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In this article, we propose fuzzy soft models for decisionmaking in the haze pollutionmanagement.)emain aims of this research
are (i) to provide a haze warning system based on real-time atmospheric data and (ii) to identify themost hazardous location of the
study area. PM10 is used as the severity index of the problem. )e efficiency of the model is justified by the prediction accuracy
ratio based on the real data from 1st January 2016 to 31st May 2016.)e fuzzy soft theory is modified in order to makemodels more
suitable for the problems. )e results show that our fuzzy models improve the prediction accuracy ratio compared to the
prediction based on PM10 density only. )is work illustrates a fuzzy analysis that has the capability to simulate the unknown
relations between a set of atmospheric and environmental parameters. )e study area covers eight provinces in the northern
region of)ailand, where the problem severely occurs every year during the dry season. Seven principle parameters are considered
in the model, which are PM10 density, air pressure, relative humidity, wind speed, rainfall, temperature, and topography.

1. Introduction

Pollution problems are inevitably a global concern of the 21st
century. Over the past decade, polluted haze has become a
major problem in the northern region of )ailand and
surrounded countries. InMarch 2019, the problem reached a
crisis when the daily average PM2.5 and PM10 (particulate
matter of 2.5 microns and 10 microns in diameter or
smaller) density rates were well beyond the national stan-
dard of 25 μg/m3 and 50 μg/m3 for several days according to
local environmental data sources such as Pollution Control
Department [1], Climate Change Data Centre of ChiangMai
University [2], and Smoke Haze Integrated Research Unit
[3]. )is situation has occurred every year on dry season,
from January to May, and generally reached its peak in
March. During this period, a large amount of particulate
matters are released into the atmosphere, including carbon
monoxide, carbon dioxide, volatile organic compounds, and
carcinogenic polycyclic aromatic hydrocarbons [4]. )e
main emission source is biomass open burning, such as

forest fires, solid waste burning, and agricultural residue
field burning [5, 6].

)is problem has a significant effect on human health,
local traveling industry, and the economy as a whole, espe-
cially in Chiang Mai province, a popular tourist destination.

)e public health ministry of )ailand has reported an
increase in bronchial asthma and respiratory diseases in
people living in these areas. In addition, these fine particles
contain carcinogenic polycyclic aromatic hydrocarbons that
can induce lung cancer [7]. )e smoke haze episodes also
reduce visibility and cause a variety of environmental effects
which eventually leads to decline in various economic
sectors such as tourism, transportation, and agriculture.)ai
government has launched various policies to get the smoke
haze problem under control. However, the problem still
continues to grow, even with the enforcement of outdoor
burning ban issued by )ai government during February to
April period.

Apparently, the atmospheric parameters and topography
play the key parts of the problem. )e air pollutants are
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trapped near ground level due to the meteorological con-
ditions (e.g., stagnant air), and the basin-like topography
surrounded by high mountain ranges results in restricted
pollution dispersion. Moreover, low rainfall in dry season
also adds on to the severity of the haze problem. For this
reason, the leaching of smoke or dust particles in the air is
low [6]. )ese conditions caused the air pollutants to flow
out difficultly and the particle cannot be easily escaped from
the area. Notably, there are some technologies that mitigate
the pollution problem. However, the costs of devices are
considerably expensive.

Undoubtedly, an efficient warning system would become
a major help in the haze problem management. )e system
will significantly improve public safety and mitigate damage
caused. )e Goddard Earth Observing System Model Ver-
sion 5 (GEOS-5) is currently one of the widely used pollution
prediction models developed by NASA’s research team.

In this article, the potential use of fuzzy soft set theory in
real-time haze warning is investigated.)e main aims of this
research are (i) to provide a haze warning system based on
real-time atmospheric data and (ii) to identify the most
hazardous location of the study area. )e benefits are to
create the awareness for people in the affected area and to
suggest the location to establish pollutionmitigation devices.
Molodtsov [8–10] initiated the concept of soft set theory as a
new mathematical tool for dealing with uncertainties. Soft
set theory has rich potential for applications in several di-
rections, a few of which had been shown by Molodtsov [8].
)e idea of applying fuzzy soft set theory in atmospheric
models is already considered concerning the applications to
air pollution management [11–14] and water management
[15–20]. However, it is believed that air pollution models
may be different for each region due to many several factors
[21, 22]. )erefore, existing models still need to be restudied.
Up to our knowledge, there are only a few prediction models
in the region of study since the main concerns are on the site
of environmental science. )e prediction results from
GEOS-5 model are popular choices to be used as bench-
marks for environmental scientist. )e regional-developed
models include a logistic regression model [23] and Geo-
graphic Information System- (GIS-) based model [24].
)erefore, our model would offer an alternative prediction
model for the haze pollution problem.

)e study location covered eight provinces in the
northern part of )ailand where haze problem has severely
occurred: Mae Hong Son, Chiang Mai, Lamphun, Chiang
Rai, Phayao, Lampang, Phrae, and Nan.)e density of PM10
is used as severity index of the haze pollution level. Addi-
tionally, seven principle parameters are considered in the
model: six are atmospheric parameters—PM10, air pressure,
relative humidity, wind speed, rainfall, and temper-
ature—and the other one is the topographic parameter. All
atmospheric data are obtained from the Pollution Control
Department [1].)e obtained data period is from 1st January
2016 to 31st May 2016.

)e rest of this article is organized as follows. In Section
2, we explain the methodology and present some examples.
In Section 3, we describe the setup of the model, which
includes the study location, the data, and the parameters.

)en, we present our decision-making results and discussion
in Section 4. Finally, the conclusion is given in Section 5.

2. Methodology

2.1. Fuzzy Soft  eory. In this section, we provide useful
notations of soft sets and fuzzy soft sets. Let
U � L1, L2, . . . , Lm􏼈 􏼉 be an initial universal set and let E �

P1, P2, . . . , Pn􏼈 􏼉 be a set of parameters.

Definition 1 (see [8]). Let P(U) denote the power set of U

and A ⊂ E. A pair (F, A) is called a soft set over U, where F

is a mapping given by F : A⟶ P(U).

Example 1. Let the initial universe U � L1, L2, . . . , L8􏼈 􏼉 be
the eight selected provinces in the northern region of
)ailand: Mae Hong Son, Chiang Mai, Lamphun, Chiang
Rai, Phayao, Lampang, Phrae, and Nan. Moreover, let E �

P1, P2, P3, P4􏼈 􏼉 be atmospheric parameters: PM10 density,
air pressure, relative humidity, and wind speed, respectively.
)en, an example of possible soft set is

F P1( 􏼁 � L1, L2, L3􏼈 􏼉,

F P2( 􏼁 � L2, L4, L7, L8􏼈 􏼉,

F P3( 􏼁 � L1, L5, L6, L8􏼈 􏼉,

F P4( 􏼁 � L4, L7􏼈 􏼉.

(1)

Note that each approximation has two parts, predicate p

and approximate value set. For example, the predicate is
PM10 density and the approximate value set is L1, L2, L3􏼈 􏼉

for F(P1). Additionally, the summary information of this
soft set is represented in Table 1.

Definition 2 (see [25]). Let Ψ(U) denote the set of all fuzzy
sets of U and let Ai ⊂ E. A pair (Fi, Ai) is called a fuzzy soft
set over U, where Fi is a mapping given by
Fi : Ai ⟶Ψ(U).

Example 2. We consider the same setup as in Example 1. An
example of a fuzzy soft set is

F P1( 􏼁 �
L1

0.7
􏼒 􏼓,

L2

0.9
􏼒 􏼓,

L3

1
􏼒 􏼓,

L4

0.4
􏼒 􏼓,

L5

0.2
􏼒 􏼓,

L6

0.3
􏼒 􏼓,

L7

0.4
􏼒 􏼓,

L8

0.5
􏼒 􏼓􏼚 􏼛,

F P2( 􏼁 �
L1

0.5
􏼒 􏼓,

L2

0.8
􏼒 􏼓,

L3

0.1
􏼒 􏼓,

L4

1
􏼒 􏼓,

L5

0.2
􏼒 􏼓L5/0,

L6

0.3
􏼒 􏼓,

L7

0.6
􏼒 􏼓,

L8

1
􏼒 􏼓􏼚 􏼛,

F P3( 􏼁 �
L1

0.8
􏼒 􏼓,

L2

0.2
􏼒 􏼓,

L3

0.1
􏼒 􏼓,

L4

0
􏼒 􏼓,

L5

0.9
􏼒 􏼓,

L6

0.7
􏼒 􏼓,

L7

0.2
􏼒 􏼓,

L8

0.8
􏼒 􏼓􏼚 􏼛,

F P4( 􏼁 �
L1

0.2
􏼒 􏼓,

L2

0.4
􏼒 􏼓,

L3

0.4
􏼒 􏼓,

L4

0.7
􏼒 􏼓,

L5

1
􏼒 􏼓,

L6

0.5
􏼒 􏼓,

L7

0.6
􏼒 􏼓,

L8

0.4
􏼒 􏼓􏼚 􏼛.

(2)

Table 2 provides the summary information of this fuzzy
soft set.

Definition 3. For a given fuzzy soft set with a universal set U

and parameter set P, we denote lij as the membership value
of Li in F(Pj).
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Definition 4 (see [25]). For a given fuzzy soft set, the choice
value of Li is defined by

ci � 􏽘

n

j�1
lij. (3)

Definition 5 (see [25]). For a given fuzzy soft set, the
comparison table is the n × n table, in which the entry eij is
the number of parameters for which the membership value
of Li exceeds or equals the membership value of Lj. Both row
and column of the table are labelled by the elements of the
universal set.

Remark 1

(1) Each main diagonal element of a comparison table is
always equal to n.

(2) 0≤ eij ≤ n for all i, j

Definition 6 (see [25])

(i) Impact indicator of Li is the sum of all values on row i

on the comparison table.)is can be calculated by the
following formula:

Ii � 􏽘
n

j�1
eij. (4)

(ii) Divider indicator of Lj is the sum of all values on
column j on the comparison table. )is can be
calculated by the following formula:

Di � 􏽘
n

i�1
eij. (5)

(iii) )e score value of Li is defined as

ci � Ii − Di. (6)

Both values can be used as evaluations in a decision
making. However, according to Kong et al. [26], it is possible
that these values may lead to different decision results.
)erefore, they introduced grey relational grade, a new
evaluation indicator that combines both information of
score values and choice values, to make the decision making
more robust. )e calculation algorithm of grey relational
grade is briefly presented.

Algorithm 1 (see [26]). Decision making based on grey
relational grade.

(1) Input the choice value sequence (c1, c2, . . . , cm) and
the score sequence (s1, s2, . . . , sm) where ci and si

are the choice value and the score value of Li,
respectively.

(2) Calculate grey relational generating values:

ci
′ �

ci − min
i

ci􏼈 􏼉

max
i

ci􏼈 􏼉 − min
i

ci􏼈 􏼉
,

si
′ �

si − min
i

si􏼈 􏼉

max
i

si􏼈 􏼉 − min
i

s{ }
.

(7)

(3) Calculate grey difference information:

cmax′ � max
i

ci
′􏼈 􏼉,

Δci
′ � cmax′ − ci

′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

smax′ � max
i

si
′􏼈 􏼉,

Δsi
′ � smax′ − si

′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

Δmax � max
i
Δci
′,Δsi
′􏼈 􏼉,

Δmin � min
i
Δci
′,Δsi
′􏼈 􏼉.

(8)

(4) Calculate grey relative coefficients:

cc ci( 􏼁 �
Δmin + 0.5Δmax

Δci
′ + 0.5Δmax

,

cs si( 􏼁 �
Δmin + 0.5Δmax

Δsi
′ + 0.5Δmax

.

(9)

Table 1: Tabular presentation of the soft set in Example 1.

Label PM10 density Air pressure Humidity Wind speed
L1 1 0 1 0
L2 1 1 0 0
L3 1 0 0 0
L4 0 1 0 1
L5 0 0 1 0
L6 0 0 1 0
L7 0 1 0 1
L8 0 1 1 0

Table 2: Tabular presentation of the fuzzy soft set in Example 2.

Label PM10 density Air pressure Humidity Wind speed
L1 0.7 0.5 0.8 0.2
L2 0.9 0.8 0.2 0.4
L3 1 0.1 0.1 0.4
L4 0.4 1 0 0.7
L5 0.2 0 0.9 0.1
L6 0.3 0.3 0.7 0.5
L7 0.4 0.6 0.2 0.6
L8 0.5 1 0.8 0.4

Advances in Fuzzy Systems 3



(5) Calculate grey relational grade:

c Li( 􏼁 � 0.5cc ci( 􏼁 + 0.5cs si( 􏼁. (10)

(6) )e decision is Lk if c(Lk) � maxi c(Li)􏼈 􏼉. Optimal
choices may have more than one if there are more
than one element corresponding to the maximum.

Decision making based on score values and choice values
relies on the assumption that the parameters are equally
important. However, in some decision-making problems,
some parameters can be more important than the others.
)erefore, we propose new definitions of choice values and
score values based on weight information. Note that idea of
weighted score value is briefly discussed in Maji et al. [9].

Define a weight w :� (w1, w2, . . . , wn) as weight se-
quence of parameters where wi is the weight associated with
the parameter Pi.

Definition 7. For a given fuzzy soft set and a weight w, the
weighted choice value of Li is defined by

cw,i � 􏽘
n

j�1
wjlij. (11)

Definition 8. For a given fuzzy soft set and a weight w, the
weighted comparison table is the n × n table, in which the
entry eij is calculated by the following formula:

eij � 􏽘
n

i�1
wj1 lik ≥ ljk􏼐 􏼑, (12)

where 1(·) is an indicator function defined by

1(A) �
1, if the statementA is true,

0, otherwise.
􏼨 (13)

In other words, this is the weighted sum of parameters
which the membership value of Li exceeds or equals the
membership value of Lj. Both row and column of the table
are labelled by the elements of the universal set.

Remark 2

(1) Each main diagonal element of a weighted com-
parison table is always equal to the sum 􏽐kwk.

(2) 0≤ eij ≤􏽐kwk for all i, j.

Definition 9

(i) A weighted impact indicator is the impact indicator
that is calculated based on the weighted comparison
table associated with the weight w.

(ii) A weighted divider indicator is the divider indicator
that is calculated based on the weighted comparison
table associated with the weight w.

(iii) )e weighted score values of Li are the score values
that are calculated based on the weighted impact

indicator and weighted divider indicator associated
with the weight w.

Apparently, if w � (1, 1, 1, . . . , 1), the weighted choice
values and the weight score values are equal to the choice
values and the score values defined in Definitions 4 and 6.

Example 3. In a decision-making problem with
U � L1, L2, . . . , L8􏼈 􏼉, E � P1, P2, . . . , P8􏼈 􏼉, define the
weight w � (3, 2, 1, 2, 2, 1, 1, 2). Suppose that a fuzzy soft
set is

F P1( 􏼁 �
L1

0.7
􏼒 􏼓,

L2

0.9
􏼒 􏼓,

L3

1
􏼒 􏼓,

L4

0.4
􏼒 􏼓,

L5

0.2
􏼒 􏼓,

L6

0.3
􏼒 􏼓,

L7

0.4
􏼒 􏼓,

L8

0.5
􏼒 􏼓􏼚 􏼛,

F P2( 􏼁 �
L1

0.5
􏼒 􏼓,

L2

0.8
􏼒 􏼓,

L3

0.1
􏼒 􏼓,

L4

1
􏼒 􏼓,

L5

0
􏼒 􏼓,

L6

0.3
􏼒 􏼓,

L7

0.6
􏼒 􏼓,

L8

1
􏼒 􏼓􏼚 􏼛,

F P3( 􏼁 �
L1

0.8
􏼒 􏼓,

L2

0.2
􏼒 􏼓,

L3

0.1
􏼒 􏼓,

L4

0
􏼒 􏼓,

L5

0.9
􏼒 􏼓,

L6

0.7
􏼒 􏼓,

L7

0.2
􏼒 􏼓,

L8

0.8
􏼒 􏼓􏼚 􏼛,

F P4( 􏼁 �
L1

0.2
􏼒 􏼓,

L2

0.4
􏼒 􏼓,

L3

0.4
􏼒 􏼓,

L4

0.7
􏼒 􏼓,

L5

1
􏼒 􏼓,

L6

0.5
􏼒 􏼓,

L7

0.6
􏼒 􏼓,

L8

0.4
􏼒 􏼓􏼚 􏼛,

F P5( 􏼁 �
L1

0.4
􏼒 􏼓,

L2

0.2
􏼒 􏼓,

L3

0.8
􏼒 􏼓,

L4

0.9
􏼒 􏼓,

L5

0.2
􏼒 􏼓,

L6

0.4
􏼒 􏼓,

L7

0.7
􏼒 􏼓,

L8

0.7
􏼒 􏼓􏼚 􏼛,

F P6( 􏼁 �
L1

0.5
􏼒 􏼓,

L2

0.1
􏼒 􏼓,

L3

0.1
􏼒 􏼓,

L4

0.3
􏼒 􏼓,

L5

0.5
􏼒 􏼓,

L6

0.7
􏼒 􏼓,

L7

1
􏼒 􏼓,

L8

0.5
􏼒 􏼓􏼚 􏼛,

F P7( 􏼁 �
L1

0.5
􏼒 􏼓,

L2

0.5
􏼒 􏼓,

L3

0.4
􏼒 􏼓,

L4

0.8
􏼒 􏼓,

L5

0.2
􏼒 􏼓,

L6

0.4
􏼒 􏼓,

L7

0.2
􏼒 􏼓,

L8

0.7
􏼒 􏼓􏼚 􏼛,

F P8( 􏼁 �
L1

0.75
􏼒 􏼓,

L2

1
􏼒 􏼓,

L3

1
􏼒 􏼓,

L4

0.75
􏼒 􏼓,

L5

0.75
􏼒 􏼓,

L6

0.5
􏼒 􏼓,

L7

0.75
􏼒 􏼓,

L8

0.75
􏼒 􏼓􏼚 􏼛.

(14)

Our aim is to choose the optimum choice according to
the weight w. By Definition 7, the weighted choice value
sequence is (7.6, 8.3, 8.2, 9, 4.3, 6.1, 7.9, 8.7). Next, we
calculate weighted score value. By Definition 8, the weighted
comparison table is shown in Table 3. )en, by Definition 9,
the weighted impact indicator, the weighted divider
indicator, and the weighted score values are shown in
Table 4. )e weighted score value sequence is
(− 1, 13, 18, 31, − 60, − 29, 9, 19). Finally, we make a deci-
sion based on grey relational grade. )e calculation of Al-
gorithm 1 is shown in Table 5. )erefore, L4 is the optimal
choice.

2.2. Particle Swarm Optimization. )e particle swarm op-
timization (PSO) algorithm is a metaheuristic algorithm
based on the concept of swarm intelligence. )e algorithm
was proposed in 1995 by Kennedy and Eberhart [27]. PSO is
metaheuristic as it makes few or no assumptions about the
problem being optimized and can search very large spaces of
candidate solutions. Also, PSO does not use the gradient of
the problem being optimized, which means PSO does not
require that the optimization problem be differentiable as is
required by classic optimization methods such as gradient
descent and quasi-Newton methods. Also, it is capable of
solving complex mathematics problems existing in engi-
neering [28].
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)is method is now available to use in computer
packages such as Matlab or R.

3. Model Construction

3.1. eStudyArea. Our study area is in the northern region
of )ailand, the haze pollution affected area. )e region,
approximately 94,000 km2 in size and six million in pop-
ulation, consists of nine provinces: Mae Hong Son, Chiang
Mai, Lamphun, Chiang Rai, Phayao, Lampang, Phrae, Nan,
and Uttaradit. For this case study, Uttaradit was excluded
since its haze problem was not severe. )e study area is
geographically characterised by several mountain ranges,
which continue from the Shan Hills in bordering Myanmar
to Laos, and the river valleys which cut through them. )e
basins of rivers Ping, Wang, Yom, and Nan run from north
to south. )e basins cut across the mountains of two great
ranges, the )anon )ong Chai Range in the west and the

Phi Pan Nam in the east. All studied provinces lie between
these basins. )e elevations are generally moderate, a little
above 2,000 metres (6,600 ft) for the highest summit. Table 6
provides the geographic information summary of each
province. )e latitudes and longitudes shown are the lo-
cations of meteorology stations where atmospheric data are
collected. )e basin sizes are divided into five categories: no
basin, wide, normal, moderate, and narrow, and we set the
airflow difficulty level of each category to be 0, 1, 2, 3, and 4,
respectively.)e narrow basin implies that the flow of the air
is more difficult. )e location map of study area is shown in
Figure 1.

3.2. eData. )e hourly atmospheric data of PM10 density
(μg/m3, at 3m from ground), air pressure (mmHg, at 2m),
relative humidity (%RH, at 2m), wind speed (m/s at 30m),
rainfall (mm at 3m), and temperature (°C at 2m) from 1st
January 2016 to 31st May 2016 were obtained with autho-
rization from the Pollution Control Department [1]. About
3% of data was missing from the record. )e missing data
were replaced by the same data at the preceding time.
Figure 2 represents the daily fluctuation of PM10 density of
the eight selected locations during the study period. Table 7
represents the summary statistics of PM10 density of the
eight selected locations.

3.3.  e Parameters. Based on environmental research
studies [30–33], the climate and the topography of the study
area play significant roles in the pollution problem.
)erefore, the parameter set consists of seven parameters in
this application, which are PM10 density, air pressure,
relative humidity, wind speed, rainfall, temperature, and
airflow difficulty level. )e first six parameters are atmo-
spheric parameters, while the last parameter is topographic
parameter. Additionally, the effects of each atmospheric
components on the PM10 density, the severity index, can be
categorized into two types; positive and negative. A positive
atmospheric component is the component such that in-
creasing in its value will lead to the increase of the PM10
density, while a negative atmospheric component is the
component such that increasing in its value will lead to the
decrease of the PM10 density. )e parameter information is
summarised in Table 8.

4. Results and Discussion

4.1.HazeWarning System. )e first aim of this research is to
create a warning system based on real-time atmospheric
data. )e system predicts whether the PM10 density will
exceed the crisis level or not in the following 4 hours. Note
that the length of warning period can be adjusted. In this
article, we choose the period of 4 hours since the period of
time is reasonable enough to do some safety mitigation such
as buying protection masks, completing necessary outdoor
activities, or evacuating to public designated safe zones. )e
warnings will be set to be announced at 12 a.m., 4 a.m., 8
p.m., 4 p.m., 8 p.m., and 12 p.m. each day. )e PM10 crisis

Table 5: )e calculation of grey relational grade based on the
weighted choice value sequence and the weighted score value se-
quence in Example 3.

cw,i
′ sw,i

′ Δcw,i Δsw,i ccw
(ci) csw

(s) cw(Li)

L1 0.702 0.648 0.298 0.352 0.627 0.587 0.607
L2 0.851 0.802 0.149 0.198 0.770 0.717 0.744
L3 0.830 0.857 0.170 0.143 0.746 0.778 0.762
L4 1 1 0 0 1 1 1
L5 0 0 1 1 0.333 0.333 0.333
L6 0.383 0.341 0.617 0.659 0.448 0.431 0.439
L7 0.766 0.758 0.234 0.242 0.681 0.674 0.678
L8 0.936 0.868 0.064 0.132 0.887 0.791 0.839

Table 3: )e weighted comparison table in Example 3.

L1 L2 L3 L4 L5 L6 L7 L8

L1 14 5 5 7 13 11 7 6
L2 10 14 9 6 12 8 9 7
L3 9 10 14 6 12 8 8 9
L4 9 8 8 14 12 12 12 9
L5 4 4 2 4 14 3 4 3
L6 5 6 7 2 11 14 2 4
L7 9 6 6 7 13 12 14 7
L8 9 9 7 7 11 12 9 14

Table 4: )e weighted impact indicator, the weighted divider
indicator, and the weighted score values of each choice in Example
3.

Iw,i Dw,i sw,i

L1 68 69 − 1
L2 75 62 13
L3 76 58 18
L4 84 53 31
L5 38 98 − 60
L6 51 80 − 29
L7 74 65 9
L8 78 59 19
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Table 6: Geographic information summary of the study area.

Label Province Latitude Longitude Approximate height above sea level (m) Basin size Airflow difficulty level
L1 Mae Hong Son 19.137805 97.975261 330 Moderate 3
L2 Chiang Mai 18.837539 98.971612 310 Narrow 4
L3 Lamphun 18.657448 99.020208 290 Narrow 4
L4 Chiang Rai 19.932397 99.799329 410 Moderate 3
L5 Phayao 19.211871 100.209360 400 Moderate 3
L6 Lampang 18.278623 99.506985 235 Normal 2
L7 Phrae 19.714564 100.180450 155 Moderate 3
L8 Nan 18.814173 100.781905 250 Normal 2

Figure 1:)e study area: eight selected provinces in the northern region of)ailand.)e figure is obtained from Samphutthanon et al. [29].
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Figure 2: PM10 density rate of the eight selected locations from 1st January 2016 to 31st May 2016.
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level is set at 120 μg/m3 based on )ailand national ambient
air quality standard [34].

4.1.1. Warning System Based on PM10 Density. )e trivial
warning system is a warning that relies on the information of
the PM10 density only. )at is, a warning is signaled when
the PM10 density at current time exceeds a certain threshold
value. )e warning system is generated by Algorithm 2.

Algorithm 2. Haze warning system based on PM10 density.

(1) At the warning time, input PM10 density data of
each location. )e inputted data are the average of
hourly data of the components in the preceding 4
hours.

(2) A warning is signaled if the PM10 density of the
location exceeds the threshold value α.

)e efficiency of the algorithm is evaluated by the ac-
curacy ratio compared to the real data. )e prediction is
counted as accurate if the warning is signaled and the PM10
density in the next 4 hours exceeds 120 μg/m3 or the warning
is not signaled and the PM10 density in the next 4 hours does
not exceed 120 μg/m3. We test the algorithm with
α � 84, 96, 108, 114 and 118 which are, respectively, 70%,
80%, 90%, 95%, and 98% of the crisis level. )e accuracy
ratios of each threshold values are shown in Table 9.)e plot
between the average accuracy ratio of all eight locations and
the threshold values is shown in Figure 3. It can be seen that
the best threshold value for these data is 118 (98% of the
crisis level) with 90.99% accuracy ratio.

4.1.2. Warning System Based on Fuzzy Soft Set with Weighted
Information. To improve the efficiency of the warning

system, the fuzzy soft set with weighted information can be
comprised. Note that the fuzzy soft set without weights is not
suitable for this model. )is is due to the fact that the
importance of the parameters is not the same. For instance,
PM10 density parameter is the most important parameter
than the other parameters for the reason that no haze
problem will occur if the PM10 density amount is low. It
should be noted that the membership values of the atmo-
spheric parameters change in every warning based on the
real-time data, while the topographic parameter remains the
same throughout the time period. Additionally, when the
weighted information is w � (1, 0, . . . , 0), this warning
system turns out to be the warning system based on PM10
density defined in Section 4.1.1.

)e choice values are used in decision making. For this
system, a warning is signaled when the weighted choice
values at current time exceed a certain threshold value.

Our proposed decision making for the warning system
with weighted information is as follows.

Table 7: )e summary statistics of PM10 density of the eight selected locations from 1st January 2016 to 31st May 2016.

Location Min Median Max Average S.D.
L1 4.25 61.75 385.00 76.18 57.86
L2 2.00 66.25 256.50 69.98 37.44
L3 1.00 69.75 225.50 71.11 36.52
L4 3.00 66.38 373.00 75.59 55.01
L5 1.50 67.50 280.00 73.24 47.31
L6 3.50 79.50 206.75 78.14 38.92
L7 8.25 77.50 230.75 77.84 38.35
L8 3.75 64.75 252.50 69.58 42.21
All locations 1.00 69.00 385.00 74.01 44.98

Table 8: Parameter information summary of the haze pollution problem.

Label Parameters Parameter types Effects (for atmospheric parameters)
P1 PM10 density Atmospheric Positive
P2 Air pressure Atmospheric Positive
P3 Relative humidity Atmospheric Positive
P4 Wind speed Atmospheric Negative
P5 Rainfall Atmospheric Negative
P6 Temperature Atmospheric Negative
P7 Airflow difficulty level Topographic N/A

Table 9: )e accuracy ratio of the haze warning system by
Algorithm 3.

Location
)e threshold value α out of 120 μg/m3

70% 80% 90% 95% 98%
L1 80.46 85.84 89.46 90.34 90.89
L2 79.36 86.39 90.12 92.21 92.86
L3 76.29 86.39 91.66 92.32 92.97
L4 78.59 85.07 89.02 88.91 91.88
L5 78.49 85.29 89.02 90.12 89.79
L6 67.29 76.51 84.96 86.39 87.27
L7 69.81 82.11 88.04 90.12 91.22
L8 77.06 83.32 88.14 90.78 91.00
Average 75.92 83.86 88.80 90.15 90.99
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Algorithm 3. Haze warning system based on weighted
choice values.

(1) At the warning time, input the atmospheric data of
each location: PM10 density, air pressure, relative
humidity, wind speed, rain, and temperature. )e
inputted data are the average of hourly data of the
components in the preceding 4 hours. Additionally,
input the weight information w � (w1, w2, . . . , w7).

(2) Calculate the membership values of the parameters
of the fuzzy soft set:

(i) For PM10 density parameter, the membership
values are calculated from

μF(x) �

x

120
, x< 120,

1, x≥ 120,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

where x is the inputted PM10 density data.
(ii) For the other positive atmospheric parameters, the

membership values are calculated from

μF(x) �
x − m

M − m
, (16)

where x is the inputted atmospheric component
data and m and M are the minimum value and the
maximum value of the atmospheric component
during January to May 2016, respectively.

(iii) For negative atmospheric parameters, the mem-
bership values are calculated from

μF(x) �
M − x

M − m
, (17)

where x, m, and M are defined in (ii)
(iv) For the topographic parameters, the membership

values are 0, 0.25, 0.5, 0.75, and 1 when the airflow
difficulty levels are 0, 1, 2, 3, and 4, respectively.

(3) Calculate the weighted choice values according to
the weight information w of each location.

(4) A warning is signaled if the choice values of the
location exceed the threshold value α where
0≤ α≤ 1.

)e flowchart of Algorithm 3 is given in Figure 4.
Clearly, the accuracy ratio of the model depends on the

weight information and the threshold value. )e calculation
examples when weighted information is w1 � (1, 1, 1,1,

1, 1, 1),w2 � (5, 2, 1, 2, 2, 1, 2),w3 � (10, 2, 1, 2, 2, 1, 2),w4 �

(15, 2, 1, 2, 2, 1, 2), and w5 � (20, 2, 1, 2, 2, 1, 2) are shown in
Table 10. In these examples, the threshold value is set to be
90% of the possible maximum values, which depend on the
weight information.

Since the aim of this problem is to find the weight in-
formation and the threshold value that give the best accuracy
ratio, this problem coincides with the optimization problem:

max Average accuracy ratio,

subject to

w1, w2, . . . , w7 are integers

0≤w1 ≤ 30

0≤w2, w3, . . . , w7 ≤ 10

α � 0, 0.01, 0.02, . . . , 0.99, 1.

(18)

By employing the particle swarm optimization method
in Matlab programme, the optimum average accuracy ratio
is 92.12% with the optimum weight (17, 0, 0, 2, 3, 0, 0) and
the optimum threshold α � 0.98. )is optimum result is
shown in Table 11.

4.2. Identification of the Most Hazardous Location. )e
second aim of this research is to identify the location with the
most serious haze pollution problem based on real-time at-
mospheric data.)e location is identified at the same time as the
warning.)e effective prediction will benefit the community in
the affected area and assist the authority to provide safety aids
and prepare helping devices such as mobile air purifier.

4.2.1. Identification of the Most Hazardous Location Based on
PM10 Density. Similar to Section 4.1.1, the simple decision
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Figure 3: )e plot between the average accuracy ratio of the eight selected locations and the threshold values.
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making is to choose a location based on the information of
PM10 density only. )at is, the location with the highest
value of PM10 density at current time is chosen as the most
hazardous location in the following 4 hours.

)e algorithm of the decision making is as follows.

Algorithm 4. Identification of the most hazardous location
based on PM10 density

(1) At the warning time, input PM10 density data of
each location. )e inputted data are the average of
hourly data of the components in the preceding 4
hours.

(2) )e decision is Lk, the location with the maximum
value of PM10 density at current time. Optimal
choices may have more than one if there are more
than one element corresponding to the maximum.

)e efficiency of the algorithm is evaluated by the ac-
curacy ratio compared to the real data. )e prediction is
counted as accurate if the most severe location in the next 4
hours is correctly identified. By making decision based on
Algorithm 4, the average accuracy ratio from eight locations
is 51.15% and Cohen’s kappa index of agreement is 0.4312.

4.2.2. Identification of the Most Hazardous Location Based on
Fuzzy Soft Set with Weighted Information. )e fuzzy soft set
with weighted information can be comprised in order to
improve the efficiency of the decision makings. With a
similar reason to Section 4.1.2, the fuzzy soft set with weight
is more suitable. Note that the membership values of the
atmospheric parameters change in every decision making
based on the real-time data, while the topographic parameter
remains the same throughout the time period. Additionally,
when the weighted information is w � (1, 0, . . . , 0), this
decisionmaking turns out to be the warning system based on
PM10 density defined in Section 4.2.1. It should be em-
phasized that the membership calculation of PM10 density
parameter is different from Algorithm 3. )is is because we
need to make a comparison of location.

Finally, the evaluation of decision making must be
chosen. Note that it can be evaluated based on choice values,
score values, or grey relation grade. In our result, we will use
all three evaluations in order to choose which evaluation
gives the best result.

Our proposed algorithm for decision making of the most
hazardous location based on weighted choice values is as
follows.

Algorithm 5. Identification of the most hazardous location
based on weighted choice values.

(1) At the warning time, input the atmospheric data of
each location: PM10 density, air pressure, relative

Input atmospheric data

No warning signal

No

Calculate weighted choice
values

Calculate membership values of
parameters

Is the weight choice
value more than the

threshold?

Yes Warning signal

Figure 4: Flowchart of Algorithm 3.

Table 10: )e accuracy ratio of the haze warning system by Al-
gorithm 3 with weight information. )e threshold value of each
weight is set to be 90% of the possible maximum.

Location
Weight information

w1 (%) w2 (%) w3 (%) w4 (%) w5 (%)

L 1 83.75 89.13 90.34 90.45 90.34
L 2 91.33 91.33 91.33 91.33 92.97
L 3 91.22 91.22 91.22 93.85 92.97
L 4 85.18 85.18 85.51 88.58 88.80
L 5 84.52 84.52 84.52 84.52 85.40
L 6 85.73 85.73 85.73 85.73 85.73
L 7 87.49 87.49 87.49 87.49 89.79
L 8 89.24 89.24 89.24 89.24 89.13
Average 87.31 87.98 88.17 88.90 89.39

Table 11: )e optimum average accuracy ratio of the haze warning
system based on Algorithm 3.

Location )reshold value α � 0.98
w � (17, 0, 0, 2, 3, 0, 0) (%)

L 1 92.11
L 2 94.08
L 3 93.97
L 4 93.65
L 5 91.56
L 6 88.16
L 7 91.23
L 8 92.22
Average 92.12
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humidity, wind speed, rain, and temperature. )e
inputted data are the average of hourly data of the
components in the preceding 4 hours. Additionally,
input the weight information w � (w1, w2, . . . , w7).

(2) Calculate the membership values of the parameters
of the fuzzy soft set:

(i) For positive atmospheric parameters, the mem-
bership values are calculated from

μF(x) �
x − m

M − m
, (19)

where x is the inputted atmospheric component data
and m and M are the minimum value and the
maximum value of the atmospheric component
during January to May 2016, respectively.

(ii) For negative atmospheric parameters, the mem-
bership values are calculated from

μF(x) �
M − x

M − m
, (20)

where x, m, and M are defined in (i).
(iii) For the topographic parameters, the membership

values are 0, 0.25, 0.5, 0.75, and 1 when the airflow
difficulty levels are 0, 1, 2, 3, and 4, respectively.

(3) Calculate the weighted choice values cw.
(4) )e decision is Lk if cw(Lk) � maxi cw(Li)􏼈 􏼉. Opti-

mal choices may have more than one if there are
more than one element corresponding to the
maximum.

)e flowchart of Algorithm 5 is given in Figure 5.

Remark 3. If the decision making is based on weighted score
values sw or grey relational grades cw, then Step 3 and Step 4
of Algorithm 5 will be changed accordingly.

Clearly, the accuracy ratio of the model depends on the
weight information. Table 12 displays the accuracy ratio of
the location identification by Algorithm 5 where the decision
makings are based on choice values, score values, and grey
relational grades. )e weighted information are w1 �

(1, 1, 1, 1, 1, 1, 1), w2 � (5, 2, 1, 2, 2, 1, 2), w3 � (10, 2, 1,

2, 2, 1, 2), w4 � (15, 2, 1, 2, 2, 1, 2) and w5 � (20, 2,

1, 2, 2, 1, 2).
Since our desire of this problem is to find the weight

information that gives the best accuracy ratio, this is similar
to the optimization problem:

max Average accuracy ratio,

subject to

w1, w2, . . . , w7 are integers

0≤w1 ≤ 30

0≤w2, w3, . . . , w7 ≤ 10.

(21)

By employing the particle swarm optimization method
in Matlab programme, the optimum average accuracy ratio
based on weighted choice values, weighted score values, and

grey relational grades is 56.58%, 57.13%, and 57.02%, re-
spectively. )e summary of the optimum result is shown in
Table 13. Cohen’s kappa of the decision making based on
weighted choice values, weighted score values, and grey
relational grades is 0.4457, 0.4521, and 0.4489, respectively.

4.3. Discussion

4.3.1. Haze Warning System. By introducing the fuzzy soft
model with weighted information, the prediction accuracy
ratio of the warning system is improved slightly from 90.99%
to 92.12% compared to the simple warning system that only
considers the PM10 density. Moreover, it is clear that the
fuzzy soft models with weighted information provide better
prediction than the original (equal weight) fuzzy soft model.
Table 14 shows the parameters’ weights that provide the best
accuracy ratio. Note that the principal parameters are PM10
density, rainfall, and wind speed, respectively, while the
other parameters have no weight. )is suggests that a simple
judgment on the warning can be done by observing only
PM10 density, wind speed, and rainfall. )e problem is
expected to be severe if PM10 density is high, with no wind
and no rain. )is agrees with the principle study in envi-
ronmental science research.

4.3.2. Identification of the Most Hazardous Location. By
selecting the most severe location based on the information
from PM10 density only, the accuracy ratio is 51.12%.
However, this ratio is improved to 57.13% when the loca-
tions are chosen by the fuzzy weight model. )e decision
making is decided by weighted score values. Table 15 shows
the parameters’ weights that provide the best accuracy ratio.

Based on the optimal parameters’ weights, this would
imply the following:

(1) PM10 density is clearly the main factor in the de-
cision making.

(2) )is result shows that topography plays a role in the
haze pollution problem for this region of study.

Input atmospheric data

Calculate membership values of parameters

Calculate weighted choice values or weighted
score values or grey relational grade

The most hazardous locations is chosen based on
the evaluation basis

Figure 5: Flowchart of Algorithm 5.
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(3) Temperature, wind speed, and rainfall are factors in
the model. Unfortunately, these atmospheric pa-
rameters are uncontrollable.

(4) Air pressure and relative humidity have less or no
impact for the prediction model.

)is study analysis agrees with principle study in en-
vironmental science research. It should be emphasized that
the only parameter that can be controlled is PM10 density.
)e activities that contribute to PM10 such as outdoor burn
or car emissions should be disregarded.

4.3.3. Other Discussion. By the results from Sections 4.1 and
4.2, it should be pointed out that a simple warning system
and location identification based on the information of
PM10 density is reasonable enough. By adding the pa-
rameters, the efficiency of the model is improved very
slightly. )is emphasizes the fact that environmental
modeling is complicated. However, since the calculation of
our algorithm is not expensive, Algorithms 3 and 5 should
still be in use to improve the decision-making problem.

For further works, our suggestions are to add the fol-
lowing parameters:

Atmospheric parameters: PM2.5 density, SO2, ozone,
and wind direction.
Topographic parameters: height above sea level of the
location, location of surrounded mountains, and height
of surrounded mountains.
Others parameters: population.

5. Conclusions

In this article, we propose a fuzzy soft model to benefit in the
haze pollution management in northern)ailand. )e main
aims of this research are to provide a haze warning system
based on real-time atmospheric data and to identify the most
hazardous location of the study area. )e study area covers
eight provinces in the northern)ailand, where the problem
severely occurs every year. )e parameters of the fuzzy soft
set include both atmospheric parameters and topographic
parameter. )e membership values of atmospheric pa-
rameters are calculated based on the real-time data. )e

Table 12: )e accuracy ratio of the location identification by Algorithm 5 with weight information.

Decision based
Weight information

w1 (%) w2 (%) w3 (%) w4 (%) w5 (%)

Average accuracy ratio
Choice values 21.18 25.80 33.37 40.40 45.55
Score values 26.56 42.15 48.96 50.49 51.81

Grey relational grades 26.13 37.43 45.99 49.84 51.04

Table 13: )e best accuracy ratio.

Decision based Accuracy ratio (%) Optimal weight
Choice values 56.58 (20, 0, 0, 2, 4, 1, 1)

Score values 57.13 (18, 1, 0, 2, 2, 3, 3)

Grey relational grades 57.02 (23, 1, 0, 2, 2, 3, 2)

Table 14: Parameters and optimum weights for the haze warning system.

Label Parameters Weight Effects (for atmospheric parameters)
P1 PM10 density 17 Positive
P2 Air pressure 0 Positive
P3 Relative humidity 0 Positive
P4 Wind speed 2 Negative
P5 Rainfall 3 Negative
P6 Temperature 0 Negative
P7 Airflow difficulty level 0 N/A

Table 15: Parameters and optimum weights for the identification of the most hazardous location.

Label Parameters Weight Effects (for atmospheric parameters)
P1 PM10 density 18 Positive
P2 Air pressure 1 Positive
P3 Relative humidity 0 Positive
P4 Wind speed 2 Negative
P5 Rainfall 2 Negative
P6 Temperature 3 Negative
P7 Airflow difficulty level 3 N/A
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efficiency of the model is tested with the real data from 1st
January 2016 to 31st May 2016. )e results show that our
fuzzy models improve the prediction accuracy ratio com-
pared to the prediction based on PM10 density only. )e
optimum results and optimum weights are chosen based on
particle swarm optimization. )e meaning of optimum
weights also agrees with the principle study in environ-
mental science research. Another benefit of our model is that
the topographic parameter, which is normally being dis-
regarded from many models, is included. Moreover, our
model would offer an alternative prediction model for the
haze pollution problem in northern )ailand.

)e fuzzy soft set approach in the application to haze
pollution management furnishes very promising prospect
and possibilities. We strongly believe that the efficiency of
the model can be improved when appropriate parameters
are added. )e calculation formula for the membership
values and the severity index can also be adjusted. )e ef-
ficient model will clearly improve the health safety and raise
the life quality of the sufferers.
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