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*e main purpose of this paper is to consider the strong law of large numbers for random sets in fuzzy metric space. Since many
years ago, limited theorems have been expressed and proved for fuzzy random variables, but despite the uncertainty in fuzzy
discussions, the nonfuzzy metric space has been used. Given that the fuzzy random variable is defined on the basis of random sets,
in this paper, we generalize the strong law of large numbers for random sets in the fuzzy metric space. *e embedded theorem for
compact convex sets in the fuzzy normed space is the most important tool to prove this generalization. Also, as a result and by
application, we use the strong law of large numbers for random sets in the fuzzy metric space for the bootstrap mean.

1. Introduction

*e study of the theory of random sets started with Robbins
[1, 2]. Kendall [3], Matheron [4], and Fortet and Kambouzia
[5] were among others who studied this field.*emotivation
for studying random sets is both theoretical and practical.
*eoretically, they generalized random variables, random
vectors, and fuzzy random variables. Also, practically, they
depicted geometrical objects in certain models of growth [6].

*e strong law of large numbers (SLLN) for random sets
and fuzzy random variables in the Pompeiu–Hausdorff
metric and the generalized Pompeiu–Hausdorff metric has
been studied since 1982. *ese studies are based on the
embedding theorems, namely, Rådström and Harmender
theorems. Note that because the compact subset in the
Banach space is not a vector space (with respect to Min-
kowski addition) in the Pompeiu–Hausdorff metric, proving
the SLLN is not easy in this space (see [6]).

*e studies in this field began with the Puri and Ralescu
[6] in 1983 for random sets in Banach space (Artstein et al.
[7] in 1975 and Cressie [8] in 1978 also conducted studies on
the SLLN in the Euclidean p-dimensional space). Puri and
Ralescu [9] in 1986 provided a definition of a fuzzy random
variable. In the same year, Kelement et al. [10] established
the SLLN for the fuzzy random variable. Random sets and

fuzzy random variables in the Pompeiu–Hausdorff metric
and generalized Pompeiu–Hausdorff metric (d∞) are not
separable (see [9]). On the other hand, one of the essential
conditions in the SLLN is separability. Also, the previous
studies show that the convergence in the metric d∞ is
stronger than the convergence in the metric d1. In 2002,
Proske et al. [11] studied the SLLN in the d∞ metric.

López et al. [12] introduced simple convex random sets.
At this time, a new approach was begun to express and prove
the SLLN. In this approach, the embedding theorems were
not used. Also, since the metric space for compact sets in d∞
is not separable, to solve this problem, simple random sets
were used. Colubi et al. [13] derived the SLLN for inde-
pendent identically distributed (i.i.d) fuzzy random sets by
the approximation method that was a result of López’s
studies ([12]). Also, Molchanov [14] in the same year
demonstrated the SLLN for the upper semicontinuous
functions with a simpler approach. Li and Ogura [15]
presented the SLLN for independent (not necessarily
identically distributed) fuzzy set-valued random variables
whose base space is a separable Banach space or a Euclidean
space, in the sense of the extended Pompeiu–Hausdorff
metric.

Fu and Zhang [16] obtained some SLLN for arrays of
row-wise independent (not necessarily identically
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distributed) random compact sets and fuzzy random sets
whose underlying spaces are separable Banach spaces. Kim
et al. established [17] two types of the SLLN for fuzzy
random variables taking values on the space of normal and
upper semicontinuous fuzzy sets with compact support in a
separable Banach space.

Probabilistic metric spaces were introduced by Menger
[18] who generalized the theory of metric spaces. In
Menger’s theory, the concept of distance is considered to be
statistical or probabilistic; i.e., he proposed associating a
distribution function with every pair of elements x, y instead
of associating a number. Many research studies have been
done on probabilistic metric spaces in recent years. *e
motivation of introducing the probabilistic metric space is
the fact that in many situations the distance between two
points is inexact rather than a single real number. But when
the uncertainty is due to fuzziness rather than randomness,
as sometimes in the measurement of an ordinary length, it
seems that the concept of a fuzzy metric space is more
suitable. *e concept of fuzzy metric space introduced by
Kramosil andMichalek [19] and George and Veeramani [20]
modified this concept.

Puri and Ralescu [9] provided a definition of a fuzzy
random variable based on random sets. Now, if we want to
use the concept of fuzzy metric space and the SLLN for fuzzy
random variables, it is necessary to consider this concept and
theorem for random sets. To reach this purpose, we prove an
embedding theorem for random sets in fuzzy metric space.
Also, we will introduce the generalization of Lebesgue
dominated convergence theorem, in the case of random sets
in fuzzy metric space.

Efron’s bootstrapping [21] is a resampling scheme that
is used on a variety of estimation problems. Considering
the importance of the SLLN in the bootstrap method, much
has been done in this area by various researchers (see
Athreya [22], Athreya et al. [23]). In this paper, we gen-
eralize the SLLN in the fuzzy metric space for the bootstrap
mean.

In Section 2, some preliminaries and lemmas will be
presented. In Section 3, the generalized Rådström embed-
ding theorem is expressed. In the next section, the Lebesgue
dominated convergence theorem will be generalized. *e
SLLN in fuzzy metric space is stated in Section 5. In Section
6, we use the SLLN in fuzzy metric space for the bootstrap
mean. *e final section is the conclusion.

2. Preliminaries

In this section, at first, we define the t-norm, the new
generalized Hukuhara difference (T-difference), fuzzy
metric space, and fuzzy normed space and give several
lemmas and theorems in this space that will be used in the
next section.

Triangular norms (t-norms for short), introduced by
Schweizer and Sklar [24], play a key role in the theory of
fuzzy metric spaces. Also, a fuzzy subset of X (fuzzy set) is a
function of u: X⟶ [0, 1]. In the following, the definitions
of t-norm, fuzzy metric space, and fuzzy normed space and
its properties are presented.

Definition 1 (see [25]). A t-norm is a binary operation
∗ : [0, 1] × [0, 1]⟶ [0, 1], such that for all a, b, c, d ∈ [0, 1]

the following four axioms are satisfied:

(1) a∗ 1 � a

(2) a∗ b≤ c∗d whenever a≤ c and b≤d

(3) a∗ b � b∗ a

(4) a∗ (b∗ c) � (a∗ b)∗ c

An i-norm ∗ is said to be continuous if it is a continuous
function on [0, 1] × [0, 1].

Let (X, ‖.‖) be a separable normed space. Denote by
K(X) andKc(X) the collection of nonempty compact and
compact convex subsets of X. *e Minkowski addition and
scalar multiplication are defined in Kc(X):

A + B � a + b | a ∈ A, b ∈ B{ },

λA � λa | a ∈ A{ },
(1)

for A, B ∈Kc(X) and λ ∈ R. Note that Kc(X) is not a
vector space but it becomes a complete metric space when
endowed with the Pompeiu–Hausdorff distance. We know
that the Pompeiu–Hausdorff distance is defined as

dH(A, B) � max supa∈Ainfb∈B‖a − b‖, supb∈Binfa∈A‖a − b‖􏼈 􏼉,

(2)

where ‖.‖ denotes the norm inX and A, B ∈Kc(X) [6]. We
use the notation

A � dH(A, 0{ }) � sup a | a ∈ A{ }, (3)

where A ∈Kc(X). From here on throughout the article, dH

is the Pompeiu–Hausdorff metric.
In (1), if λ � − 1, scalar multiplication gives the opposite

− A � (− 1)A � − a | a ∈ A{ } but, in general, A + (− A)≠ 0{ };
i.e., the opposite of A is not the inverse of A in Minkowski
addition (unless A � a{ } is a singleton). Minkowski’s dif-
ference is A − B � A + (− 1)B � a − b | a ∈ A, b ∈ B{ }. *is
fact is that, in general, even if it is true that
(A + C � B + C)⇔A � B, addition/subtraction simplifi-
cation is not valid, i.e., (A + B) − B≠A. To partially over-
come this situation, Hukuhara in [26] introduced the
following H-difference:

A⊖HB � C⇔A � B + C, (4)

and an important property of ⊖H is that A⊖HA � 0{ }. From
an algebraic point of view, the difference of two sets A and B

may be interpreted both in terms of addition as in (4) or in
terms of negative addition; i.e.,

A⊟B � C⇔B � A +(− 1)C, (5)

where (− 1)C is the opposite set of C. Conditions (4) and (5)
are compatible with each other; that is why Stefanini [27]
suggested a generalization of the Hukuhara difference as
follows.

Definition 2 (see [27]). Let A, B ∈Kc(X); we define the
generalized Hukuhara difference (gH-difference) of A and B

as the set C ∈Kc(X) such that
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A⊖g B � C⇔
(i)A � B + C,

(ii)B � A +(− 1)C.
􏼨 (6)

Sometimes, the gH-difference in (6) of A, B ∈Kc(R
n)

does not exist (see [27]).
Stefanini and Bede [28] defined a generalized difference

for compact convex sets, even if the gH-difference A⊖gB

does not exist. *is difference is called the total gH-differ-
ence of A, B (T-difference for short). In the following, we
introduce some preliminary concepts for compact convex
sets which are required to express the T-difference.

Let Sn− 1 � P |P ∈ Rn, ‖P‖ � 1{ } be a unit sphere. *e
support function of A ∈Kc(R

n) is sA: Sn− 1⟶ R defined
by

sA(x) � sup 〈x, a〉 | a ∈ A{ }, ∀x ∈ Sn− 1
, (7)

where (Rn, 〈., .〉) is a (real) Hilbert space with internal
product 〈., .〉 and associated norm 〈x, x〉1/2.

*e gH-difference of A, B ∈Kc(R
n) can be expressed by

the use of the support functions [28]. Consider
A, B ∈Kc(R

n) with C � A⊖gB as defined in (6); let
sA, sB, sC, and s− C be the support functions of A, B, C, and
(− 1)C, respectively. In case (i), we have sA � sB + sC, and in
case (ii), we have sB � sA + s− C. So, for all P ∈ Sn− 1 [28],

sC(P) �
sA(P) − sB(P), incase(i),

s− B(P) − s− A(P), incase(ii).
􏼨 (8)

If A ∈Kc(R
n), then A can be associated with a family of

compact intervals that characterize it. For x ∈ Rn, the
support function sA: Rn⟶ R is defined by

sA(x) � max 〈a, x〉 | a ∈ A{ }. (9)

As a dual for the support function, lA: Rn⟶ R is
defined by

lA(x) � min 〈a, x〉 | a ∈ A{ }. (10)

Also, Stefanini and Bede [28] defined for each P ∈ Rn

the compact intervals

IA(P) � lA(P), sA(P)􏼂 􏼃. (11)

*e following gH-differences for intervals are well de-
fined for all P ∈ Sn− 1:

IA,B(P) � IA(P)⊖gIB(P),

IB,A(P) � IB(P)⊖gIA(P) � − IA,B(P),

IA,B(P) � I
−
A,B(P), I

+
A,B(P)􏽨 􏽩, ∀P ∈ Sn− 1

,

(12)

where

I
−
A,B(P) � min lA(P) − lB(P), sA(P) − sB(P)􏼈 􏼉,

I
+
A,B(P) � max lA(P) − lB(P), sA(P) − sB(P)􏼈 􏼉.

(13)

Definition 3 (see [28]). Let A, B ∈Kc(R
n) and consider the

following family of sets:

D(A, B) � C | C ∈Kc R
n

( 􏼁, A⊆B + C, B⊆A − C􏼈 􏼉

� C | C ∈Kc R
n

( 􏼁, IA,B ⊆ IC􏽮 􏽯,
(14)

where IA,B and IC are the interval-valued functions defined
in (11) and (12), respectively. *e set D(A, B) will be called
the (generic) difference set of the pair (A, B). It is immediate
that D(B, A) � − D(A, B); i.e., C ∈ D(A, B) if and only if
− C ∈ D(B, A).

*e new generalized difference will be defined as an
element of the family D(A, B), by requiring appropriate
additional conditions.

Definition 4 (see [28]). C ∈ D(A, B) is called minimal with
respect to set magnitude (norm-minimal for short) if no
C′ ∈ D(A, B) exists with ‖C′‖< ‖C‖.

*e set of all elements of D(A, B) with the norm-
minimality property will be denoted by Dnorm(A, B). It is
immediate that Dnorm(B, A) � − Dnorm(A, B). Furthermore,
there exists a real number α(A, B)≥ 0, depending only on A

and B, such that

‖C‖ � α(A, B) for allC ∈ Dnorm(A, B). (15)

Clearly, 0≤ α(A, B)≤ ‖A − B‖, because
A − B � D(A, B)a.

Definition 5 (see [28]). Let A, B ∈Kc(R
n) be given. *e

following convex set always exists and is unique

A⊖TB � cl conv ∪ C | C ∈ Dnorm(A, B)􏼈 􏼉( 􏼁, (16)

where cl is the closure of Dnorm(A, B) with respect to convex
unions of its elements. A⊖TB ∈Kc(R

n) has the following
basic properties:

(1) A⊆B + A⊖T B.
(2) B⊆A − A⊖T B.
(3) A⊖T B⊆A − B.
(4) A⊖T B is norm-minimal with respect to D(A, B).
(5) A⊖T B � 0{ } if and only if A � B.
(6) B⊖T A � − (A⊖T B).
(7) If the gH-difference exists, then A⊖gB � A⊖T B.
(8) *e magnitude of A⊖TB coincides with the Pom-

peiu–Hausdorff distance; i.e.,

A⊖TB
����

���� � α(A, B) � dH(A, B). (17)

*e set A⊖TB ∈Kc(R
n) will be called the total gH-

difference of A and B (T-difference for short).

Definition 6 (see [20]). Let X be an arbitrary nonempty set
and ∗ is a continuous t-norm.*e 3-tuple (X, M, ∗ ) is said
to be a fuzzy metric space if M is a fuzzy set on X × X ×

(0,∞) satisfying the following conditions for all x, y, z ∈ X
and t, s> 0:

(1) M(x, y, 0)> 0,∀t> 0
(2) M(x, y, t) � 1,∀t> 0 if and only if x � y
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(3) M(x, y, t) � M(y, x, t)

(4) M(x, y, t)∗M(y, z, s)≤M(x, z, t + s),∀t, s> 0
(5) M(x, y, .): (0,∞)⟶ [0, 1] is continuous

Example 1 (see [20]). Let (X, d) be a metric space. Define
a∗ b � ab or a∗ b � min a, b{ } and ∀x, y ∈ X,

M(x, y, t) �
ktn

ktn + md(x, y)
, k, m, n ∈ R+

. (18)

In this case, (X, M, ∗ ) is a fuzzy metric space. In
particular, if k � n � m � 1, then

M(x, y, t) �
t

t + d(x, y)
, (19)

which is called the standard fuzzy metric induced by metric
d.

Definition 7 (see [20]). A sequence xn􏼈 􏼉 in a fuzzy metric
space (X, M, ∗ ) is a Cauchy sequence if and only if for each
0< ε< 1 and t> 0 there exist n0 ∈ N such that for all n, m≥ n0

M xn, xm, t( 􏼁> 1 − ε. (20)

A fuzzy metric space is said to be complete if and only if
every Cauchy sequence is convergent.

Definition 8 (see [29]). *e 3-tuple (X, N, ∗ ) is said to be a
fuzzy normed space ifX is a vector space, ∗ is a continuous
t-norm, and N is a fuzzy set on X × (0,∞) satisfying the
following conditions for every x, y ∈ X and t, s> 0:

(1) N(x, t)> 0,∀t> 0
(2) N(x, t) � 1if and only if x � 0
(3) N(λx, t) � N(x, t/|λ|),∀λ≠ 0
(4) N(x, t)∗N(y, s)≤N(x + y, t + s),∀t, s> 0
(5) N(x, .): (0,∞)⟶ [0, 1] is continuous
(6) limt⟶∞N(x, t) � 1

Definition 9. Let (X, ‖.‖) be a normed space. Also, addition,
multiplication, distance, norm, and difference are defined in
(1)–(3) and (6), respectively. If A ∈Kc(X), then
NdH

(A, t) � ϕ(‖A‖, t) is a fuzzy norm, where ϕ(., t) is a
decreasing function with respect to ‖.‖. It is called a fuzzy
norm induced by ‖.‖.

It is immediate that (X, NdH
, ∗ ) is a fuzzy normed space

where ∗ is a continuous t-norm.

Example 2 (see [29]). Let (X, ‖.‖) be a normed space.
Suppose that a∗ b � ab or a∗ b � min a, b{ }, and
∀A ∈Kc(X),

NdH
(A, t) �

ktn

ktn + m‖A‖
, k, m, n ∈ R+

, (21)

where ‖A‖ is defined in (3). In this case, (X, NdH
, ∗ ) is a

fuzzy normed space.

Lemma 1. Let (X, NdH
, ∗ ) be a fuzzy normed space and

A, B ∈Kc(X) . If we define

MdH
(A, B, t) � NdH

A⊖T B, t( 􏼁, (22)

3en, MdH
is a fuzzy metric on X, which is called the fuzzy

metric induced by the fuzzy norm NdH
.

Proof. According to Definitions 3 and 4 and Lemma 3 in
[29], it is easy to show that Lemma 1 is established. □

Lemma 2. A fuzzy metric MdH
, which is induced by a fuzzy

norm NdH
, has the following properties for all

A, B, C ∈Kc(X) and every scalar λ≠ 0:

(1) MdH
(A + C, B + C, t) � MdH

(A, B, t)

(2) MdH
(λA, λB, t) � MdH

(A, B, t/|λ|).

Proof. By Lemma 1, Definition 9, and Lemma 4 [29], it is
easy to show that the result is established; for example, for
(2), we have

MdH
(λA, λB, t) � NdH

λA⊖TλB, t( 􏼁 � NdH
A⊖TB, t/|λ|( 􏼁

� MdH
(A, B, t/|λ|).

(23)

□

3. Generalized Rådström Embedding Theorem

Asmentioned in Section 1, the compact subset in the Banach
space is not a vector space (with respect to Minkowski
addition) in the Pompeiu–Hausdorff metric (see [6]). *e
Rådström embedding theorem states that the collection of
nonempty closed bounded and convex subsets of a Banach
space can be embedded in a normed space. *is theorem
enables us to prove the SLLN.

In the following, first, we present the properties of the
fuzzy metric spaceKc(X) in the fuzzy metric MdH

and then
generalize the Rådström embedding theorem.

Theorem 1. Let (X, NdH
, ∗ ) be a fuzzy normed space and

MdH
is fuzzy metric induced by NdH

. Suppose that Kc(X) is
the collection of nonempty compact convex subsets ofX; then,
(Kc(X), MdH

, ∗ ) is a fuzzy metric space.

Proof. By using Definition 9 and T-difference, we show that
for all A, B, C ∈Kc(X), the conditions of Definition 6 are
established as follows:

(1) MdH
(A, B, t) � NdH

(A⊖TB, t)> 0,∀t> 0
(2) A � B if and only if MdH

(A, B, t) � NdH
(A⊖TB, t) �

NdH
( 0{ }, t) � 1

(3) MdH
(A, B, t) � NdH

(A⊖TB, t) � NdH
(B⊖TA, t) �

MdH
(B, A, t)

(4) ∀A, B, C ∈Kc(X) and t, s> 0
≤NdH

(A⊖TB + B⊖TC, t + s)

≤NdH
(A⊖TC, t + s)

4 Advances in Fuzzy Systems



� MdH
(A, C, t + s)

(5) MdH
(A, B, .) � NdH

(A⊖TB, .): (0,∞)⟶ [0, 1] is
continuous

Rådström in [30] showed thatKc(X), a class of compact
convex sets, can be embedded isometrically into normed
space. In the following, we will show that this property is
established also into a fuzzy normed space.

*e spaceKc(X) plays an important role since it can be
embedded isometrically into a fuzzy normed space. Actually,
this theorem generalizes the Rådström embedding theorem
[30] from Kc(X) into a fuzzy normed space. □

Theorem 2. LetX be a separable normed space.3ere exist a
fuzzy normed space χ and a function j: Kc(X)⟶ χ with
the following properties:

(1) MdH
(A, B, t) � MdH

(j(A), j(B), t)

(2) j(A + B) � j(A) + j(B)

(3) j(λA) � λj(A), ∀λ≥ 0

Note that fuzzy normed space χ is not complete in general,
but one can always take the completion of χ, and thus,Kc(X)

is embedded into a fuzzy normed space by j(·).

Proof. Since Kc(X) is a class of compact convex sets in
normed space, for all A, B, C ∈Kc(X) except 3 and 8–10, all
the conditions of the Rådström embedding theorem in [30]
are established. Now, we prove 3 and 8–10 conditions (with
MdH

instead of dH ).
In *eorem 1, we showed that Kc(X) with MdH

is
metrizable. Furthermore, from Lemma 2 in [30], condition 3
is confirmed.

Also, given that MdH
is a decreasing function with re-

spect to dH, from*eorem 2 in [30], 8–10 conditions in MdH

are established. So, there are χ and j: Kc(X)⟶ χ.
Properties 2 and 3 follow from the definitions. □

4. Generalized Lebesgue Convergence Theorem

An important tool in Section 5, which is used to prove the
SLLN for random sets in fuzzy metric space, is the Lebesgue
convergence theorem. In this section, after defining a ran-
dom set, we will generalize this theorem for random sets in
the fuzzy metric space.

Suppose that (Ω,A, P) is a probability space. *e fol-
lowing definitions describe the concept of the random closed
set, random compact, and random compact convex set.

Definition 10 (see [31]). Let C(X) be the family of closed
subsets of X. A map X: Ω⟶ C(X) is called a random
closed set if, for every K ∈K(X), ω: X∩ ​ K≠∅{ } ∈ A.

Definition 11 (see [31]). A random closed set X with almost
everywhere compact values (so that X ∈K(X)a.e.) is called
a random compact set.

*eX-valued random set (i.e., random sets whose values
are compact subsets of X ) is a Borel measurable function
X: Ω⟶K(X).

Definition 12 (see [31]). Let B(X) be Borel σ-algebra.
Random closed sets X1, ..., Xn are said to be independent if

P X1 ∈ A1, ..., Xn ∈ An( 􏼁 � 􏽙
n

i�1
P Xi ∈ Ai( 􏼁, (24)

for all A1, ..., An ∈ B(X).
For more information about this concept, see [31].
A random closed set X in the separable normed spaceX

is called integrably bounded if

‖X‖ � sup ‖x‖ | x ∈ X{ } (25)

has a finite expectation [31]. In other words, EX<∞. *e
expected value of the random set was defined by Aumann
[32] and later by Debreu [33]. *ese definitions were shown
to be equivalent to Byrne [34]. If X is a random compact set,
then EX is defined as

EX � 􏽚

Ω

XdP � 􏽚

Ω

fdP; f ∈ L
1
(Ω,A, P), f(ω) ∈ X(ω) a.e

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(26)

Here, f: Ω⟶ X is a selection of X and Ef denotes the
classical expectation (via the Bochner integral). In general,
EX may be empty, but if EX<∞, then EX ∈K(X)

(Aumann [32], Debreu [33]).
Note that X is a random compact convex set, whenever

X ∈Kc(X). In the following, the random compact convex
set is called a random set for brevity.

In the following, we will introduce the generalized Lebesgue
dominated convergence type theorem in the case of random sets
in fuzzy metric space, which is used in the next section.

*e almost everywhere convergence of random sets is
usually defined with respect to the Pompeiu–Hausdorff
metric as dH(Xn, X)⟶ 0 [31]. It can equally be said
Xn⟶ X a.e. In fuzzy metric MdH

whenever,
MdH

(Xn, X, t)⟶ 1 a.e.

Theorem 3. Let Xk | k≥ 1􏼈 􏼉 and X be random sets with
values in Kc(X) such that E‖Xk‖<∞ and E‖X‖<∞.
Assume that Xk in the fuzzy metric MdH

is convergent a.e. to
X and dH(Xk(ω), 0{ })< h(ω) for all k≥ 1, where h: Ω⟶ R

is integrable. 3en, in the fuzzy metric MdH
,

EXk⟶ EX. (27)

Proof. Using the inequality in Debreu [33], p.366–367, we
have

dH EXk, EX( 􏼁≤EdH Xk, X( 􏼁. (28)

We know that dH(Xk, X) is a random variable, so,
EdH(Xk, X) will be real. *erefore, according to Definition
11 and Lemma 1, we have

MdH
EXk, EX, t( 􏼁≥MEdH

Xk, X, t( 􏼁. (29)

On the other hand, from the hypothesis, since
MdH

(Xk, X, t)⟶ 1 a.e., so, dH(Xk, X)⟶ 0 a.e. By the
triangle inequality, we get
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dH Xk, X( 􏼁≤dH Xk, 0{ }( 􏼁 + dH(X, 0{ })≤ h + dH(X, 0{ }).

(30)

According to the integrability h and X ∈Kc(X),
dH(Xk, X) is integrable. Now, due to the classical Lebesgue
dominated convergence theorem

EdH Xk, X( 􏼁⟶ 0, (31)

therefore

MEdH
Xk, X, t( 􏼁⟶ 1. (32)

Furthermore, from (20), it follows dH(EXk, EX)⟶ 0
a.e. Also, by using (21), we conclude that

MdH
EXk, EX, t( 􏼁⟶ 1. (33)

*is means that (19) holds. □

5. Strong Law of Large Numbers in Fuzzy
Metric Space

In this section, by using the Rådström embedding theorem,
we establish the SLLN for random sets in fuzzy Banach
space. In the following, we first express the definition of the
fuzzy Banach space and then will show that
(Kc(F), MdH

, ∗ ) is a separable fuzzy metric space. In the
last step, the SLLN will be expressed and proved in the fuzzy
Banach space.

Definition 13 (see [29]). *e fuzzy normed space
(F, N, ∗ ) is said to be a fuzzy Banach space wheneverF is
complete with respect to the fuzzy metric induced by a fuzzy
norm.

Theorem 4. Fuzzy metric space (K(F), MdH
, ∗ ) is

separable.

Proof. We know that (K(F), dH) is a separable metric
space [35], and given that the continuous image of a sep-
arable metric space is separable, so, the result is
established. □

Corollary 1. Fuzzy metric space (K(F), MdH
, ∗ ) is sepa-

rable, too.

Theorem 5. Let Xk | k≥ 1􏼈 􏼉 be independent and identically
distributed (i.i.d.) random sets such that X1 is integrable.
3en,

􏽐
n
k�1 Xk

n
⟶ E X1( 􏼁, a.e. (34)

the convergence being in the fuzzy metric MdH
.

Proof. Let j: Kc(F)⟶ χ be the isometry provided by the
Rådström embedding theorem. Since (Kc(F), MdH

, ∗ ) is
separable (Corollary 1), by considering Lemma 1, it is easy to
show that fuzzy normed space χ is separable. *en,
j(Xk) | k≥ 1􏼈 􏼉 are i.i.d. χ-valued random elements, where j is

an isometry. By a standard SLLN in Banach space, it follows
that

1
n

􏽘

n

k�1
j X1( 􏼁⟶ E j X1( 􏼁( 􏼁, a.e. (35)

*e main point now is to show that
E(j(X1)) � j(E(X1)), if X1 is integrable.

Assume first thatX1 is a simple function (for some l); i.e.,

X1 � 􏽘
l

i�1
xiIAi

xi ∈Kc(F), Ai ∈ A. (36)

It is easy to check that E(j(X1)) � j(E(X1)) in this case.
To prove this, due to *eorem 1, we see that

E j X1( 􏼁( 􏼁 � E j 􏽘
l

i�1
xiIAi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� E 􏽘
l

i�1
j xi( 􏼁IAi

⎛⎝ ⎞⎠

� 􏽘
l

i�1
j xi( 􏼁P Ai( 􏼁

� j 􏽘
l

i�1
xi( 􏼁P Ai( 􏼁⎛⎝ ⎞⎠

� jE 􏽘
l

i�1
xi( 􏼁IAi

⎛⎝ ⎞⎠

� j E X1( 􏼁( 􏼁.

(37)

Since X1 is measurable, there exists a sequence of simple
functions Sm with Sm⟶ X1 a.e. in the fuzzy metric MdH

.
Also from the continuity of MdH

, a.e.

MdH
Sm, 0{ }, t( 􏼁⟶MdH

X1, 0{ }, t( 􏼁. (38)

We now consider the truncated random sets tm as fol-
lows (m⟶∞):

tm(ω) �

Sm(ω), MdH
Sm(ω)( 􏼁, 0{ }, t≥MdH

X1(ω), 0{ },
t

2
􏼒 􏼓,

0{ }, o.w.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(39)

Note that tm are simple functions. It is easy to see in fuzzy
metric MdH

that tm⟶ X1 a.e. and that

MdH
tm(ω), 0{ }, t( 􏼁≥MdH

X1(ω), 0{ },
t

2
􏼒 􏼓. (40)

*e hypotheses of *eorem 4 are satisfied, because
tm⟶ X1, so E(tm)⟶ E(X1). *erefore, in χ,

j E tm( 􏼁( 􏼁⟶ j E X1( 􏼁( 􏼁. (41)

It is easy to see that j(tm)⟶ j(X1) and, from prop-
erties of the Bochner integral, that E(j(tm))⟶ E(j(X1)).

Since j(E(tm)) � E(j(tm)), it follows that
j(E(X1)) � E(j(X1)). *erefore,
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MdH

1
n

􏽘

n

k�1
j Xk( 􏼁⊖gj E X1( 􏼁( 􏼁, 0{ }, t⎛⎝ ⎞⎠⟶ 1, a.e. (42)

From the properties of j, it follows that

MdH

1
n

􏽘

n

k�1
XkE X1( 􏼁t⎛⎝ ⎞⎠⟶ 0, a.e. (43)

□

6. Bootstrap Mean in Fuzzy Metric Space

*e bootstrap method introduced in Efron [21] is a very
general resampling procedure for estimating the distribu-
tions of statistics based on independent observations.
Athreya [22] provided strong Law for the Bootstrap and
Athreya et al. [23] established laws of large numbers for
bootstrapped U-statistics. Also, Csrgo [36] presented the
weak and strong law of large numbers for bootstrap sample
means under minimal moment conditions. In this section,
we want to generalize the SLLN in fuzzy metric space for the
bootstrap mean.

Let Xk | k≥ 1􏼈 􏼉 be an infinite sequence of i.i.d. random
sets defined on a probability space (Ω,A, P) and X1 is
integrable. For each n � 1, 2, ..., let Yn,1, Yn,2, ..., Yn,m(n) be the
ordinary Efron bootstrap sample of size m(n) where
m(n){ } is a sequence of positive integers. *e variables

Yn,1, Yn,2, ..., Yn,m(n) result from sampling m times the
sequence X1, X2, ..., Xn􏼈 􏼉 with replacement such that at
each stage any one element has a probability 1/n to be
picked [36].

Suppose that X
∗
n is the bootstrap sample mean where

X
∗
n �

1
m(n)

􏽘

m(n)

i�1
Yn,i. (44)

Puri and Ralescu [35] provided limit theorems for
random compact sets in Banach space. In fact, they showed
that

dH

1
n

􏽘

n

i�1
XiE X1( 􏼁⎛⎝ ⎞⎠⟶ 0, a.e. (45)

Now, if we apply this theorem for bootstrap mean, then
we have

dH

1
m(n)

􏽘

m(n)

i�1
Yn,iE X1( 􏼁⎛⎝ ⎞⎠⟶ 0, a.e. (46)

Sometimes, the expert’s opinion may be important in
determining the magnitude or smallness of the distance. In
this case, the use of the SLLN in fuzzy metric space (stated in
Section 5) is more appropriate. By specifying the value of t,
the expert can apply his opinion on the distance between two
values. In the following, we will illustrate with an example
that the bootstrap SLLN in fuzzy metric space is established.
In other words,

MdH

1
m(n)

􏽘

m(n)

i�1
Yn,iE X1( 􏼁, t⎛⎝ ⎞⎠⟶ 1, a.e. (47)

Example 3. *e probability that someone in time A1 will
sell a piece of property at a profit of range [− 1, − 0.6]

thousand dollars is 0.2, the probability that he in time A2
will sell it at a profit of range [− 0.5, 0.5] thousand dollars
is 0.25, the probability that in time A3 the sale profit is in
the range of [1.25, 1.75] is equal to 0.25, the probability
that in time A4 the sale profit is in the range of [1.8, 2.4]

is equal to 0.15, and the probability that he in time A5
will profit of range [2.5, 3.5] is 0.15. What is his expected
profit?

Here, we denote the random set with G(ω):

G(ω) �

[− 1, − 0.6], ω ∈ A1,

[− 0.5, 0.5], ω ∈ A2,

[1.25, 1.75], ω ∈ A3,

[1.8, 2.4], ω ∈ A4,

[2.5, 3.5], ω ∈ A5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

*en, for each random set, the Aumann integral (19) is
denoted by E[G] and is equal to

E(G) � 􏽚
Ω

GdP � 􏽚
A1

fdP + ... + 􏽚
A5

fdP; f ∈ L
1
(Ω,A, P), f(ω) ∈ G(ω), a.e􏼨 􏼩 � [0.6325, 1.3275]. (49)

Suppose that the following data are a random sample
from the population:

[1.25, 1.75], [− 1, − 0.6], [− 0.5, 0.5], [1.8, 2.4],

[− 0.5, 0.5], [2.5, 3.5], [− 0.5, 0.5], [1.25, 1.75], [2.5, 3.5], [− 1, − 0.6]
􏼨 􏼩. (50)

Now, we generate 1000 samples by using the bootstrap
method. In the next step, we calculate themean of every 1000
samples. To show better convergence, we compute the mean
of the bootstrap method for the number of different

iterations with ten steps in the interval from 1 to 1000. In
other words, we calculate the mean value in steps 10, 20, ...,
1000 and display it on the chart. *ese values are shown in
Figure 1.
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As we can see in Figure 1, when m(n)⟶∞ and t � 5,
the expectation of the random set tends to the sample mean
by using the bootstrap method in the fuzzy metric. In other
words,

MdH

1
m(n)

􏽘

m(n)

i�1
Yn,iE X1( 􏼁, t⎛⎝ ⎞⎠⟶ 1, a.e. (51)

Also, the effect of value t on the behavior of MdH
and

convergence rate can be seen in Figure 2. In fact, using a low
value of t reduces the value of MdH

to 0 too quickly as the
Pompeiu–Hausdorff distance increases. On the other hand,
if a high value is used, the value of MdH

decreases too slowly
(Figure 2). *e expert’s opinion is important in determining
the appropriate value of t.
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Figure 1: MdH
when m(n)⟶∞ and t � 5.
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Figure 2: Behavior of MdH
when m(n)⟶∞ for different values of t (t � 10, t � 20, t � 50, t � 100).
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7. Conclusion

When the uncertainty is fuzziness, as sometimes in the
measurement of an ordinary length, the concept of a fuzzy
metric space is more suitable. Since the fuzzy random
variable is defined on the basis of a random set, the SLLN for
random sets in fuzzy metric space assists us in expressing
this theorem for fuzzy random variables in a fuzzy metric
space. *erefore, we have presented a new theorem for the
study of the SLLN for random sets in fuzzy metric spaces in
the sense of George and Veeramani [20]. Also, we gener-
alized the Rådström embedding theorem and Lebesgue
dominated convergence that are important tools to prove
these theorems. In fact, this article can provide the condi-
tions for the expression of limit theorems for fuzzy random
variables in fuzzy metric space. As an application of the
SLLN for random sets in fuzzy metric space, we show that
1/m(n) 􏽐

m(n)
i�1 Yn,i tends to E(X1) in fuzzy metric space for

bootstrap method. In fact, when an expert’s opinion is
important in determining distance, the value of t in fuzzy
metric becomes significant.
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