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In this paper, we introduce the concept of L-fuzzy semiprime ideal in a general poset. Characterizations of L-fuzzy semiprime
ideals in posets as well as characterizations of an L-fuzzy semiprime ideal to be L-fuzzy prime ideal are obtained. Also, L-fuzzy
prime ideals in a poset are characterized.

1. Introduction

Fuzzy set theory was introduced by Zadeh in 1965 as an
extension of the classical notion of set theory [1]. In 1971,
Rosenfeld wrote his seminal paper on fuzzy subgroups in [2].
,is paper has provided sufficient motivations for re-
searchers to study the fuzzy subalgebras of different algebraic
structures, like rings, modules, vector-spaces, lattices, and
more recently in MS-algebras, universal algebras, pseudo-
complemented semilattice, and so on (see [3–26]).

Zadeh defined a fuzzy subset of a nonempty set X as a
function from X to unit interval [0, 1] of real numbers.
Goguen in [27] generalized the fuzzy subsets of X, to L-fuzzy
subsets, as a function from X to a lattice L. Swamy and
Swamy [5] initiated that complete lattices satisfying the
infinite meet distributivity are the most appropriate can-
didates to have the truth values of general fuzzy statements.

In the literature, we have found several types of ideals
and filters of a poset which are generalizations of ideals and
filters of a lattice (see [28–33]). Halaś and Rachůnek in [34]
introduced the notions of prime ideals in a poset, and Khart
and Mokbel [35] introduced the concept of a semiprime
ideal in general poset.

In [36, 37], the authors of this paper introduced several
types of L-fuzzy ideals and filters of a partially ordered set
whose truth values are in a complete lattice satisfying the
infinite meet distributive law. In addition, in [38], we have

introduced and presented certain comprehensive results on
the notion of L-fuzzy prime ideals and maximal L-fuzzy
ideals of a poset by applying the general theory of algebraic
fuzzy systems introduced in [39, 40].

Initiated by the above ideas and concepts, in this paper,
we introduce and develop the concepts of L-fuzzy semiprime
ideal in a general partially ordered set. Characterizations of
L-fuzzy semiprime ideals in posets as well as necessary and
sufficient conditions of an L-fuzzy semiprime ideal to be
L-fuzzy prime ideal are observed. Also, by introducing the
concept of a μ-atom element in a poset, we obtain char-
acterizations of L-fuzzy semiprime ideals and L-fuzzy prime
ideals in a poset satisfying the descending chain condition
(DCC).

2. Preliminaries

For the necessary concepts, terminologies, and notations, we
refer to [41, 42].

A pair (Q, ≤ ) is called a partially ordered set or simply a
poset if Q is a nonempty set and “≤ ” is a partial order on Q.
An element x ∈ Q is called a lower bound of S if x≤ s for all
s ∈ S. An upper bound is defined dually. ,e set of all lower
bounds of S is denoted by Sl and the set of all upper bounds
of S, by Su.

By the sets Sul and Slu, we mean Su{ }l and Sl 
u, re-

spectively. For any a, b ∈ Q, the sets a{ }l and a, b{ }
l are
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denoted by al and (a, b)l, respectively. Furthermore, for
subsets S, T of Q, S∪T{ }l is denoted by S, T{ }l and the set
S∪ a{ }{ }l is denoted by S, a{ }l. Similar notations are used for
the set of all upper bounds of subsets of a poset Q.

For any subsets S, T of a poset Q, we note that S⊆ Sul and
S⊆ Slu, and if S⊆T in Q, then Su ⊇Tu and Sl ⊇Tl. In addition,
au{ }l � al and al 

u
� au. An element x0 in Q is called the

greatest lower bound of S or infimum of S, denoted by infS,
if x0 ∈ Sl and x≤ x0∀x ∈ Sl. Dually, we have the concept of
the least upper bound of S or supremum of S which is
denoted by supS.

For x, y ∈ Q, we write x∧y (read as “x meet y ”) in
place of inf x, y  if it exists and x∨y (read as “x join y”) in
place of sup x, y  if it exists. An element q0 in Q is called the
smallest (respectively, the largest) element of a poset Q if
q0 ≤ x (respectively, x≤ q0) for all x ∈ Q. ,e smallest (re-
spectively, the largest) element if it exists in Q is denoted by 0
(respectively, by 1). A poset (Q≤ ) is called bounded if it has
0 and 1.

A poset Q is is said to satisfy the ascending chain
condition (ACC), if every nonempty subset of Q has a
maximal element. Dually, we have the concept of descending
chain condition (DCC) [35].

Definition 1 (see [43]). A poset Q is called distributive if for
all a, b, c ∈ Q,

(a, b)
u
, c 

l
� (a, c)

l
, (b, c)

l
 

ul
. (1)

Definition 2 (see [24]). A subset I of a poset (Q, ≤ ) is called
an ideal in Q if (a, b)ul ⊆ I whenever a, b ∈ I.

Now, we consider the concept of a semiprime ideal
introduced by Khart and Mokbel in a poset and by Rav in a
lattice, as given in the following.

Definition 3 (see [28]). A proper ideal I of a poset Q is called
a semiprime ideal of Q if for all x, y, z ∈ Q, (x, y)l ⊆ I and
(x, z)l ⊆ I imply x, (y, z)u

 
l ⊆ I.

Dually, we have the concept semiprime filter of a poset
Q.

Definition 4 (see [44]). A proper ideal I of a lattice X is
called a semiprime ideal of X if for all x, y, z ∈ X, x∧y ∈ I

and x∧ z ∈ I together imply x∧ (y∨ z) ∈ I.

Dually, we have the concept semiprime filter of a lattice
X.

For an ideal I and an element a in a poset Q, define a set
I : a by

I : a � x ∈ Q : (a, x)
l ⊆ I . (2)

Definition 5 (see [28]). An element i in a poset Q is called an
I-atom with respect to an ideal I of Q if i ∉ I and for any
x ∈ Q with x< i implies x ∈ I.

,roughout this paper, L stands for a complete lattice
satisfying the infinite meet distributive law and Q stands for
a poset with 0.

By an L-fuzzy subset μ of a poset Q, we mean a mapping
from Q into L. We denote the set of L- fuzzy subsets of Q by
LQ. For each α ∈ L and μ ∈ LQ, the α-level subset of μ, which
is denoted by μα, is a subset of Q given by
μα � x : μ(x)≥ α . For fuzzy subsets μ and σ of Q, we write
μ⊆ σ to mean μ(x)≤ σ(x) for all x ∈ Q in the ordering of L.
It can be easily verified that “⊆” is a partial order on the set
LQ and is called the point-wise ordering. We write μ ⊂ σ if
μ⊆ σ and μ≠ σ.

,e following notions and results in this section are from
the authors’ work in [29, 31].

Definition 6. μ ∈ LQ is said to be an L- fuzzy semi-ideal of Q

if μ(0) � 1 and for any a ∈ Q, μ(x)≥ μ(a), for all x ∈ al.

Definition 7. μ ∈ LQ is said to be an L- fuzzy ideal of Q if
μ(0) � 1 and, for any, a, b ∈ Q,

μ(x)≥ μ(a)∧ μ(b), for all x ∈ (a, b)
ul

. (3)

An L-fuzzy ideal μ of Q is called a u-L-fuzzy ideal if, for
any a, b ∈ Q, there exists x ∈ (a, b)u such that μ(x) �

μ(a)∧ μ(b).

Lemma 1. μ ∈ LQ is an L-fuzzy ideal of Q if and only if μα is
an ideal of Q, for all α ∈ L.

Lemma 2. If μ is an L- fuzzy ideal of Q, then μ is anti-tone.
Note that, for any β in L the constant L-fuzzy subset of Q

which maps all elements of Q onto β, is denoted by β.

Definition 8. An L-fuzzy ideal μ of a poset Q is called proper,
if μ≠ 1, where 1 is the largest element in L.

Definition 9. A proper L-fuzzy ideal μ of a poset Q is called
an L-fuzzy prime, if, for any a, b ∈ Q,

inf μ(x) : x ∈ (a, b)
l

  � μ(a), or μ(b). (4)

Definition 10. A proper L-fuzzy ideal μ of a poset Q is said to
be maximal if μ is a maximal element in the set of all proper
L-fuzzy ideals of Q.

3. L-Fuzzy Semiprime Ideals of a Poset

In this section, we introduce and develop the notions of
L-fuzzy semiprime ideal of a poset and give several char-
acterizations of it. We shall begin with its definition.

Definition 11. An L-fuzzy ideal μ of a poset Q is called an
L-fuzzy semiprime ideal if for all a, b, c ∈ Q,

μ(z)≥ inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 , ∀z ∈ a, (b, c)

u
 

l
.

(5)

,e following result characterizes any L-fuzzy semi-
prime ideal of Q in terms of its level subsets.
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Lemma 3. An L-fuzzy ideal μ of Q is an L-fuzzy semiprime
ideal of Q if and only if μα is a semiprime ideal of Q for all
α ∈ L.

Proof. Suppose that μ is an L-fuzzy semiprime ideal and
α ∈ L. ,en, clearly, μα is an ideal of Q. Let a, b, c ∈ Q such
that (a, b)l ⊆ μα and (a, c)l ⊆ μα and z ∈ a, (b, c)u

{ }
l. ,en,

μ(x)≥ α∀x ∈ (a, b)l and μ(y)≥ α∀y ∈ (a, b)l. ,is implies
that

inf μ(x) : x ∈ (a, b)
l

 ≥ α,

inf μ(y) : y ∈ (a, c)
l

 ≥ α.
(6)

,erefore, inf μ(x)∧ μ(y) : x ∈ (a, b)l, y ∈ (a, c)l
 ≥ α.

Since μ is an L-fuzzy semiprime ideal and z ∈ a, (b, c)u
{ }

l, we
have

μ(z)≥ inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 ≥ α. (7)

,is implies that z ∈ μα for all z ∈ a, (b, c)u
{ }

l and hence,
a, (b, c)u

{ }
l ⊆ μα. ,erefore, μα is a semiprime ideal of a poset

Q.
Conversely, suppose that μα is a semiprime ideal of Q for

all α ∈ L. ,en, clearly, μ is an L- fuzzy ideal of Q. Let
a, b, c ∈ Q and put

α � inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 . (8)

,en,

inf μ(x) : x ∈ (a, b)
l

 ≥ α,

inf μ(y) : y ∈ (a, c)
l

 ≥ α.
(9)

,at is, μ(x)≥ α∀x ∈ (a, b)l and μ(y)≥ α∀y ∈ (a, c)l.
,is implies that (a, b)l ⊆ μα and (a, c)l ⊆ μα.,us, since μα is
a semiprime ideal of Q, we have a, (b, c)u

{ }
l ⊆ μα. ,erefore,

μ(z)≥ α � inf μ(x)∧ μ(y) : x ∈ (a, b)lx ∈ (a, c)l
  for all

z ∈ a, (b, c)u
{ }

l, and hence μ is an L-fuzzy semiprime ideal of
Q. □

Corollary 1. A subset I of a poset Q is a semiprime ideal of Q

if and only if its characteristic map χI is an L-fuzzy semiprime
ideal of Q.

Definition 12. An L-fuzzy ideal μ of a lattice Q is called an
L-fuzzy semiprime ideal, if for all a, b, c ∈ Q,

μ(a∧ (b∨ c)) � μ(a∧ b)∧ μ(a∧ c). (10)

Dually, we have the concept of L-fuzzy semiprime filter
of a lattice Q.

Lemma 4. Let μ be an L-fuzzy ideal of Q. 7en, for any
a, b ∈ Q,

inf μ(x) : x ∈ (a, b)
l

  � μ(a∧ b), (11)

whenever a∧ b exists in Q.
,e following theorem shows that an L-fuzzy semiprime

ideal of a poset is a natural generalization of an L-fuzzy
semiprime ideal of a lattice.

Theorem 1. Let (Q, ≤ ) be a lattice. 7en, an L-fuzzy ideal of
Q is an L-fuzzy semiprime ideal in the poset Q if and only if it
is an L-fuzzy semiprime ideal in the lattice Q.

Proof. Let μ be an L-fuzzy semiprime ideal in the poset Q

and a, b, c ∈ Q. ,en, since a∧ (b∨ c) ∈ a, (b, c)u
{ }

l, we have

μ(a∧ (b∨ c))≥ inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 

� inf μ(x) : x ∈ (a, b)
l

 ∧ inf μ(y) : y ∈ (a, c)
l

 

� μ(a∧ b)∧ μ(a∧ c).

(12)

Again, since a∧ b≤ a∧ (b∨ c), a∧ c≤ a∧ (b∨ c) and μ is
antitone, we clearly have

μ(a∧ (b∨ c))≤ μ(a∧ b)∧ μ(a∧ c). (13)

,erefore, μ is an L-fuzzy semiprime ideal in the lattice
Q.

Conversely, suppose that μ is an L-fuzzy semiprime ideal
in the lattice Q. Let a, b, c ∈ Q and z ∈ a, (b, c)u

{ }
l. ,en,

z≤ a and z≤ t, for all t ∈ (a, b)u. Since a∨ b ∈ (a, b)u, we
have z≤ a∨ b. ,is implies that z≤ a∧ (b∨ c) and hence

μ(z)≥ μ(a∧ (b∨ c))

≥ μ(a∧ b)∧ μ(a∧ c)

� inf μ(x) : x ∈ (a, b)
l

 ∧ inf μ(y) : y ∈ (a, c)
l

 

� inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 .

(14)

So, μ is an L-fuzzy semiprime ideal in the poset Q.
,e following result establishes a connection between

L-fuzzy prime ideals and L-fuzzy semiprime ideals of a
poset Q. □

Lemma 5. Every L-fuzzy prime ideal of a poset Q is an
L-fuzzy semiprime ideal.

Proof. Let μ be an L-fuzzy prime ideal of Q. Let a, b, c ∈ Q.
,en since μ is an L-fuzzy prime ideal of Q, we clearly have

inf μ(x) : x ∈ (a, b)
l

  � μ(a),

or μ(b),

inf μ(y) : y ∈ (a, c)
l

  � μ(a),

or μ(c).

(15)

Let z ∈ a, (b, c)u
{ }

l
� al∩(b, c)ul. ,en, z≤ a and

z ∈ (b, c)ul. Now if inf μ(x) : x ∈ (a, b)l
  � μ(a) or

inf μ(y) : y ∈ (a, c)l
  � μ(a), then we have

μ(z)≥ μ(a)≥ inf μ(x) : x ∈ (a, b)
l

 ∧ inf μ(y) : y ∈ (a, c)
l

 

� inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 .

(16)

Again if inf μ(x) : x ∈ (a, b)l
 ≠ μ(a) and inf μ(y) :

y ∈ (a, c)l}≠ μ(a), then we have
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inf μ(x) : x ∈ (a, b)
l

  � μ(b),

inf μ(y) : y ∈ (a, c)
l

  � μ(c).
(17)

Now since z ∈ (b, c)ul and μ is an L-fuzzy ideal, we have

μ(z)≥ μ(b)∧ μ(c) � inf μ(x) : x ∈ (a, b)
l

 ∧ μ(y) : y ∈ (a, c)
l

 

� inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 .

(18)

Hence, in either cases, we have

μ(z)≥ inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 , for all z ∈ a, (b, c)

u
 

l
. (19)

Hence, μ is an L-fuzzy semiprime ideal of Q. □

Remark 1. ,e converse of the above lemma is not true. For
example, consider the poset (Q≤ ) depicted in Figure 1.
Define a fuzzy subset μ : Q⟶ [0, 1] by

μ(0) � 1,

μ(a) � μ(b) � μ(1) � 0.5.
(20)

,en, μ is an L-fuzzy semiprime ideal but not an L-fuzzy
prime ideal of Q. ,is is because a, b ∈ Q and
inf μ(x) : x ∈ (a, b)l

  � μ(0) � 1≠ 0.5 � μ(a) � μ(b).
Now, given an L-fuzzy ideal of a poset Q and any element

in Q, we define the following L-fuzzy subset of Q.

Definition 13. Let μ be an L-fuzzy ideal of Q and x ∈ Q.
Define an L-fuzzy subset μ : x of Q by

(μ : x)(y) � inf μ(z) : z ∈ (x, y)
l

 , for all z ∈ Q. (21)

FromDefinition 9, observe that an L-fuzzy ideal μ of Q is
an L-fuzzy prime ideal if, for any a, b ∈ Q,

(μ : a)(b) � μ(a), or μ(b). (22)

Now, we have the following lemmas.

Lemma 6. Let μ be an L-fuzzy ideal of Q and x ∈ Q. 7en,
μ : x is an L-fuzzy semi-ideal containing μ.

Proof. Now

(μ : x)(0) � inf μ(z) : z ∈ (x, 0)
l

 

� inf μ(z) : z � 0 

� μ(0) � 1.

(23)

,erefore, (μ : x)(0) � 1. Again, let a ∈ Q and y ∈ al. Now

(μ : x)(y) � inf μ(w) : w ∈ (x, y)
l

 

≥ inf μ(w) : w ∈ (x, a)
l

  since(x, y)
l ⊆ (x, a)

l
 

� (μ : x)(a).

(24)

,erefore, μ : x is an L-fuzzy semi-ideal. Again, for all
y ∈ Q, we have

(μ : x)(y) � inf μ(z) : z ∈ (x, y)
l

 ≥ μ(y). (25)

Hence, μ⊆ μ : x.
Note that, for any x, y ∈ Q, observe that

(μ : x)(y) � (μ : y)(x). □

Remark 2. For an L-fuzzy ideal μ of a poset Q μ : x need not
be an L-fuzzy ideal of Q for all x ∈ Q. For example, consider
the poset (Q, ≤ ) depicted in Figure 2.

Define a fuzzy subset μ : Q⟶ [0.1] by

μ(0) � 1,

μ(a) � 0.8,

μ(b) � μ(c) � μ(d) � μ(e) � 0.2.

(26)

,en, μ is an L-fuzzy ideal of Q, and μ : d is a fuzzy subset
of Q given by

(μ : d)(0) � (μ : d)(b) � (μ : d)(c) � 1,

(μ : d)(a) � 0.8,

(μ : d)(d) � (μ : d)(e) � 0.2.

(27)

Observe that e ∈ (a, b)ul but (μ : d)(e) �

0.2≱ 0.8 � (μ : d)(a)∧ (μ : d)(b). ,is implies that μ : d is
not an L-fuzzy ideal of Q.

Lemma 7. Let μ be an L-fuzzy ideal of a poset Q and x ∈ Q.
7en,

(μ : x)α � μα : x, for any α ∈ L. (28)

1

0

a b

Figure 1: An L-fuzzy semi-prime ideal which is not an L -fuzzy
prime ideal of Q.
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Proof. Now, we have

y ∈ (μ : x)α⇔ (μ : x)(y)≥ α

⇔ inf μ(w) : w ∈ (x, y)
l

 ≥ α

⇔ μ(w)≥ α∀w ∈ (x, y)
l

⇔w ∈ μα ∀w ∈ (x, y)
l

⇔ (x, y)
l ⊆ μα

⇔y ∈ μα : x.

Therefore (μ : x)α � μα : x.

(29)

□

Lemma 8. Let μ be an L-fuzzy ideal of a poset Q and x ∈ Q.
7en, the following hold:

(1) inf (μ : x)(y) : y ∈ (a, b)l
  � inf μ(y) : y ∈ (x, a,

b)l}

(2) inf (μ : x)(y) : y ∈ (a, b)ul
  � inf μ(y) : y ∈ x, (a,{

b)u}l}

(3) μ : x � 1 if and only if μ(x) � 1

Proof

(1) Put A � μ(y) : y ∈ (x, a, b)l
  and B � (μ : x)(y) : y

∈ (a, b)l}. Now we claim that infA � infB. Let
α � infA. ,en,

α≤μ(y), ∀y ∈ (x, a, b)
l⟹(x, a, b)

l ⊆μα

⟹(a, b)
l ⊆μα : x �(μ : x)α

⟹(μ : x)(y)≥α, ∀y ∈ (a, b)
l

⟹ inf (μ : x)(y) : y ∈ (a, b)
l

 ≥α.

⟹ infB≥ infA.

(30)

To prove the other side of the inequality, let β � infB.
,en,

β≤(μ : x)(y), ∀y ∈ (a, b)
l⟹(a, b)

l ⊆(μ : x)β � μβ : x

⟹(x, a, b)
l ⊆μβ

⟹ μ(y)≥β, ∀y ∈ (x, a, b)
l

⟹ inf μ(y) : y ∈ (x, a, b)
l

 ≥β

⟹ infA≥ infB.

(31)

Hence, the claim is true.
(2) ,e proof is similar to 1.
(3) Suppose μ : x � 1. ,en, (μ : x)(y) � 1, for all y ∈ Q.

,us, in particular, (μ : x)(x) � 1:

now (μ : x)(x) � 1⇒inf μ(y) : y ∈ (x, x)
l

  � 1

⇒μ(y) � 1, ∀y ∈ (x, x)
l

⇒μ(x) � 1 . . . sincex ∈ (x, x)
l

 .

(32)

Conversely suppose that μ(x) � 1. Now since, for any
y ∈ Q, (μ : x)(y) � inf μ(z) : z ∈ (x, y)l

 ≥ μ(x) � 1, we
have (μ : x)(y) � 1 for all y ∈ Q. ,erefore, μ : x � 1.

Now, we present a characterization of an L-fuzzy
semiprime ideal of a poset Q in terms of μ : x where μ is an
L-fuzzy ideal of Q and x ∈ Q. □

Theorem 2. An L-fuzzy ideal μ of a poset Q is an L-fuzzy
semiprime ideal if and only if μ : x is an L-fuzzy ideal for all
x ∈ Q, in fact, an L-fuzzy semiprime ideal for all x ∈ Q.

Proof. Let μ be an L-fuzzy semiprime ideal of Q and x ∈ Q.
First, let us show that μ : x is an L-fuzzy ideal of Q. Since
(μ : x)(0) � inf μ(y) : y ∈ (x, 0)l

  � μ(0) � 1, we have
(μ : x)(0) � 1. Again, let a, b ∈ Q and z ∈ (a, b)ul. ,en,

e

d c

a b

0

Figure 2: An L -fuzzy ideal μ of a posetQ for which μ: x need not to
be L -fuzzy ideal for x ∈ Q.

Advances in Fuzzy Systems 5



(μ : x)(a)∧ (μ : x)(b) � inf μ(w) : w ∈ (x, a)
l

 ∧ inf μ(u) : u ∈ (x, b)
l

 

� inf μ(w)∧ μ(u) : w ∈ (x, a)
l
, u ∈ (x, b)

l
 

≤ μ(v) for all v ∈ x, (a, b)
u

 
l
.

(33)

Again, since z ∈ (a, b)ul implies (x, z)l ⊆ x, (a, b)u
{ }

l, we
have (μ : x)(a)∧ (μ : x)(b)≤ μ(t) for all t ∈ (x, z)l. ,is
implies that

(μ : x)(a)∧ (μ : x)(b)≤ inf μ(t) : t ∈ (x, z)
l

  � (μ : x)(z).

(34)

,erefore, μ : x is an L-fuzzy ideal of Q for all x ∈ Q.
Now, we show that μ : x is an L-fuzzy semiprime ideal of Q.
Let a, b, c ∈ Q and z ∈ a, (b, c)u

{ }
l. Now,

inf (μ : x)(u)∧ (μ : x)(w) : u ∈ (a, b)
l
, w ∈ (a, c)

l
 

� inf (μ : x)(u) : u ∈ (a, b)
l

 ∧ inf (μ : x)(w) : w ∈ (a, c)
l

 

� inf μ(u) : u ∈ (x, a, b)
l

 ∧ inf μ(w) : w ∈ (x, a, c)
l

 

� inf (μ : b)(u) : u ∈ (x, a)
l

 ∧ inf (μ : c)(w) : w ∈ (x, a)
l

 

� inf (μ : b)(s)∧ (μ : c)(s) : s ∈ (x, a)
l

 

≤ inf (μ : b)(s)∧ (μ : c)(s) : s ∈ x, a, (b, c)
u

 
l

 

≤ (μ : b)(s)∧ (μ : c)(s)∀s ∈ x, a, (b, c)
u

 
l

� (x, a)
l∩(b, c)

ul

� (μ : s)(b)∧ (μ : s)(c)∀s ∈ x, a, (b, c)
u

 
l

� (μ : s)(s) ∀ s ∈ x, a, (b, c)
u

 
l

� μ(s)∀s ∈ x, a, (b, c)
u

 
l
.

(35)

Now, z ∈ a, (b, c)u
{ }

l implies that (x, z)l ⊆ x, a, (b, c)u
{ }

l

for all x ∈ Q. ,us, we have

inf (μ : x)(u)∧ (μ : x)(w) : u ∈ (a, b)
l
, w ∈ (a, c)

l
 

≤ μ(s), for all s ∈ (x, z)
l
.

(36)

,us, inf (μ : x)(u)∧ (μ : x) (w) : u ∈ (a, b)l,

w ∈ (a, c)l}≤ inf μ(s) : s ∈ (x, z)l
  � (μ : x)(z). ,erefore,

μ : x is an L-fuzzy semiprime ideal of Q.
Conversely, suppose that μ : x is an L-fuzzy ideal of Q for

all x ∈ Q. Now we show that μ is an L-fuzzy semiprime ideal
of Q. Let a, b, c ∈ Q and z ∈ a, (b, c)u

{ }
l. ,en,

inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 

� inf μ(x) : x ∈ (a, b)
l

 ∧ inf μ(y) : y ∈ (a, c)
l

 

� (μ : a)(b)∧ (μ : a)(c)

≤ (μ : a)(z), for all z ∈ (b, c)
ul

.

(37)

,is implies that

inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 ≤ inf (μ : a)(z) : z ∈ (a, b)

ul
 

� inf μ(z) : z ∈ a, (b, c)
u

 
l

 .

(38)

,us,

inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 ≤ μ(z), for all z ∈ a, (b, c)

u
 

l
. (39)

,erefore, μ is an L-fuzzy semiprime ideal of Q.
,e next result is a characterization of an L-fuzzy ideal to

be an L-fuzzy prime ideal in a poset Q. □

Theorem 3. Let μ be a proper L-fuzzy ideal of a poset Q.
7en, μ is an L-fuzzy prime ideal of Q if and only if μ : a � μ
for all a ∈ Q such that μ(a)≠ 1.

Proof. Suppose that μ is an L-fuzzy prime ideal of Q and let
a ∈ Q such that μ(a)≠ 1. ,en, by Lemma 5 and,eorem 2,
it is clear that μ : a is an L-fuzzy ideal ofQ. Nowwe claim that
μ : a � μ. Now, for any x ∈ Q, we have (μ : a)(x) �

μ(x) or μ(a). However, as μ : a is an L-fuzzy ideal of Q, (μ :

a)(x)≠ μ(a). ,us, (μ : a)(x) � μ(x) for all x ∈ Q and hence
μ : a � μ.

Conversely, suppose that the given condition holds. Let
a, b ∈ Q. Now, we claim that

(μ : a)(b) � μ(a), or μ(b). (40)

Suppose that (μ : a)(b)≠ μ(a). ,en, inf μ(x) :

x ∈ (a, b)l}≰ μ(a). ,is implies that μ(a)≠ 1. ,us, by hy-
pothesis, we have μ : a � μ and hence (μ : a)(b) � μ(b).

,erefore, μ is an L-fuzzy prime ideal of Q.
Now before we prove some other characterizations of

L-fuzzy primeness and L-fuzzy semiprimeness in the case of
a poset satisfying DCC, we introduce the concept of a
μ-atom of an L-fuzzy ideal μ of a poset. □

Definition 14. Let μ be an L-fuzzy ideal of a poset Q and
α ∈ L. An element i in Q is called a μ-atom with respect to α,
if it satisfies the following conditions:

(1) α≰ μ(i)

(2) α≤ μ(x) whenever x< i
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Example 1. Consider the poset depicted in Figure 3. Define a
fuzzy subset μ : Q⟶ [0, 1] by

μ(0) � μ(a) � 1,

μ(b) � 0.7,

μ(c) � 0.6,

μ(d) � 0.8,

μ a′(  � μ b′(  � μ c′(  � μ d′(  � μ(1) � 0.2.

(41)

,en, it is easy to see that μ is an L-fuzzy ideal of Q and a’
is a μ-atom with respect to α � 0.6 in [0, 1].

Lemma 9. 7ere always exists a μ-atom for every proper
L-fuzzy ideal μ in a poset Q satisfying DCC with respect to
some α in L.

Proof. Let Q be a poset satisfying DCC and μ be a proper
L-fuzzy ideal of Q. ,en, there exists a ∈ Q such that
μ(a)≠ 1. ,is implies that there exists α ∈ L such that
α≰ μ(a). Put I � x ∈ Q : μ(x)≥ α . ,en, since a ∉ I, I is a
proper ideal of Q and Q − I is a nonempty subset of Q. Since
Q is satisfying DCC, Q − I has a minimal element, say i, such
that i≤ a. Now we claim that i is a μ-atom with respect to α.
Since i ∈ Q − I, we have α≰ μ(i). Let x< i. ,en, by the
minimality of i, x ∉ Q − I and hence μ(x)≥ α. Hence, the
claim is true. □

Remark 3. Lemma 9 gives a guarantee that if μ is an L-fuzzy
ideal of a poset Q satisfying DCC and α≰ μ(a) for some
a ∈ Q and α ∈ L, then there exists a μ-atom i in Q with
respect to α such that i≤ a.

Lemma 10. Any two distinct μ-atoms of an L-fuzzy ideal μ of
a poset Q with respect to α ∈ L are incomparable.

Proof. Let μ be an L-fuzzy ideal of Q and i and j be any two
distinct μ-atoms with respect to α ∈ L. ,en, by definition,
we have α≰ μ(i) and μ(x)≥ α whenever x< i and α≰ μ(j)

and μ(y)≥ α whenever y< j. Now we show that i and j are
incomparable. Suppose not.,en i< j or j< i, i.e., μ(i)≥ α or
μ(j)≥ α, which is a contradiction to the fact that α≰ μ(i) and
α≰ μ(j). Hence, i and j are incomparable. □

Remark 4. From Lemma 10, we can deduce that if i and j are
μ-atoms in a poset Q with respect to some α in L such that
i≤ j, then i � j.

Lemma 11. Let μ be an L-fuzzy semiprime ideal of a poset Q

satisfying DCC. 7en, μ : i is a u-L-fuzzy ideal for every
μ-atom i in Q with respect to 1 in L.

Proof. Let i be a μ-atom in Q with respect to 1 in L. Since μ is
an L-fuzzy semiprime ideal, by ,eorem 2, μ : i is an L-fuzzy
ideal of Q. Now we show that μ : i is a u- L-fuzzy ideal.
Suppose on the contrary that μ : i is not a u-L-fuzzy ideal.
,en, there exist a, b ∈ Q such that

(μ : i)(a)∧ (μ : i)(b)≰ (μ : i)(x) ∀x ∈ (a, b)
u
. (42)

,is implies that there exists y ∈ (i, x)l such that

(μ : i)(a)∧ (μ : i)(b)≰ μ(y) ∀x ∈ (a, b)
u
. (43)

,us, by Remark 3, there exists a μ-atom, say j, with respect
to α � (μ : i)(a)∧ (μ : i)(b) such that j≤y. Since j≤y and
y ∈ (i, x)l, we have j≤ i andhenceμ(j)≥ μ(i).,is implies that
α≰ μ(i). Again, let z< i.,en,μ(z) � 1≥ α.,erefore, i is also a
μ-atom with respect to α. Also since j≤y≤ i, by Remark 4, we
have j � y � i.,is implies that i ∈ (i, x)l and hence i≤x for all
x ∈ (a, b)u and so i ∈ (a, b)ul. Since μ : i is an ideal, we have

α � (μ : i)(a)∧ (μ : i)(b)≤ (μ : i)(i) � μ(i). (44)

which is a contradiction to the fact that α≰ μ(i).
,erefore, μ : i is a u-L-fuzzy ideal. □

Theorem 4. Let μ be an L-fuzzy ideal of a poset Q satisfying
DCC.7en, μ is an L-fuzzy semiprime ideal of Q if and only if
μ : i is an L-fuzzy ideal, in fact, an L-fuzzy prime ideal of Q for
every μ-atom i ∈ Q with respect to 1 in L.

Proof. Let μ be an L-fuzzy semiprime ideal of a poset Q sat-
isfying DCC and i is a μ-atom in Q with respect to 1 in L. ,en,
by Lemma 11, μ : i is a u-L-fuzzy ideal. Now, we have to show
that μ : i is an L-fuzzy prime ideal. Since μ(i)≠ 1, by Lemma 8,
μ : i≠ 1. Hence, μ : i is proper. Let a, b ∈ Q and suppose that

inf (μ : i)(x) : x ∈ (a, b)
l

 ≠ (μ : i)(a). (45)

Put α � inf (μ : i)(x) : x ∈ (a, b)l
 . Since (μ : i)(a) � inf

μ(y) : y ∈ (a, i)l
 , there exists y1 in (i, a)l such that α≰ μ
(y1). ,en, by Remark 3, there exists a μ-atom, say j, in Q

with respect to α such that j≤y1. It is also clear that i is also a
μ-atom with respect to α. Since j≤y1 ≤ i, by Remark 4, we
must have j � y1 � i, and therefore i≤ a, i.e., (i, a)l � il.
,us, we have

inf (μ : i)(x) : x ∈ (a, b)
l

  � inf μ(y) : y ∈ (i, a, b)
l

 

� inf μ(y) : y ∈ (i, b)
l

 

� (μ : i)(b).

(46)

1

d′ c′ b′ a′

a b c d

0

Figure 3: A distributive poset in which every L-fuzzy ideal need not
be an L-fuzzy semiprime ideal.
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,is proves that μ : i is an L-fuzzy prime ideal for every
μ-atom i ∈ Q.

Conversely, suppose that μ : i is an L-fuzzy ideal for any
μ-atom i with respect to 1 in L. Let a, b, c ∈ Q. Now, we claim
that

inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 ≤ μ(z),

for all z ∈ a, (b, c)
u

 
l
.

(47)

Suppose not. ,en, there exists z1 ∈ a, (b, c)u
{ }

l
�

al ∩ (b, c)ul such that

inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 ≰ μ z1( . (48)

Hence, by Remark 3, there exists a μ-atom j in Q with
respect to α � inf μ(x)∧ μ(y) : x ∈ (a, b)l, y ∈ (a, c)l

  in L

such that j≤ z1. ,en, by hypothesis, μ : j is an L-fuzzy ideal.
Again, since (j, b)l ⊆ (a, b)l and (j, c)l ⊆ (a, c)l, we have

α � inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 

� inf μ(x) : x ∈ (a, b)
l

 ∧ inf μ(y) : y ∈ (a, c)
l

 

≤ inf μ(x) : x ∈ (j, b)
l

 ∧ inf μ(y) : y ∈ (j, c)
l

 

� (μ : j)(b)∧ (μ : j)(c)

≤ (μ : j)(j) since j ∈ (b, c)
ul

 

� μ(j),

(49)

which is a contradiction to the fact that j is a μ-atom with
respect to α. ,erefore, μ is an L-fuzzy semiprime ideal of Q.

,e following result gives another characterization for
L-fuzzy semiprime ideals to be L-fuzzy prime. □

Theorem 5. Every maximal L-fuzzy semiprime ideal of a
poset Q is an L-fuzzy prime ideal.

Proof. Let μ be a maximal L-fuzzy semiprime ideal of a
poset Q, that is, maximal among all proper L-fuzzy semi-
prime ideals of a poset Q. Let a, b ∈ Q. ,en, by ,eorem 2,
μ : b is an L-fuzzy semiprime ideal. Since μ⊆ μ : b, by
maximality of μ, we have either μ � μ : b or μ : b � 1. If
μ : b � 1, then, by Lemma 8, μ(b) � 1. ,us,

inf μ(x) : x ∈ (a, b)
l

  � (μ : b)(a) � 1(a) � 1 � μ(b).

(50)

Again if μ � μ : b, then we have inf μ(x) :

x ∈ (a, b)l} � (μ : b)(a) � μ(a). ,us, in either cases, we
have

inf μ(x) : x ∈ (a, b)
l

  � μ(a) or μ(b), for all a, b ∈ Q.

(51)

Hence, μ is an L-fuzzy prime ideal of Q.
As a consequence, we have the following corollary. □

Corollary 2. Let μ be amaximal L-fuzzy ideal ofQ. 7en, μ is
an L-fuzzy semiprime ideal Q if and only if μ is an L-fuzzy
prime ideal.

,e following is a characterization of an L-fuzzy ideal to
be L-fuzzy prime ideal in terms of a μ-atom in a poset Q

satisfying DCC.

Theorem 6. Let μ be an L-fuzzy ideal of a poset Q satisfying
DCC. 7en, μ is an L-fuzzy prime ideal Q if and only if Q has
exactly one μ-atom with respect to some α in L.

Proof. Let μ be an L-fuzzy prime ideal of a poset Q satisfying
DCC. Since μ is proper, by Lemma 9, there exists a μ-atom in
Q with respect to some α in L. Now, we claim that Q has
exactly one μ-atom with respect to α in L. Suppose not. Let
i, j ∈ Q be any distinct μ-atoms in Q with respect to α in L.
,en, by Lemma 10, i, j are incomparable and μ(x)≥ α for
all x< i and μ(y)≥ α for all y< j. ,is implies that
inf μ(x) : x ∈ (i, j)l

 ≥ α. Since inf μ(x) : x ∈ (i, j)l
  � μ(i)

or μ(j), we have μ(i)≥ α or μ(j)≥ α, which is a contra-
diction. ,erefore, Q has exactly one μ-atom with respect to
α in L.

Conversely suppose that Q has exactly one μ-atom, say i,
with respect to some α in L. Now, we show that μ is an
L-fuzzy prime ideal. Since α≰ μ(a), we have μ(i)≠ 1 and
hence μ is proper. Now, we show that for any a, b ∈ Q,

inf μ(x) : x ∈ (a, b)
l

  � μ(a),

or μ(b).
(52)

Suppose not. ,us, there exist a, b ∈ Q such that

inf μ(x) : x ∈ (a, b)
l

 ≰ μ(a),

inf μ(x) : x ∈ (a, b)
l

 ≰ μ(b).
(53)

,en, there exist μ-atoms i, j ∈ Q with respect to α �

inf μ(x) : x ∈ (a, b)l
  such that i≤ a and j≤ b. ,en, by

hypothesis, we have i � j and hence i ∈ (a, b)l. ,erefore
α � inf μ(x) : x ∈ (a, b)l

 ≤ μ(a), which is a contradiction to
the fact that i is a μ-atom with respect to
α � inf μ(x) : x ∈ (a, b)l

 . ,erefore, μ is an L-fuzzy prime
ideal. □

Lemma 12. Let μ be a proper L-fuzzy ideal of a poset Q

satisfying DCC and A � i ∈ Q : i is a μ − atom . 7en,
μ � ∩i∈A : μ : i.

Proof. We show that ∩i∈A μ : i⊆ μ as the converse inclusion
always holds. Suppose that ∩i∈A μ : i⊈ μ. ,is implies that
there exists a ∈ Q such that (∩i∈A μ : i)(a)≰ μ(a). ,us, there
exists a μ-atom j ∈ Q with respect to α � (∩i∈A μ : i)(a) such
that j≤ a.

,en, we have j ∈ A, and hence,

∩
i∈A

: μ (a)≤ (μ : j)(a)

� inf μ(x) : x ∈ (j, a)
l

 

� inf μ(x) : x ∈ j
l

 

� μ(j),

(54)
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which is a contradiction to the fact that j is a μ-atom with
respect to α � (∩i∈Aμ : i)(a). Hence, α � (∩i∈Aμ : i)μ.
,erefore, (∩i∈Aμ : i)⊆ μ. □

Lemma 13. 7e intersection of any nonempty family of
L-fuzzy prime ideals of Q is an L-fuzzy semiprime ideal Q.

Proof. Let μi : i ∈ Δ  be a nonempty family of L-fuzzy
prime ideals of Q. Put μ � ∩i∈Δμi. ,en, clearly, μ is an
L-fuzzy ideal of Q. Let a, b, c ∈ Q and z ∈ a, (b, c)u

{ }
l
. Now,

inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 

� inf μ(x) : x ∈ (a, b)
l

 ∧ inf μ(y) : y ∈ (a, c)
l

 

≤ inf μi(x) : x ∈ (a, b)
l

 ∧ inf μi(y) : y ∈ (a, c)
l

 ,

for each i ∈ Δ.

� μi(a) or μi(b)∧ μi(c), for each i ∈ Δ.

≤ μi(z), for each i ∈ Δ.
(55)

,is implies that

inf μ(x)∧ μ(y) : x ∈ (a, b)
l
, y ∈ (a, c)

l
 

≤ ∩
i∈Δ

: μi (z) � μ(z), for all z ∈ a, (b, c)
u

 
l
.

(56)

,erefore, μ � ∩i∈Δμi is an L-fuzzy semiprime ideal Q.
As an immediate consequence of,eorem 4, Lemma 12,

and Lemma 13 in the case of posets satisfying DCC, we
obtain the following result. □

Theorem 7. Let μ be a proper L-fuzzy ideal of a poset Q

satisfying DCC. 7en, μ is an L-fuzzy semiprime ideal of Q if
and only if μ is expressed as an intersection of L-fuzzy prime
ideals of Q.

In the following, we characterize the distributive posets
in terms of L-fuzzy semiprime ideals in the following results.

Theorem 8. A poset Q is distributive if and only if χ(x] of Q is
an L-fuzzy semiprime ideal of Q, for each x ∈ Q.

Proof. Suppose that Q is distributive poset and x ∈ Q. Now
to show χ(x] is an L-fuzzy semiprime ideal of Q, by Corollary
1, it is enough to show that (x] is a semiprime ideal of Q. Let
a, b, c ∈ Q such that (a, b)l ⊆ (x] and (a, c)l ⊆ (x]. Let
z ∈ a, (b, c)u

{ }
l. ,en, z≤ a and z ∈ (b, c)ul. ,is implies that

z
l

� z, (b, c)
u

 
l

� (z, b)
l
, (z, c)

l
 

ul
. (57)

Since z≤ a, we have (z, b)l ⊆ (a, b)l ⊆ (x] and (z, c)l ⊆
(a, c)l ⊆ (x].

,is implies that (z, a)l ∪ (z, b)l ⊆ (x]. ,us, z ∈ zl �

(z, b)l, (z, c)l
 

ul
⊆ (x]ul � (x] and hence, a, (b, c)u

{ }
l ⊆ (x].

,erefore, χ(x] is an L-fuzzy semiprime ideal of Q.
Conversely, suppose that χ(x] is an L-fuzzy semiprime

ideal of Q for each x ∈ Q. ,en, by Corollary 1, it is clear that
(x] is semiprime ideal of Q for each x ∈ Q. Let a, b, c ∈ Q. It
is enough to prove that a, (b, c)u

{ }
l ⊆ (a, b)l, (a, c)l

 
ul

, as the

converse inclusion is always true. Now let x ∈ a, (b, c)u
{ }

l

and y ∈ (a, b)l, (a, c)l
 

u
. We claim that x≤y. Indeed, since

(a, b)l, (a, c)l
 

ul
⊆yl, we have

(a, b)
l ⊆y

l
� (y],

(a, c)
l ⊆y

l
� (y].

(58)

,en, by semiprimeness of (y], we conclude that
x ∈ a, (b, c)u

{ }
l ⊆ (y]. Hence, x≤y for all y ∈ (a, b)l,

(a, c)l}u. ,erefore, x ∈ (a, b)l, (a, c)l
 

ul
, and hence,

a, (b, c)
u

 
l ⊆ (a, b)

l
, (b, c)

l
 

ul
. (59)

,is proves that Q is a distributive poset.
Note that in a distributive poset every L-fuzzy ideal need

not be an L-fuzzy semiprime ideal. Consider the distributive
poset Q depicted in Figure 3.

Define a fuzzy subset μ : Q⟶ [0, 1] by

μ(0) � μ(a) � 1,

μ a′(  � μ b′(  � μ c′(  � μ d′(  � μ(1) � 0.2,

μ(b) � 0.6,

μ(c) � 0.5,

μ(d) � 0.7.

(60)

,en, μ is an L-fuzzy ideal but not an L-fuzzy semiprime
ideal as d′, c′, b′ ∈ Q and d′ ∈ d′, (b′, c′)u

 
l but

inf μ(x)∧ μ(y) : x ∈ d′, c( 
l
, y ∈ d′, b′( 

l
 

� 0.5≰ 0.2 � μ d′( .

(61)

As an immediate consequence of ,eorem 7 and ,e-
orem 8, we have the following corollary. □

Corollary 3. Let Q be a poset satisfying DCC. 7en, Q is
distributive if and only if, for every x ∈ Q, χ(x] is representable
as an intersection of L-fuzzy prime ideals of Q.

4. Conclusion

In this work, we introduce the notions of L-fuzzy sem-
iprime ideal in general posets. Characterizations of
L-fuzzy semiprime ideals in posets as well as charac-
terizations of an L-fuzzy semiprime ideal to be L-fuzzy
prime ideal are obtained by introducing the concept
μ-atom elements in a poset. Also, L-fuzzy prime ideals in
a poset are characterized. Our future work will focus on
the relations between the L-fuzzy semiprime (resp.,
L-fuzzy prime) ideals of a poset and the L-fuzzy semi-
prime (resp., L-fuzzy prime) of the lattice of all ideals of a
poset. We will also extend and prove an analogue of
Stone’s theorem for finite posets using L-fuzzy semi-
prime ideals.
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