σQ2Tf
(u), (24)

(by the definition of the order of G ).

� 􏽘
u∈V

σQ2Tf
(u) + 􏽘

u∈E
σQ2Tf

(u) � 􏽘
u∈V

σ(u)

+ 􏽘
u∈E

σ(u), by definition of σQ2Tf
(u),

� Order(G) + Size(G),

Order Q2Tf(G)􏼐 􏼑 � Order(G) + Size(G).

(25)
□

Note 1. For any fuzzy graph, G � (V, σ, μ),

(1) Order(T(G)) � Order(G) + Size(G), where T(G) is
the total fuzzy graph of G.

(2) Order(Q1Tf(G)) � Order(G) + Size(G), where
Q1Tf(G) is 1-quasitotal fuzzy graph of G:

Order Q2Tf(G)􏼐 􏼑 � Order(G) + Size(G). (26)

(3) Order(T(G)) � Order(Q1Tf(G)) � Order
(Q2Tf(G)) � Order(G) + Size(G).

Theorem 2. Let G � (V, σ, μ) be a fuzzy graph, then

Size Q2Tf(G)􏼐 􏼑 � Size(G) + 􏽘
u∈V,e∈E

(σ(u)Λ μ(e)). (27)

Proof. By the definition of the size of a fuzzy graph, we have
the following:

Size Q2Tf(G)􏼐 􏼑 � 􏽘
u,v∈V∪E

μQ2Tf
(u, v)

� 􏽘
u,v∈V

μQ2Tf
(u, v) + 􏽘

u∈V,e∈E
μQ2Tf

(u, e)

+ 􏽘
ei,ej∈E

μQ2Tf

ei, ej􏼐 􏼑

� 􏽘
u,v∈V

μQ2Tf
(u, v) + 􏽘

u∈V,e∈E
μQ2Tf

(u, e) + 0.

(28)

(+e third summation is zero since there is no fuzzy
relation between ei, ej ∈ E in 2-quasitotal fuzzy graph)

� 􏽘
u,v∈V

μ(u, v) + 􏽘
u∈V,e∈E

μQ2Tf
(u, e),

� 􏽘(u, v) + 􏽘 μ(u, e),

� Size(G) + 􏽘(σ(u)Λ μ(e)),

Size Q2Tf(G)􏼐 􏼑 � Size(G) + 􏽘(σ(u)Λ μ(e)).

(29)

□

Note 2. For any fuzzy graph G � (V, σ, μ),

(1) Size(T(G)) � 3 Size(G) + 􏽐ei,ej∈Eμ(ei)Λ μ(ej),
where T(G) is total fuzzy graph of G

(2) Size(Q1Tf(G)) � Size(G) + 􏽐ei,ej∈Eμ(ei)Λ μ(ej),
where Q1Tf is 1-quasitotal fuzzy graph of G

(3) Size(Q2Tf(G)) � Size(G) + 􏽐 σ(u)Λ μ(e), where
Q2Tf is 2-quasitotal fuzzy graph of G

Theorem 3. Let G � (V, σ, μ) be a fuzzy graph; then,

d Q2Tf(u)􏼐 􏼑 � dG(u) + 􏽘
u∈V,e∈E

(σ(u)Λ μ(e)), if u ∈ V,

� 􏽘
ei∈E,u∈V

μ ei( 􏼁Λ σ(u)( 􏼁, if ei ∈ E.

(30)

Proof. By the definition of the degree of a vertex of a fuzzy
graph, we have the following two cases to prove the
theorem. □

Case 1. Let u ∈ V. +en,

d Q2Tf(G)(u)􏼐 􏼑 � 􏽘
u,v∈V

μQ2Tf(G)
(u, v) + 􏽘

u∈V,e∈E
μQ2Tf(G)

(u, e),

(31)

(where u lies on the edge of e in the second summation)

� 􏽘
u,v∈V

μ(u, v) + 􏽘
u∈V,e∈E

μ(u, e),

� dG(u) + 􏽘
u∈V,e∈E

(σ(u)Λ μ(e)),

d Q2Tf(G)(u)􏼐 􏼑 � dG(u) + 􏽘
u∈V,e∈E

(σ(u)Λ μ(e)).

(32)

v1v2

v4v1

v2v3

v3v4

v2

v1

v4

Figure 4: 2-Quasitotal fuzzy graph of G.
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Case 2. Let ei ∈ E; then,

d Q2Tf(G) ei( 􏼁􏼐 􏼑 � 􏽘
u∈V

μQ2Tf(G)
ei, u( 􏼁 + 􏽘

ej∈E
μQ2Tf(G)

ei, ej􏼐 􏼑

� 􏽘
u∈V

μ ei, u( 􏼁 + 0.

(33)
(+e second summation is zero since there is no fuzzy

relation between ei, ej ∈ E in 2-quasitotal fuzzy graph)

� 􏽘
u∈V

μ ei, u( 􏼁 � 􏽘
u∈V

μ ei( 􏼁Λ σ(u)( 􏼁,

d Q2Tf(G) ei( 􏼁􏼐 􏼑 � 􏽘
u∈V

μ ei( 􏼁Λ σ(u)( 􏼁.
(34)

Note 3. For any fuzzy graph G � (V, σ, μ),

(1) d(TG(u)) � 2dG(u), if u ∈ V, where TG(u) is the
total fuzzy graph of G � busy value of ei inT(G),

if u ∈ E

(2) d(Q1Tf(G)(u)) � dG(u), if u ∈ V � bussy value of ei

inQ1Tf(G), if u ∈ E , and where Q1Tf(G) is 1-qua-
sitotal fuzzy graph of G

(3) d(Q2Tf(u)) � dG(u) + 􏽐u∈V,e∈E(σ(u)Λμ(e)), if u ∈
V � 􏽐u∈V(μ(ei)Λσ(u)) and if ei ∈E and Q2Tf is
2-quasitotal fuzzy graph of G

Theorem 4. 2-quasitotal fuzzy graph of any connected fuzzy
graph is a connected graph.

Proof. Let G � (V, σ, μ) be a fuzzy graph.
+e fuzzy vertex set of Q2Tf(G) consists of V∪E of G.

+e fuzzy relation μQ2Tf(G) is defined only for
μQ2Tf

(u, v), where u, v ∈ V and μQ2Tf
(u, e), where u ∈ V,

e ∈ E and u lies on the edge of E.
Since G is connected and every edge of G is also con-

sidered as a node for Q2Tf(G), there is at least one path that
connects every vertex u and v in Q2Tf(G) and
μ∞Q2Tf

(u, v)≠ 0.
Hence, Q2Tf(G) is a connected fuzzy graph. □

5. 2-Quasitotal Fuzzy Coloring

In this section, we introduce the concept of 2-quasitotal
fuzzy total coloring and discuss some of its properties.

Definition 14. A family Γ � c1, c2, . . . , ck􏼈 􏼉, of a fuzzy set on
V∪E is called a 2-quasi k-fuzzy total coloring of fuzzy graph
G � (V, σ, μ), if the following three conditions are met.

(i) Max ci(v)􏼈 􏼉 � σ(v) for all v ∈ V and Max ci(u, v)􏼈 􏼉 �

μ(u, v), for all edges (u, v) ∈ E.ci Λ cj � 0
(ii) For every adjacent vertex u, v of Q2Tf(G),

Min ci(u), ci(v)􏼈 􏼉 � 0.

+e least number of colors possible is called 2-quasitotal
fuzzy chromatic number of Q2Tf(G) and it is denoted by
χf

Q2
(G).

Example 3. Consider a fuzzy graph G � (V, σ, μ) as shown
in Figure 5.

From the graph, we have the vertex set
V � v1, v2, v3, v4, v5, v6􏼈 􏼉 and edge set E � v1v2, v2v3, v3v4,􏼈

v4v5, v5v6, v6v1}, whose membership functions can be
expressed as follows from the graph:

σ vi( 􏼁 �

0.2, for i � 1,

0.7, for i � 2,

0.5, for i � 3,

0.4, for i � 4,

0.6, for i � 5,

0.3, for i � 6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ vi, vj􏼐 􏼑 �

0.2, for (i, j) � (1, 2),

0.5, for (i, j) � (2, 3),

0.1, for (i, j) � (3, 4),

0.4, for (i, j) � (4, 5),

0.3, for (i, j) � (5, 6),

0.1, for (i, j) � (6, 1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

+e family of fuzzy sets Γ � c1, c2􏼈 􏼉 on V∪E will be as
follows:

c1 vi( 􏼁 �

0.2, for i � 1,

0.5, for i � 3,

0.6, for i � 5,

0, Otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c2 vi( 􏼁 �

0.7, for i � 2

0.4, for i � 4

0.3, for i � 6

0, Otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1 vi, vj􏼐 􏼑 �

0.2, for (i, j) � (1, 2),

0.1, for (i, j) � (3, 4),

0.3, for (i, j) � (5, 6),

0, Otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c2 vi, vj􏼐 􏼑 �

0.5, for (i, j) � (2, 3),

0.4, for (i, j) � (4, 5),

0.1, for (i, j) � (6, 1),

0, Otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(36)
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To justify that the family of fuzzy sets Γ � c1, c2􏼈 􏼉 defined
as above satisfies the definition of the total coloring of the
fuzzy graph and determines its total chromatic number,
χf

T(G), we use Table 1 to check for the three conditions of the
total coloring of a fuzzy graph.

From Table 1, we observe that the family of the fuzzy set
Γ � c1, c2􏼈 􏼉 satisfies the definition of the total coloring of a
fuzzy graph G. Hence, χf

T(G) � 2.
When we come to our point of concern, we need to

determine the chromatic number of 2-quasitotal fuzzy graph
of the fuzzy graph in Example 3.

Now, to construct a 2-quasitotal fuzzy graph
QQ2Tf

(G) � (V∪E, σQ2Tf
, μQ2Tf

), where. V∪E � v1, v2,􏼈

v3, v4, v5, v6, v1v2, v2v3, v3v4, v4v5, v5v6, v6v1}. +e fuzzy sub-
set of Q2Tf(G) will be as follows:

σQ2Tf
vi( 􏼁 �

0.2, for i � 1,

0.7, for i � 2,

0.5, for i � 3,

0.4, for i � 4,

0.6, for i � 5,

0.3, for i � 6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σQ2Tf
vi, vj􏼐 􏼑 �

0.2, for (i, j) � (1, 2),

0.5, for (i, j) � (2, 3),

0.1, for (i, j) � (3, 4),

0.4, for (i, j) � (4, 5),

0.3, for (i, j) � (5, 6),

0.1, for (i, j) � (6, 1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

+e fuzzy relation will be as follows:

μQ2Tf
vi, vj􏼐 􏼑 �

0.2, for (i, j) � (1, 2),

0.5, for (i, j) � (2, 3),

0.1, for (i, j) � (3, 4),

0.4, for (i, j) � (4, 5),

0.3, for (i, j) � (5, 6),

0.1, for (i, j) � (6, 1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μQ2Tf
vi, vivj􏼐 􏼑 �

0.2, for (i, ij) � (1, 12),

0.1, for (i, ij) � (1, 61),

0.5, for (i, ij) � (2, 23),

0.2, for (i, ij) � (2, 12),

0.1, for (i, ij) � (3, 34),

0.5, for (i, ij) � (3, 23),

0.4, for (i, ij) � (4, 45),

0.4, for (i, ij) � (4, 34),

0.3, for (i, ij) � (5, 56),

0.4, for (i, ij) � (5, 45),

0.1, for (i, ij) � (6, 61),

0.3, for (i, ij) � (6, 56).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

Hence, the 2-quasitotal fuzzy graph
QQ2Tf

(G) � (V∪E, σQ2Tf
, μQ2Tf

) of the fuzzy graph G in
Example 3 is as shown in Figure 6.

Let Γ � c1, c2􏼈 􏼉 be a family of fuzzy subset defined on
V∪E as follows:

(i) For the vertex set:

v1, 0.2

v4, 0.4

v2, 0.7

v5, 0.6 v3, 0.5

v6, 0.3

v2v3, 0.5v5v6, 0.3

v4v5, 0.4

v6v1, 0.1

v3v4, 0.1

v1v2

Figure 5: Fuzzy graph of G.

Table 1: Example of the total coloring of a fuzzy graph
G � (V, σ, μ).

v and e c1 c2 Max. c1 Λ c2 Min.

v1 0.2 0 0.2 0 Min ci(v1), ci(v2)􏼈 􏼉 � 0
v2 0 0.7 0.7 0 Min ci(v2), ci(v3)􏼈 􏼉 � 0
v3 0.5 0 0.5 0 Min ci(v3), ci(v4)􏼈 􏼉 � 0
v4 0 0.4 0.4 0 Min ci(v4), ci(v5)􏼈 􏼉 � 0
v5 0.6 0 0.6 0 Min ci(v5), ci(v6)􏼈 􏼉 � 0
v6 0 0.3 0.3 0 Min ci(v6), ci(v1)􏼈 􏼉 � 0
v1v2 0.2 0 0.2 0
v2v3 0 0.5 0.5 0
v3v4 0.1 0 0.1 0
v4v5 0 0.4 0.4 0
v5v6 0.3 0 0.3 0
v6v1 0 0.1 0.1 0
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c1 vi( 􏼁 �

0.2, for i � 1,

0.5, for i � 3,

0.6, for i � 5,

0, Otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1 vivj􏼐 􏼑 �

0.2, for ij � 12,

0.1, for ij � 34,

0.3, for ij � 56,

0, Otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c2 vi( 􏼁 �

0.7, for i � 2,

0.4, for i � 4,

0.3, for i � 6,

0, Otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c2 vivj􏼐 􏼑 �

0.5, for (i, j) � (2, 3),

0.4, for (i, j) � (4, 5),

0.1, for (i, j) � (6, 1),

0, Otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(39)

(ii) For the edge set:

c1 vi, vj􏼐 􏼑 �

0.2, for (i, j) � (1, 2),

0.1, for (i, j) � (3, 4),

0.3, for (i, j) � (5, 6),

0, Otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1 vi, vivj􏼐 􏼑 �

0.2, for (i, ij) � (1, 12),

0.5, for (i, ij) � (2, 23),

0.1, for (i, ij) � (3, 34),

0.4, for (i, ij) � (4, 45),

0.3, for (i, ij) � (5, 56),

0.1, for (i, ij) � (6, 61),

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2 vivj􏼐 􏼑 �

0.5, for (i, j) � (2, 3),

0.4, for (i, j) � (4, 5),

0.1, for (i, j) � (6, 1),

0, Otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c2 vi, vivj􏼐 􏼑 �

0.1, for (i, ij) � (1, 61),

0.2, for (i, ij) � (2, 12),

0.5, for (i, ij) � (3, 23),

0.4, for (i, ij) � (4, 34),

0.4, for (i, ij) � (5, 45),

0.3, for (i, ij) � (6, 56),

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

Using Table 2 below, we can check whether Γ satisfies the
definition of 2-quasitotal fuzzy coloring of G.

As shown in Table 1, Γ � c1, c2􏼈 􏼉 satisfies the definition
of 2-quasitotal fuzzy coloring of a fuzzy graph G.

+erefore, χf

Q1T(G) � 2.

Figure 6: Total fuzzy graph of fuzzy graph G.

Table 2: Example of 2-quasitotal coloring of a fuzzy graph
G � (V, σ, μ)

v and e c1 c2 Max. c1 Λ c2 Min.

v1 0.2 0 0.2 0 Min ci(v1), ci(v2)􏼈 􏼉 � 0
v2 0 0.7 0.7 0 Min ci(v2), ci(v3)􏼈 􏼉 � 0
v3 0.5 0 0.5 0 Min ci(v3), ci(v4)􏼈 􏼉 � 0
v4 0 0.4 0.4 0 Min ci(v4), ci(v5)􏼈 􏼉 � 0
v5 0.6 0 0.6 0 Min ci(v5), ci(v6)􏼈 􏼉 � 0
v6 0.3 0.3 0 Min ci(v6), ci(v1)􏼈 􏼉 � 0
v1v2 0.2 0 0.2 0 Min ci(v1v2), ci(v2v3)􏼈 􏼉 � 0
v2v3 0 0.5 0.5 0 Min ci(v2v3), ci(v3v4)􏼈 􏼉 � 0
v3v4 0.1 0 0.1 0 Min ci(v3v4), ci(v4v5)􏼈 􏼉 � 0
v4v5 0 0.4 0.4 0 Min ci(v4v5), ci(v5v6)􏼈 􏼉 � 0
v5v6 0.3 0 0.3 0 Min ci(v5v6), ci(v6v1)􏼈 􏼉 � 0
v6v1 0 0.1 0.1 0 Min ci(v6v1), ci(v1v2)􏼈 􏼉 � 0
(v1, v2) 0.2 0 0.2 0
(v2, v3) 0 0.5 0.5 0
(v3, v4) 0.1 0 0.1 0
(v4, v5) 0 0.4 0.4 0
(v5, v6) 0.3 0 0.3 0
(v6, v1) 0 0.1 0.1 0
(v1, v1v2) 0.2 0 0.2 0
(v1, v6v1) 0 0.1 0.1 0
(v2, v2v3) 0.5 0 0.5 0
(v2, v1v2) 0 0.2 0.2 0
(v3, v3v4) 0.4 0 0.4 0
(v3, v2v3) 0 0.5 0.5 0
(v4, v4v5) 0.4 0 0.4 0
(v4, v3v4) 0 0.4 0.4 0
(v5, v5v6) 0.3 0 0.3 0
(v5, v4v5) 0 0.4 0.4 0
(v6, v6v1) 0.1 0 0.1 0
(v6, v5v6) 0 0.3 0.3 0
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Note 4. Unfortunately, χf

Q1T(G) � χf

Q2T(G) � 2 for this ex-
ample and no evidence that it is always true in this
manuscript.

6. Conclusion

+is article has introduced the new concept of 2-quasitotal
fuzzy graph for a given fuzzy graph. +e concept is clearly
explained with the particle examples by giving a fuzzy graph
and its 2-quasitotal fuzzy graph. Some properties of the 2-
quasitotal fuzzy graphs have been proposed and proved.
Further, the theorems and results obtained for 2-quasitotal
fuzzy graphs are compared with the existing properties of
total fuzzy graphs and 1-quasitotal fuzzy graphs. Lastly, it
has been defined 2-quasitotal coloring for a fuzzy graph and
its total coloring is exemplified.
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