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The present researchpaper focuses on the existence of fixed point in𝑉-fuzzymetric space.The presentation of𝑉-fuzzymetric space
in 𝑛-tuple encourages us to define different mapping in the symmetric 𝑉-fuzzy metric space. Here, the properties of fuzzy metric
space are extended to 𝑉-fuzzy metric space. The introduction of notion for pair of mappings (𝑓, 𝑔) on 𝑉-fuzzy metric space called𝑉-weakly commuting of type 𝑉𝑓 and 𝑉 − 𝑅 weakly commuting of type 𝑉𝑓 is given. This proved fixed point theorem in 𝑉-fuzzy
metric space employing the effectiveness of E.A. property and CLRg property. For the justification of the results, some examples
are illustrated.

1. Introduction

Metric space is one of the important basic areas of research
for the mathematicians. Many researchers accelerated the
concept of metric space either by introducing different
contractions in different fields or by extending number of
variables in the metric space. Different types of mappings
are introduced to facilitate the fixed point in metric spaces
such as weakly commuting pair of mappings [1], compat-
ible mappings [2], and weakly compatible mappings [3].
Subsequently, Aamri and Moutawakil [4] introduced the
notion of E.A. property. In 2011, Sintunavarat and Kumam[5]
stamped the idea of common limit in the range of 𝑔
(called CLRg property) which relaxes the requirement of
completeness (or closedness) of the underlying subspace.
Fixed point results are proved through the same concept in
fuzzy metric spaces. Many authors [5–15] have given results
about the common fixed point results in several spaces. On
the basis of number of variables, there are many different
generalizations, such as generalized metric space by Mustafa
and Sims [16], generalized fuzzy metric spaces by Sun and
Yang [17], new generalized metric space called 𝑆-metric space
by Sedghi [18], and𝐴-metric spaces byAbbas et al. [19], which
is generalization of 𝑆-metric spaces. Also, 𝑉-fuzzy metric
spaces were introduced by Gupta and Kanwar [20], which are
based on fuzzy metric for 𝑛-tuples.

The above mentioned generalizations ofmetric spaces are
described below.

Definition 1 ([16]). Let 𝑋 be a nonempty set and let 𝐺 :𝑋3 󳨀→ [0, +∞) be a function satisfying the following
conditions for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋:

(G-1) 𝐺(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧,
(G-2) 0 ≤ 𝐺(𝑥, 𝑦, 𝑧) with 𝑥 ̸= 𝑦,
(G-3) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) with 𝑦 ̸= 𝑧,
(G-4) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑥, 𝑧) = 𝐺(𝑧, 𝑥, 𝑦) =𝐺(𝑧, 𝑦, 𝑥) = 𝐺(𝑦, 𝑧, 𝑥),
(G-5) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧).
The function 𝐺 is called a generalized metric on 𝑋 and the
pair (𝑋,𝐺) is called a 𝐺-metric space.

In 2012, Sedghi et al. [18] introduced a new generalized
metric space called 𝑆-metric space.

Definition 2 ([18]). Let 𝑋 be a nonempty set. Suppose a
function 𝑆 : 𝑋3 󳨀→ [0, +∞) satisfies the following condi-
tions:

(S-1) 𝑆(𝑥, 𝑦, 𝑧) ≥ 0,
(S-2) 𝑆(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧 = 0,
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(S-3) 𝑆(𝑥, 𝑦, 𝑧) ≤ 𝑆(𝑥, 𝑥, 𝑎) + 𝑆(𝑦, 𝑦, 𝑎) + 𝑆(𝑧, 𝑧, 𝑎) for any𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋.

Then the ordered pair (𝑋, 𝑆) is called 𝑆-metric space.

Abbas et al. [19] established the notion of𝐴-metric spaces,
which is considered as generalizations of 𝑆-metric space.

Definition 3 ([19]). Let 𝑋 be a nonempty set. A function 𝐴 :𝑋𝑛 󳨀→ [0, +∞) is called an 𝐴-metric on 𝑋, if for any 𝑥𝑖, 𝑎 ∈𝑋, 𝑖 = 1, 2, 3, . . . , 𝑛, the following conditions hold:
(A-1) 𝐴(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) ≥ 0,
(A-2) 𝐴(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) = 0 if and only if 𝑥1 = 𝑥2 = 𝑥3== ⋅ ⋅ ⋅ = 𝑥𝑛 = 0,
(A-3) 𝐴(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) ≤ 𝐴(𝑥1, 𝑥1, 𝑥1, . . . , (𝑥1)𝑛−1, 𝑎) +𝐴(𝑥2, 𝑥2, 𝑥2, . . . , (𝑥2)𝑛−1, 𝑎) + . . . + 𝐴(𝑥𝑛, 𝑥𝑛, 𝑥𝑛, . . . ,(𝑥𝑛)𝑛−1, 𝑎).

The pair (𝑋,𝐴) is called 𝐴-metric space.

Fuzzy sets introduced by Zadeh [21] are the engender for
all the research in different fields. Kramosil andMichalek [22]
introduced the concept of fuzzy metric spaces.

Definition 4 ([23]). A binary operation ∗ : [0.1] × [0, 1] 󳨀→[0, 1] is called continuous 𝑡-norms; it satisfies following
conditions:

(T-1) ∗ is commutative and associative,
(T-2) ∗ is continuous,
(T-3) 𝑎 ∗ 1 = 𝑎, ∀𝑎 ∈ [0, 1],
(T-4) 𝑎∗𝑏 ≤ 𝑐∗𝑑whenever 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈[0, 1].

Definition 5 ([22]). The 3-tuple (𝑋,𝑀, ∗) is called a fuzzy
metric space if 𝑋 is an arbitrary set, ∗ is continuous 𝑡-norm,
and𝑀 is a fuzzy set in𝑋×𝑋×[0,∞) satisfying the following
conditions:

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑠, 𝑡 > 0,
(FM-1) 𝑀(𝑥, 𝑦, 0) = 0,
(FM-2) 𝑀(𝑥, 𝑦, 𝑡) = 1, ∀𝑡 > 0 if and only if 𝑥 = 𝑦,
(FM-3) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡),
(FM-4) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠),
(FM-5) 𝑀(𝑥, 𝑦, ⋅) : [0,∞) 󳨀→ [0, 1] is left continuous.

Note that 𝑀(𝑥, 𝑦, 𝑡) can be thought of as the degree of
nearness between 𝑥 and 𝑦 with respect to 𝑡.
Example 6. Let (𝑋, 𝑑) be ametric space.Define 𝑡-norm 𝑎∗𝑏 =𝑎𝑏 or 𝑎 ∗ 𝑏 = min{𝑎, 𝑏}. For all 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0.

𝑀(𝑥, 𝑦, 𝑡) = 𝑡𝑡 + 𝑑 (𝑥, 𝑦) . (1)

Then (𝑋,𝑀, ∗) is a fuzzy metric space.

Lemma7 ([24]). Let (𝑋,𝑀, ∗) be a fuzzymetric space. If there
exists 𝑘 ∈ (0, 1) for all 𝑥, 𝑦 ∈ 𝑋, 𝑥, 𝑡 > 0 such that

𝑀(𝑥, 𝑦, 𝑘𝑡) ≥ 𝑀 (𝑥, 𝑦, 𝑡) (2)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, then 𝑥 = 𝑦.
In the process of generalization of fuzzymetric space, Sun

and Yang [17] presented the notion of𝐺-fuzzymetric space as
follows.

Definition 8 ([17]). A 3-tuple (𝑋,𝐺, ∗) is said to be 𝐺-fuzzy
metric space (denoted by GF space) if 𝑋 is an arbitrary
nonempty set, ∗ is continuous 𝑡-norm, and 𝐺 is a fuzzy set
on 𝑋 × 𝑋 × 𝑋 × [0,∞) satisfying the following conditions:

for each 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑠, 𝑡 > 0,
(GF-1) 𝐺(𝑥, 𝑥, 𝑦, 𝑡) > 0 with 𝑥 ̸= 𝑦,
(GF-2) 𝐺(𝑥, 𝑥, 𝑦, 𝑡) ≥ 𝐺(𝑥, 𝑦, 𝑧, 𝑡) with 𝑦 ̸= 𝑧,
(GF-3) 𝐺(𝑥, 𝑦, 𝑧, 𝑡) = 1 if and only if 𝑥 = 𝑦 = 𝑧,
(GF-4) 𝐺(𝑥, 𝑦, 𝑧, 𝑡) = 𝐺(𝑥, 𝑧, 𝑦, 𝑡) = 𝐺(𝑦, 𝑥, 𝑧, 𝑡) = 𝐺(𝑧, 𝑥,𝑦, 𝑡) = 𝐺(𝑦, 𝑧, 𝑥, 𝑡) = 𝐺(𝑧, 𝑦, 𝑥, 𝑡),
(GF-5) 𝐺(𝑥, 𝑦, 𝑧, 𝑡 + 𝑠) ≥ 𝐺(𝑥, 𝑎, 𝑎, 𝑡) ∗ 𝐺(𝑎, 𝑦, 𝑧, 𝑠).
(GF-6) 𝐺(𝑥, 𝑦, 𝑧, ⋅) : (0,∞) 󳨀→ [0, 1] is left continuous.

Lemma9 ([17]). Let (𝑋, 𝐺, ∗) be a GF space.Then𝐺(𝑥, 𝑦, 𝑧, 𝑡)
is nondecreasing with respect to 𝑡 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

2. 𝑉-Fuzzy Metric Space

These all generalizations advocate 𝑉-fuzzy metric spaces. In
2016, Gupta and Kanwar [20] stamped the move of these
generalization to 𝑛-tuples as discussed below.

Definition 10 ([20]). Let 𝑋 be nonempty set. A 3-tuple(𝑋,𝑉, ∗) is said to be a𝑉-fuzzy metric space (denoted by𝑉𝐹-
space), where ∗ is a continuous 𝑡-norm and 𝑉 is a fuzzy set
on 𝑋𝑛 × (0,∞) satisfying the following conditions for each𝑡, 𝑠 > 0:
(VF-1) 𝑉(𝑥, 𝑥, 𝑥, . . . , 𝑥, 𝑦, 𝑡) > 0 for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦;
(VF-2) 𝑉(𝑥1, 𝑥1, 𝑥1, . . . , 𝑥1, 𝑥2, 𝑡) ≥ 𝑉(𝑥1, x2, 𝑥3, . . . , 𝑥𝑛, 𝑡) for

all 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 ∈ 𝑋 with 𝑥2 ̸= 𝑥3 ̸= ⋅ ⋅ ⋅ ̸= 𝑥𝑛;
(VF-3) 𝑉(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡) = 1 if 𝑥1 = 𝑥2 = 𝑥3 = . . . = 𝑥𝑛;
(VF-4) 𝑉(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡) = 𝑉(𝑝(𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑛), 𝑡),

where 𝑝 is a permutation function;
(VF-5) 𝑉(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛−1, 𝑡 + 𝑠) ≥𝑉(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛−1, 𝑙, 𝑡) ∗ 𝑉(𝑙, 𝑙, 𝑙, . . . , 𝑙, 𝑥𝑛, 𝑠);
(VF-6) lim𝑡󳨀→∞𝑉(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡) = 1;
(VF-7) 𝑉(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) : (0,∞) 󳨀→ [0, 1] is continuous.
Example 11 ([20]). Let (𝑋,𝑉, ∗) be a𝑉-metric space. Define 𝑡-
norm 𝑎∗𝑏 = 𝑎𝑏 or 𝑎∗𝑏 = min{𝑎, 𝑏}. For all𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛 ∈𝑋, 𝑡 > 0,

𝑉 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡) = 𝑡𝑡 + 𝐴 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛) (3)

then (𝑋,𝑉, ∗) is a 𝑉-fuzzy metric space.
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Lemma 12 ([20]). Let (𝑋, 𝑉, ∗) be a𝑉-fuzzymetric space; then𝑉(𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡) is nondecreasing with respect to 𝑡.
Lemma 13 ([20]). Let (𝑋,𝑉, ∗) be a𝑉-fuzzymetric space such
that

𝑉 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑘𝑡) ≥ 𝑉 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡) , (4)

with 𝑘 ∈ (0, 1); then 𝑥1 = 𝑥2 = 𝑥3 = . . . = 𝑥𝑛.
Definition 14 ([20]). Let (𝑋,𝑉, ∗) be a 𝑉-fuzzy metric space.
A sequence {𝑥𝑟} is said to converge to a point 𝑥 ∈ 𝑋 if𝑉(𝑥𝑟, 𝑥𝑟, 𝑥𝑟, . . . , 𝑥𝑟, 𝑥, 𝑡) 󳨀→ 1 as 𝑟 󳨀→ ∞ for all 𝑡 > 0;
that is, for each 𝜖 > 0, there exists 𝑛 ∈ 𝑁 such that for all𝑟 ≥ 𝑁 we have 𝑉(𝑥𝑟, 𝑥𝑟, 𝑥𝑟, . . . , 𝑥𝑟, 𝑥, 𝑡) > 1 − 𝜖 and we write
lim𝑡󳨀→∞𝑥𝑟 = 𝑟.
Definition 15 ([20]). Let (𝑋,𝑉, ∗) be a 𝑉-fuzzy metric
space. A sequence {𝑥𝑟} is said to be a Cauchy sequence if𝑉(𝑥𝑟, 𝑥𝑟, 𝑥𝑟, . . . , 𝑥𝑟, 𝑥𝑞, 𝑡) 󳨀→ 1 as 𝑟, 𝑞 󳨀→ ∞ for all 𝑡 > 0;
that is, for each 𝜖 > 0 there exists 𝑛0 ∈ 𝑁 such that for all𝑟, 𝑞 ≥ 𝑛0, we have 𝑉(𝑥𝑟, 𝑥𝑟, 𝑥𝑟, . . . , 𝑥𝑟, 𝑥𝑞, 𝑡) > 1 − 𝜖.
Definition 16 ([20]). A 𝑉-fuzzy metric space (𝑋,𝑉, ∗) is said
to be complete if every Cauchy sequence in 𝑋 is convergent.

In the present research paper, topology is induced by𝑉-fuzzy metric spaces. The introduction of concepts of 𝑉-
weakly commuting of type 𝑉𝑓 and 𝑉-𝑅 weakly commuting
of type 𝑉𝑓 in 𝑉-fuzzy metric spaces is given which helps in
determining the fixed point theorem for symmetric 𝑉-fuzzy
metric spaces.

3. Topology Induced by 𝑉-Fuzzy Metric Space

Definition 17. Let (𝑋,𝑉, ∗) be a𝑉-fuzzy metric space. For 𝑡 >0, the open ball 𝐵𝑉(𝑥, 𝑟, 𝑡) with center 𝑥 ∈ 𝑋 and radius 0 <𝑟 < 1 is defined as

𝐵𝑉 (𝑥, 𝑟, 𝑡) = {𝑦 ∈ 𝑋 : 𝑉 (𝑥, 𝑦, . . . , 𝑦, 𝑡) > 1 − 𝑟} . (5)

Result 1. Every open ball is an open set.
Consider an open ball 𝐵𝑉(𝑥, 𝑟, 𝑡). Now

𝑦 ∈ 𝐵𝑉 (𝑥, 𝑟, 𝑡) 󳨐⇒
𝑉(𝑥, 𝑦, . . . , 𝑦, 𝑡) > 1 − 𝑟. (6)

Since 𝑉(𝑥, 𝑦, . . . , 𝑦, 𝑡) > 1 − 𝑟, we can find 𝑡0, 0 < 𝑡0 < 𝑡, such
that 𝑉(𝑥, 𝑦, . . . , 𝑦, 𝑡0) > 1 − 𝑟.

Let 𝑟0 = 𝑉(𝑥, 𝑦, 𝑦, . . . , 𝑦, 𝑡0) > 1 − 𝑟.
Since 𝑟0 > 1 − 𝑟, we can find 𝑠, 0 < 𝑠 < 1, such that𝑟0 > 1 − 𝑠 > 1 − 𝑟.
Further for a given 𝑟0 and 𝑠 such that 𝑟0 > 1 − 𝑠 we can

find 𝑟1, 0 < 𝑟1 < 1 such that 𝑟0 ∗ 𝑟1 ≥ 1 − 𝑠.
Consider the Ball

𝐵𝑉 (𝑦, 1 − 𝑟1, 𝑡 − 𝑡0) . (7)

We will show that

𝐵𝑉 (𝑦, 1 − 𝑟1, 𝑡 − 𝑡0) ⊂ 𝐵𝑉 (𝑥, 𝑟, 𝑡) . (8)

Now 𝑧 ∈ 𝐵𝑉(𝑦, 1− 𝑟1, 𝑡 − 𝑡0) implies𝑉(𝑦, 𝑧, . . . , 𝑧, 𝑡 − 𝑡0) > 𝑟1.

Therefore

𝑉(𝑥, 𝑧, . . . , 𝑧, 𝑡) ≥ 𝑉 (𝑥, 𝑦, . . . , 𝑦, 𝑡0)
∗ 𝑉 (𝑦, 𝑧, . . . , 𝑧, 𝑡 − 𝑡0) ≥ 𝑟0 ∗ 𝑟1

≥ 1 − 𝑠.
(9)

Therefore 𝑧 ∈ 𝐵𝑉(𝑥, 𝑟, 𝑡) and hence

𝐵𝑉 (𝑦, 1 − 𝑟, 𝑡 − 𝑡0) ⊂ 𝐵𝑉 (𝑥, 𝑟, 𝑡) . (10)

Result 2. Let (𝑋,𝑉, ∗) be a 𝑉-fuzzy metric space. Define

𝜏 = {𝐴 ⊂ 𝑋 : 𝑥 ∈ 𝐴 if and only if there exist 𝑡
> 0 and 𝑟, 0 < 𝑟 < 1 such that 𝐵𝑉 (𝑥, 𝑟, 𝑡) ⊂ 𝐴} . (11)

Then 𝜏 is a topology on 𝑋.

Definition 18. Let (𝑋,𝑉, ∗) be a 𝑉-fuzzy metric space. The
following condition is satisfied:

lim
𝑛𝑖󳨀→∞

𝑉(𝑥𝑛1 , 𝑥𝑛2 , . . . , 𝑥𝑛, 𝑡𝑛0) = 𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑡) ,
𝑖 = 0, 1, 2, . . . ,𝑁, (12)

whenever lim𝑛1󳨀→∞𝑥𝑛1 = 𝑥1, lim𝑛2󳨀→∞𝑥𝑛2 = 𝑥2, . . .,
lim𝑛𝑁󳨀→∞𝑥𝑛𝑁 = 𝑥𝑁, and

lim
𝑛0󳨀→∞

𝑉(𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑡𝑛0) = 𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑡) ; (13)

then 𝑉 is called continuous function on 𝑋𝑁 × (0,∞).
Lemma 19. Let (𝑋,𝑉, ∗) be a 𝑉-fuzzy metric space. Then 𝑉 is
a continuous function 𝑋𝑁 × (0,∞).
Proof. Since

lim
𝑛1󳨀→∞

𝑥𝑛1 = 𝑥1,
lim
𝑛2󳨀→∞

𝑥𝑛2 = 𝑥2
...

lim
𝑛𝑁󳨀→∞

𝑥𝑛𝑁 = 𝑥𝑁

(14)

and

lim
𝑛0󳨀→∞

𝑉(𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑡𝑛0) = 𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑡) , (15)

then there exists 𝑛𝑝 ∈ 𝑁 such that

󵄨󵄨󵄨󵄨󵄨𝑡 − 𝑡𝑛0 󵄨󵄨󵄨󵄨󵄨 < 𝛿 for 𝑛0 ≥ 𝑛𝑝 and 𝛿 < 𝑡2 . (16)

As 𝑉(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑡) is nondecreasing with respect to 𝑡, we
have

𝑉(𝑥𝑛1 , 𝑥𝑛2 , . . . , 𝑥𝑛𝑁, 𝑡𝑛) ≥ 𝑉(𝑥𝑛1 , 𝑥𝑛2 , . . . , 𝑥𝑛𝑁 , 𝑡 − 𝛿)
≥ 𝑉(𝑥𝑛1 , 𝑥1, . . . , 𝑥1, 𝛿𝑁)
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∗ 𝑉(𝑥1, 𝑥𝑛2 , . . . , 𝑥𝑛𝑁 , 𝑡 − 𝑁 + 1𝑁 𝛿)
≥ 𝑉(𝑥𝑛1 , 𝑥1, . . . , 𝑥1, 𝛿𝑁) ∗ 𝑉(𝑥𝑛2 , 𝑥2 . . . 𝑥2, 𝛿𝑁)

∗ . . .
∗ 𝑉 (𝑥𝑁−1, 𝑥𝑁−2, . . . , 𝑥1, 𝑥𝑛𝑁, 𝑡 − 𝑁 + (𝑁 − 1)𝑁 𝛿)

≥ 𝑉(𝑥𝑛1 , 𝑥1, . . . , 𝑥1, 𝛿𝑁) ∗ 𝑉(𝑥𝑛2 , 𝑥2 . . . 𝑥2, 𝛿𝑁)
∗ . . . ∗ 𝑉(𝑥𝑛𝑁, 𝑥𝑁, . . . , 𝑥1, 𝑥𝑁, 𝛿𝑁)
∗ 𝑉 (𝑥𝑁, 𝑥𝑁−1, . . . , 𝑥1, 𝑡 − (𝑁 − 1) 𝛿)

(17)

and

𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑡 + (𝑁 − 1) 𝛿)
≥ 𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑡𝑛 + 𝛿)
≥ 𝑉(𝑥1, 𝑥𝑛1 , . . . , 𝑥𝑛1 , (𝑁 − 1)𝑁 𝛿)

∗ 𝑉(𝑥𝑛1 , 𝑥2, 𝑥3, . . . , 𝑥𝑁, 𝑡𝑛 + 1𝑁𝛿)
≥ 𝑉(𝑥1, 𝑥𝑛1 , . . . , 𝑥𝑛1 , 𝛿𝑁)

∗ 𝑉(𝑥2, 𝑥𝑛2 , 𝑥𝑛2 , . . . , 𝑥𝑛2 , 𝛿𝑁) ∗ . . .
∗ 𝑉(𝑥𝑁, 𝑥𝑛𝑁, 𝑥𝑛𝑁 , . . . , 𝑥𝑛𝑁, 𝑡𝑛 + 𝛿𝑁)

≥ 𝑉(𝑥1, 𝑥𝑛1 , 𝑥𝑛1 , . . . , 𝑥𝑛1 , 𝛿𝑁)
∗ 𝑉(𝑥2, 𝑥𝑛2 , 𝑥𝑛2 , . . . , 𝑥𝑛2 , 𝛿𝑁) ∗ . . .
∗ 𝑉(𝑥𝑁, 𝑥𝑛𝑁, 𝑥𝑛𝑁 , . . . , 𝑥𝑛𝑁, 𝛿𝑁)
∗ 𝑉 (𝑥𝑁, 𝑥𝑁−1, . . . , 𝑥2, 𝑥1, 𝑡𝑛) .

(18)

Considering continuity of the function𝑉 with respect to 𝑡 and
letting 𝑛 󳨀→ ∞, we have

𝑉(𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑡 + (𝑁 − 1) 𝛿)
≥ 𝑉 (𝑥𝑁, 𝑥𝑁−1, . . . , 𝑥1, 𝑡)
≥ 𝑉 (𝑉 (𝑥𝑁, 𝑥𝑁−1, . . . , 𝑥1, 𝑡 − (𝑁 − 1) 𝛿)) .

(19)

Therefore, 𝑉 is continuous function on 𝑋𝑁 × [0,∞).

Remark 20. In the present paper, (𝑋,𝑉, ∗)will denote an𝑉𝐹-
space with a continuous 𝑡-norm∗ defined as 𝑎∗𝑏 = min{𝑎, 𝑏}
for all 𝑎, 𝑏 ∈ [0, 1] and we assume that

lim
𝑡󳨀→∞

𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑁, 𝑡) = 1
for all 𝑥𝑖 ∈ 𝑋, 𝑖 = 1, 2, . . . ,𝑁. (20)

Define 𝜙 = {𝜙 : 𝑅+ 󳨀→ 𝑅+}, where 𝑅+ = [0,∞] and each𝜙 ∈ Φ satisfying the following conditions:

(𝜙-1) 𝜙 is strict increasing,

(𝜙-2) 𝜙 is upper semicontinuous from the right,

(𝜙-3) ∑∞𝑛=1 𝜙𝑛(𝑡) < ∞ for all 𝑡 > 0.
Lemma 21. Let (𝑋,𝑉, ∗) be an𝑉𝐹-space. If there exists 𝜙 ∈ Φ
such that

𝑉 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝜙 (𝑡)) ≥ 𝑉 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡)
for all 𝑡 > 0, (21)

then 𝑥1 = 𝑥2 = 𝑥3 = . . . = 𝑥𝑛.
Proof. Since

𝑉 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝜙 (𝑡)) ≥ 𝑉 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡) (22)

and also 𝜙(𝑡) < 𝑡, by using Lemma 12, we have

𝑉 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝜙 (𝑡)) ≤ 𝑉 (𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛, 𝑡) . (23)

From (22) and (23) and definition of 𝑉-fuzzy metric space,
one can get 𝑥1 = 𝑥2 = 𝑥3 = ⋅ ⋅ ⋅ = 𝑥𝑛.
Remark 22. Let 𝑥1 = 𝑤, 𝑥2 = 𝑥3 = . . . = 𝑥𝑛−1 = 𝜇, in (VF-5);
we have

𝑉 (𝑤, 𝑢, 𝑢, . . . , 𝑢, 𝑡 + 𝑠)
≥ 𝑉 (𝑤, V, V, . . . , V, 𝑡) ∗ 𝑉 (V, 𝑢, 𝑢, . . . , 𝑢, 𝑠) , (24)

which implies that

𝑉 (𝑢, 𝑢, . . . , 𝑤, 𝑠 + 𝑡) ≥ 𝑉 (V, V, . . . , V, 𝑤, 𝑡)
∗ 𝑉(V (𝑢, 𝑢, . . . , 𝑢, V, 𝑠) (25)

for all 𝑢, V, 𝑤 ∈ 𝑋 and 𝑠, 𝑡 > 0.
An 𝑉𝐹-space is said to be symmetric if 𝑉(𝑥, 𝑥, . . . , 𝑥,𝑦, 𝑡) = 𝑉(𝑥, 𝑦, 𝑦, . . . , 𝑦, 𝑡) for all 𝑥, 𝑦 ∈ 𝑋 and for each 𝑡 > 0.

Lemma 23. Let (𝑋,𝑉, ∗) be an 𝑉𝐹-metric space; if we define𝐸𝜆 : 𝑋 × 𝑋 × 𝑋 × ⋅ ⋅ ⋅ × 𝑋 󳨀→ [0,∞) by
𝐸𝜆 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

= inf {𝑡 > 0, 𝑉 (𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑡) > 1 − 𝜆} (26)
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for all 𝜆 ∈ (0, 1] and 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋, then we have

(i) for each 𝜆 ∈ (0, 1], there exists 𝜇 ∈ (0, 1] such that
𝐸𝜆 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ≤ 𝑛−1∑

𝑖=1

𝐸𝜇 (𝑥𝑖, 𝑥𝑖, . . . , 𝑥𝑖+1)
for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋

(27)

(ii) the sequence {𝑥𝑛}𝑛∈𝑁 in 𝑋 is convergent if and only if𝐸𝜆(𝑥𝑛, 𝑥𝑛, . . . , 𝑥𝑛, 𝑥) 󳨀→ 0 as 𝑛 󳨀→ ∞ for all 𝜆 ∈(0, 1].
Proof. (i) For any 𝜆 ∈ (0, 1], let 𝜇 ∈ (0, 1] and 𝜇 < 𝜆.
Therefore, by the triangular inequality (VF-5) and Remark 22

𝑉(𝑥1, 𝑥1, . . . , 𝑥𝑛, 𝑛−1∑
𝑖=1

𝐸𝜇 (𝑥𝑖, 𝑥𝑖, . . . , 𝑥𝑖+1)

+ (𝑛 − 1) 𝛿)
≥ 𝑉 (𝑥1, 𝑥1, . . . , 𝑥2, 𝐸𝜇 (𝑥1, 𝑥1, . . . , 𝑥2) + 𝛿)
∗ 𝑉 (𝑥2, 𝑥2, . . . , 𝑥3, 𝐸𝜇 (𝑥2, 𝑥2, . . . , 𝑥3) + 𝛿)
+ ⋅ ⋅ ⋅ 𝑉 (𝑥𝑛−1, 𝑥𝑛−1, . . . , 𝑥𝑛, 𝐸𝜇 (𝑥𝑛−1, 𝑥𝑛−1, . . . , 𝑥𝑛)
+ 𝛿) ≥ min {(1 − 𝜇) , (1 − 𝜇) . . . (1 − 𝜇)} ≥ 1 − 𝜆,

(28)

which gives, using (26),

𝐸𝜆 (𝑥1, 𝑥1, . . . , 𝑥𝑛) ≤ 𝐸𝜇 (𝑥1, 𝑥1, . . . , 𝑥2)
+ 𝐸𝜇 (𝑥2, 𝑥2, . . . , 𝑥3)
+ 𝐸𝜇 (𝑥𝑛−1, 𝑥𝑛−1 . . . , 𝑥𝑛)
+ (𝑛 − 1) 𝛿.

(29)

Since 𝛿 > 0 is arbitrary, we have
𝐸𝜆 (𝑥1, 𝑥1, 𝑥1, . . . , 𝑥𝑛)

≤ 𝐸𝜇 (𝑥1, 𝑥1, . . . , 𝑥2) + 𝐸𝜇 (𝑥2, 𝑥2, . . . , 𝑥3) + . . .
+ 𝐸𝜇 (𝑥𝑛−1, 𝑥𝑛−1, . . . , 𝑥𝑛) .

(30)

(ii) Since 𝑉 is continuous in its (𝑛 + 1)th argument (by
(26)), we have

𝑉(𝑥𝑛, 𝑥𝑛, . . . , 𝑥𝑛, 𝑥, 𝜂) > 1 − 𝜆 for all 𝜂 > 0. (31)

This proves the lemma.

Lemma 24. Let (𝑋,𝑉, ∗) be a 𝑉-Fuzzy metric space and {𝑦𝑛}
be a sequence in 𝑋. If there exists 𝜙 ∈ Φ such that

𝑉 (𝑦𝑛, 𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛, 𝑦𝑛+1, 𝜙 (𝑡))
≥ 𝑉 (𝑦𝑛−1, 𝑦𝑛−1, . . . , 𝑦𝑛−1, 𝑦𝑛, 𝑡)

∗ 𝑉 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛, 𝑦𝑛+1, 𝑡)
(32)

for all 𝑡 > 0 and 𝑛 = 1, 2, 3, . . ., then {𝑦𝑛} is a Cauchy sequence
in 𝑋.

Proof. Let {𝐸𝜆(𝑥, 𝑦, 𝑧)}𝜆∈(0,1] be defined by (26).
For each 𝜆 ∈ (0, 1] and 𝑛 ∈ 𝑁, put

𝑎𝑛 = 𝐸𝜆 (𝑦𝑛−1, 𝑦𝑛−1, . . . , 𝑦𝑛−1, 𝑦𝑛) . (33)

We will prove that

𝑎𝑛+1 ≤ 𝜙 (𝑎𝑛) for all 𝑛 ∈ 𝑁. (34)

Since 𝜙 is upper semicontinuous from right, for given 𝜖 > 0
and each 𝑎𝑛, there exists 𝑝𝑛 > 𝑎𝑛 such that 𝜙(𝑝𝑛) < 𝜙(𝑎𝑛) + 𝜖.
From (26), it follows from 𝑃𝑛 > 𝑎𝑛 = 𝐸𝜆(𝑦𝑛−1, 𝑦𝑛−1, . . . , 𝑦𝑛)
that 𝑉(𝑦𝑛−1, 𝑦𝑛−1, 𝑦𝑛−1, . . . , 𝑦𝑛, 𝑃𝑛) > 1 − 𝜆 for all 𝑛 ∈ 𝑁.

Thus, by (32), (34), and Lemma 12, we get

𝑉 (𝑦𝑛, 𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛+1, 𝜙 (max {𝑝𝑛, 𝑝𝑛+1}))
≥ 𝑉 (𝑦𝑛−1, 𝑦𝑛−1, . . . , 𝑦𝑛,max {𝑝𝑛, 𝑝𝑛+1}

∗ 𝑉 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛+1,max {𝑝𝑛, 𝑝𝑛+1})
≥ 𝑉 (𝑦𝑛−1, 𝑦𝑛−1, 𝑦𝑛−1, . . . , 𝑦𝑛, 𝑝𝑛)

∗ 𝑉 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦1, 𝑦𝑛+1, 𝑝𝑛+1) > 1 − 𝜆.

(35)

Again, by (26), we get

𝐸𝜆 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛, 𝑦𝑛+1) ≤ 𝜙 (max {𝑝𝑛, 𝑝𝑛+1})
= max {𝜙 (𝑝𝑛) , 𝜙 (𝑝𝑛+1)}
≤ max {𝜙 (𝑎𝑛) , 𝜙 (𝑎𝑛+1)} + 𝜖.

(36)

By the arbitrariness of 𝜖, we have
𝑎𝑛+1 = 𝐸𝜆 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛+1)

≤ max {𝜙 (𝑎𝑛) , 𝜙 (𝑎𝑛−1)} . (37)

So, we can interpret that 𝑎𝑛+1 ≤ 𝜙(𝑎𝑛).
If not, then by (37), we have 𝑎𝑛+1 ≤ 𝜙(𝑎𝑛+1) < 𝑎𝑛+1; this

is a contradiction. Hence (37) implies that 𝑎𝑛+1 ≤ 𝜙(𝑎𝑛), and
(34) is proved.

By repeated application of (34), we get

𝐸𝜆 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛+1) ≤ 𝜙 (𝐸𝜆 (𝑦𝑛−1, 𝑦𝑛−1, . . . , 𝑦𝑛)
≤ ⋅ ⋅ ⋅ ≤ 𝜙𝑛 (𝐸𝜆 (𝑦0, 𝑦0, . . . , 𝑦1)

forall 𝑛 ∈ 𝑁.
(38)

By Lemma 23, for each 𝜆 ∈ (0, 1], there exists 𝜇 ∈ (0, 𝜆] such
that

𝐸𝜆 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛, 𝑦𝑛) ≤ 𝑚−1∑
𝑖=𝑛

𝐸𝜇 (𝑦𝑖, 𝑦𝑖, . . . , 𝑦𝑖, 𝑦𝑖+1) ,
𝑚, 𝑛 ∈ 𝑁 with 𝑚 > 𝑛.

(39)
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Since 𝜙 ∈ Φ, by condition (𝜙-3), we have
∞∑
𝑛=0

𝜙𝑛 (𝐸𝜇 (𝑦0, 𝑦0, . . . , 𝑦1)) < +∞. (40)

So, for given 𝜖 > 0, there exists 𝑛0 ∈ 𝑁 such that∑∞𝑖=𝑛0 𝜙𝑖(𝐸𝜇(𝑦0, 𝑦0, . . . , 𝑦1)) < 𝜖.Thus, it follows from (39) that

𝐸𝜆 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑚) ≤ ∑𝜙𝑖 (𝐸𝜇 (𝑦0, 𝑦0, 𝑦0, . . . , 𝑦1))
< 𝜖 for all 𝑛 ≥ 𝑛0, (41)

which implies that𝑉(𝑦𝑛 , 𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛, 𝜖) > 1−𝜆 for all𝑚, 𝑛 ∈𝑁 with 𝑚 > 𝑛 ≥ 𝑛0. Therefore {𝑦𝑛} is a Cauchy sequence in𝑋.

Definition 25. A pair of self-mappings (𝑓, 𝑔) of V-fuzzy
metric space (𝑋,𝑉, ∗) is said to be 𝑉-weakly commuting of
type 𝑉𝑓 if

𝑉 (𝑓𝑔𝑥, 𝑔𝑓𝑥, 𝑓𝑔𝑥, . . . , 𝑓𝑓𝑥, 𝑡)
≥ 𝑉 (𝑓𝑥, 𝑔𝑥, 𝑓𝑥, 𝑓𝑥, . . . , . . . , 𝑓𝑥, 𝑡) (42)

for all 𝑥 ∈ 𝑋 and 𝑡 > 0.
Definition 26. A pair of self-mappings (𝑓, 𝑔) of a V-fuzzy
metric space (𝑋,𝑉, ∗) is said to be V-R weakly commuting
of type 𝑉𝑓 if there exists some positive real number 𝑅 such
that

𝑉 (𝑓𝑔𝑥, 𝑔𝑓𝑥, 𝑓𝑔𝑥, . . . , 𝑓𝑓 (𝑥) 𝑡)
≥ 𝑉(𝑓𝑥, 𝑔𝑥, 𝑓𝑥, 𝑓𝑥, . . . , 𝑓𝑥, 𝑡𝑟)

(43)

for all 𝑥 ∈ 𝑋 and 𝑡 > 0.
Remark 27. If we interchange 𝑓 and 𝑔 in above definitions,
then the pair of self-mappings (𝑓, 𝑔) of V-fuzzy metric space(𝑋,𝑉, ∗) is said to be 𝑉-weakly commuting of type 𝑉𝑔 and𝑉-R weakly commuting of type 𝑉𝑔, respectively.

For proving our main results, we use the following
relation.

The following example shows that a pair ofmapping (𝑓, 𝑔)
that is V-weakly commuting of type 𝑉𝑓 does not need to be
V-weakly commuting of type 𝑉𝑔.
Example 28. Let 𝑥 = (0, 1] be the V-fuzzy metric space with

𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛)
= max {󵄨󵄨󵄨󵄨𝑥1 − 𝑥2󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑥2 − 𝑥3󵄨󵄨󵄨󵄨 . . . , 󵄨󵄨󵄨󵄨𝑥𝑛−1 − 𝑥𝑛󵄨󵄨󵄨󵄨} (44)

for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋.
Define 𝑓𝑥 = 𝑥2/4, 𝑔(𝑥) = 𝑥2.
Then we find

𝐴 (𝑓𝑔𝑥, 𝑔𝑓𝑥, . . . , 𝑓𝑓𝑥) = 1564𝑥4 (45)

and

𝐴 (𝑓𝑥, 𝑔𝑥, 𝑔𝑥, . . . , 𝑓𝑥) = 34𝑥2. (46)

Then, one can get

𝐴 (𝑔𝑓𝑥, 𝑓𝑔𝑥, 𝑓𝑔𝑥, . . . , 𝑔𝑔 (𝑥)) = 1516
≰ 𝐴 (𝑔𝑥, 𝑓𝑥, 𝑓𝑥, . . . 𝑔𝑥) = 34 ,

(47)

which implies

𝑉 (𝑓𝑔𝑥, 𝑔𝑓𝑥, . . . , 𝑓𝑓𝑥, 𝑡) ≥ 𝑉 (𝑓𝑥, 𝑔𝑥, . . . , 𝑓𝑥, 𝑡) (48)

and

𝑉 (𝑔𝑓𝑥, 𝑓𝑔𝑥, . . . , 𝑔𝑔𝑥, 𝑡) ̸≥ 𝑉 (𝑔𝑥, 𝑓𝑥, . . . , 𝑔𝑥, 𝑡) . (49)

Hence the pair (𝑓, 𝑔) is not V-weakly commuting of type 𝑉𝑔,
but it is V-weakly commuting of type 𝑉𝑓.
Lemma 29. If 𝑓 and 𝑔 are V-weakly commuting of type𝑉𝑓 or
V-R-weakly commuting of type 𝑉𝑓, then 𝑓 and 𝑔 are weakly
compatible.

Proof. Let 𝑥 be a coincidence point of 𝑓 and 𝑔; i.e., 𝑓(𝑥) =𝑔(𝑥); then if pair (𝑓, 𝑔) is V-weakly commuting of type 𝑉𝑓,
we have

𝑉(𝑓𝑔𝑥, 𝑔𝑓𝑥, . . . , 𝑓𝑔𝑥, 𝑡) = 𝑉 (𝑓𝑔𝑥, 𝑔𝑓𝑥, . . . , 𝑓𝑓𝑥, 𝑡)
≥ 𝑉 (𝑓𝑥, 𝑔𝑥, . . . , 𝑓𝑥, 𝑡) = 1. (50)

It follows that 𝑓𝑥𝑔 = 𝑔𝑓𝑥. Hence 𝑓 and 𝑔 commute at their
coincidence point.

Similarly, if pair (𝑓, 𝑔) is V-R weakly commuting of type𝑉𝑓, we have
𝑉(𝑓𝑔𝑥, 𝑔𝑓𝑥, . . . , 𝑓𝑔𝑥, 𝑡) = 𝑉 (𝑓𝑔𝑥, 𝑔𝑓𝑥, . . . , 𝑓𝑓𝑥, 𝑡)

≥ 𝑉(𝑓𝑥, 𝑔𝑥, . . . , 𝑓𝑥, 𝑡𝑅) = 1, (51)

and thus𝑓𝑔𝑥 = 𝑔𝑓𝑥; then the pair (𝑓, 𝑔) is weakly compatible.
The converse of the lemma need not be true.

Example 30. 𝑋 = [0, 1] and 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) = |𝑥1 − 𝑥2| +|𝑥2 − 𝑥3|.
Define 𝑓, 𝑔 : 𝑋 󳨀→ 𝑋 by 𝑓(𝑥) = 4𝑥 − 1 and 𝑔(𝑥) = 3𝑥2,𝑥 ∈ 𝑋; we see that 𝑥 = 1/3 is the only coincidence point

and 𝑓(𝑔(1/3)) = 1/3 and 𝑔(𝑓(1/3)) = 𝑔(1/3), so 𝑓 and 𝑔 are
weakly compatible.

But by easy calculation, for 𝑥 = 1, one can have

𝐴 (𝑓𝑔𝑥, 𝑔𝑓𝑥, . . . , 𝑓𝑓𝑥) = 36 (52)

and

𝐴 (𝑓𝑥, 𝑔𝑥, . . . , 𝑓𝑥) = 0, (53)

i.e.,
𝑉 (𝑓𝑔𝑥, 𝑔𝑓𝑥, . . . , 𝑓𝑓𝑥, 𝑡) = 36 ≰ 0

= (𝑓𝑥, 𝑔𝑥, . . . , 𝑓𝑥, 𝑡) . (54)

Therefore, 𝑓 and 𝑔 are not V-weakly commuting of type 𝑉𝑓.
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Definition 31 ([4]). A pair of self-mappings (𝑓, 𝑔) on X is said
to satisfy the property E.A. if there exists a sequence {𝑥𝑛} such
that

lim
𝑛󳨀→∞

𝑓𝑥𝑛 = lim
𝑛󳨀→∞

𝑔𝑥𝑛 = 𝑧 for all 𝑧 ∈ 𝑋. (55)

Definition 32 ([25]). A pair of self-mappings (𝑓, 𝑔) on X is
said to satisfy the CLRg property if there exists a sequence{𝑥𝑛} such that

lim
𝑛󳨀→∞

𝑓𝑥𝑛 = lim
𝑛󳨀→∞

𝑔𝑥𝑛 = 𝑔𝑧 for all 𝑧 ∈ 𝑋. (56)

Now, we are ready to prove our results for symmetric𝑉-fuzzy
metric spaces.

Theorem 33. Let (𝑋,𝑉, ∗) be a symmetric 𝑉𝐹-space and
mappings 𝑓, 𝑔 : 𝑋 󳨀→ 𝑋 satisfying the following conditions:

(i) 𝑓 and 𝑔 are V-weakly commuting of type 𝑉𝑓;
(ii) 𝑓(𝑋) ⊆ 𝑔(𝑋);
(iii) 𝑔(𝑋) is a V-complete subspace of 𝑋;

(iv) these exists 𝜙 ∈ Φ such that for all 𝑥𝑖 ∈ 𝑋 and 𝑖 =1, 2, . . . , 𝑛, 𝑡 > 0
𝑉 (𝑓𝑥1, 𝑓𝑥2, 𝑓𝑥3, . . . , 𝑓𝑥𝑛, 𝜙 (𝑡))

≥ 𝑉 (𝑔𝑥1, 𝑔𝑥1, . . . , 𝑓𝑥1, 𝑡)
∗ 𝑉 (𝑔𝑥2, 𝑔𝑥2, . . . , 𝑓𝑥2, 𝑡)
∗ 𝑉 (𝑔𝑥3, 𝑔𝑥3, . . . , 𝑓𝑥3, 𝑡) ∗ . . .
∗ 𝑉 (𝑔𝑥𝑛, 𝑔𝑥𝑛, . . . , 𝑓𝑥𝑛, 𝑡) .

(57)

Then 𝑓 and 𝑔 have common fixed point.

Proof. Let 𝑧1 ∈ 𝑋 such that 𝑓𝑧0 = 𝑔𝑧1 and 𝑧2 ∈ 𝑋, where𝑓𝑧1 = 𝑔𝑧2, and then by induction we can define a sequence{𝑦𝑛} ∈ 𝑋 as follows

𝑦𝑛 = 𝑓𝑧𝑛 = 𝑔𝑧𝑛+1, 𝑛 ∈ 𝑁. (58)

We will prove that {𝑦𝑛} is a Cauchy sequence in 𝑋.

𝑉 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛, 𝑦𝑛+1, 𝜙 (𝑡))
= 𝑉 (𝑓𝑧𝑛, 𝑓𝑧𝑛, . . . , 𝑓𝑧𝑛+1, 𝜙 (𝑡))
≥ 𝑉 (𝑔𝑧𝑛, 𝑔𝑧𝑛, . . . , 𝑓𝑧𝑛, 𝑡)

∗ 𝑉 (𝑔𝑧𝑛, 𝑔𝑧𝑛, . . . , 𝑓𝑧𝑛, 𝑡) ∗ ⋅ ⋅ ⋅
∗ 𝑉 (𝑔𝑧𝑛+1, 𝑔𝑧𝑛+1, . . . , 𝑓𝑧𝑛+1, 𝑡)

≥ 𝑉 (𝑔𝑧𝑛, 𝑔𝑧𝑛, . . . , 𝑔𝑧𝑛+1, 𝑡)
∗ 𝑉 (𝑔𝑧𝑛, 𝑔𝑧𝑛, . . . , 𝑔𝑧𝑛+1, 𝑡) ∗ ⋅ ⋅ ⋅
∗ 𝑉 (𝑔𝑧𝑛+1, 𝑔𝑧𝑛+1, . . . , 𝑔𝑧𝑛+2, 𝑡) ,

(59)

which gives

𝑉(𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛+1, 𝜙 (𝑡))
≥ 𝑉 (𝑦𝑛−1, 𝑦𝑛−1, . . . , 𝑦𝑛, 𝑡) ∗ ⋅ ⋅ ⋅

∗ 𝑉 (𝑦𝑛, 𝑦𝑛, . . . , 𝑦𝑛+1, 𝑡) .
(60)

By Lemma 24, the sequence {𝑦𝑛} is a V-Cauchy sequence.
Since 𝑦𝑛 = 𝑔𝑧𝑛+1, {𝑔𝑧𝑛+1} is a V-Cauchy sequence in 𝑔(𝑥).

By hypothesis (iii), we know that 𝑔(𝑋) is V-complete;
then there exists 𝑢 ∈ 𝑔(𝑋) such that

lim
𝑛󳨀→∞

𝑔𝑧𝑛 = 𝑢 = lim
𝑛󳨀→∞

𝑓𝑧𝑛. (61)

Now 𝑢 ∈ 𝑔(𝑥), so there exists 𝑝 ∈ 𝑋 such that 𝑢 = 𝑔𝑝.
Therefore

lim
𝑛󳨀→∞

𝑔𝑧𝑛 = 𝑔𝑝 = lim
𝑛󳨀→∞

𝑓𝑧𝑛. (62)

We will prove that 𝑓𝑝 = 𝑔𝑝:
𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑓𝑧𝑛, 𝜙 (𝑡))

≥ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡) ∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡)
∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡) ∗ . . .
∗ 𝑉 (𝑔𝑧𝑛, 𝑔𝑧𝑛, . . . , 𝑓𝑧𝑛, 𝑡) ,

(63)

taking limit as 𝑛 󳨀→ ∞,

𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑔𝑝, 𝜙 (𝑡))
≥ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡) ∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡)

∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑔𝑝, 𝑡) ,
(64)

which implies,

𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑔𝑝, 𝜙 (𝑡)) ≥ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡) . (65)

Since V-fuzzy metric space is symmetric, we have

𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑔𝑝, 𝜙 (𝑡)) ≥ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡)
= 𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑔𝑝, 𝑡) , (66)

which implies 𝑓𝑝 = 𝑔𝑝 (by Lemma 21).
Since pair (𝑓, 𝑔) is V-weakly commuting of type 𝑉𝑓, then

𝑉(𝑓𝑔𝑝, 𝑔𝑓𝑝, 𝑓𝑔𝑝, . . . , 𝑓𝑓𝑝, 𝜙 (𝑡))
≥ 𝑉 (𝑓𝑝, 𝑔𝑝, 𝑓𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡) = 1, (67)

which implies

𝑓𝑓𝑝 = 𝑓𝑔𝑝 = 𝑔𝑓𝑝 = 𝑔𝑔𝑝. (68)

Hence 𝑓𝑢 = 𝑓𝑔𝑝 = 𝑓𝑔𝑝 = 𝑔𝑢.
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Eventually, we show that 𝑢 = 𝑔𝑝 is common fixed point
of 𝑓 and 𝑔. Suppose 𝑓𝑢 ̸= 𝑢; then

𝑉(𝑓𝑢, 𝑓𝑝, 𝑓𝑝, . . . , 𝑓𝑝, 𝜙 (𝑡))
≥ 𝑉 (𝑔𝑢, 𝑔𝑢, . . . , 𝑓𝑢, 𝑡) ∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡)

∗ . . . ∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡)
≥ 𝑉 (𝑓𝑢, 𝑓𝑢, . . . , 𝑓𝑢, 𝑡) ∗ 𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑓𝑝, 𝑡)

∗ . . . ∗ 𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑓𝑝, 𝑡) .

(69)

𝑉(𝑓𝑢, 𝑢, . . . 𝑢, 𝜙(𝑡)) ≥ 1 ∗ 1 ∗ . . . ∗ 1 = 1,
which is the contradiction. Hence, 𝑓𝑢 = 𝑔𝑢 = 𝑢.
To prove the uniqueness, suppose 𝑢 and V are such that𝑢 ̸= V, 𝑓V = 𝑔V = V and 𝑓𝑢 = 𝑔𝑢 = 𝑢; then again using

condition (iv), we have

𝑉 (𝑢, V, . . . , V, 𝜙 (𝑡)) = 𝑉 (𝑓𝑢, 𝑓V, . . . , 𝑓V, 𝜙 (𝑡))
≥ 𝑉 (𝑔𝑢, 𝑔𝑢, . . . , 𝑓𝑢, 𝑡))

∗ 𝑉 (𝑔V, 𝑔V, . . . , 𝑓V, 𝑡) ∗ . . .
∗ 𝑉 (𝑔V, 𝑔V, . . . , 𝑓V, 𝑡)

= 1 ∗ 1 ∗ . . . ∗ 1 = 1.

(70)

Hence,𝑉(𝑢, V, V, . . . , V, 𝜙(𝑡)) ≥ 1, which gives a contradiction.
Hence 𝑢 = V. Therefore 𝑢 is a unique common fixed point of𝑓 and 𝑔.
Example 34. Let 𝑋 = [0, 1] be a standard V-fuzzy metric
space.

Let 𝜙(𝑡) = 𝑡/2 and define 𝑓, 𝑔 : 𝑋 󳨀→ 𝑋 by 𝑓(𝑥) = 𝑥/6,𝑔(𝑥) = (𝑥/2)(𝑥 + 1), 𝑥 ∈ 𝑋.
We see that 𝑥 = 0 is the only coincidence point and 𝑓 and𝑔 are weakly compatible.
Let 𝑥𝑛 = 1/𝑛 be a sequence such that

𝑉(𝑓𝑝, 𝑓𝑝, . . . , 𝑓𝑥𝑛, 𝜙 (𝑡)) ≥ 𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑔𝑝, 𝑡) , (71)

where 𝑝 is a coincidence point.
Then the pair (𝑓, 𝑔) is V-weakly commuting of type 𝑉𝑓.

Further 𝑓 and 𝑔 have a unique common fixed point of 𝑓 and𝑔.
Corollary35. Theorem33 remains true if we replace𝑉-weakly
commuting and 𝑉 − 𝑅-weakly commuting of type 𝑉𝑓 by 𝑉-
weakly commuting and 𝑉 − 𝑅-weakly commuting of type 𝑉𝑔
(considering the other conditions are the same).

Theorem 36. Let (𝑋,𝑉, ∗) be a symmetric V-fuzzy metric
space and suppose mappings 𝑓, 𝑔 : 𝑋 󳨀→ 𝑋 are V-weakly
commuting of type 𝑉𝑓 satisfying the following conditions:

(i) 𝑓 and 𝑔 satisfy the E.A property;

(ii) 𝑔(𝑋) is a closed subspace of 𝑋;

(iii) there exists a 𝜙 ∈ Φ such that for all 𝑥𝑖 ∈ 𝑋, 𝑖 =1, 2, . . . , 𝑛 and 𝑡 > 0,
𝑉 (𝑓𝑥1, 𝑓𝑥2, . . . , 𝑓𝑥𝑛, 𝜙 (𝑡))

≥ 𝑉 (𝑔𝑥1, 𝑔𝑥1, . . . , 𝑓𝑥1, 𝑡)
∗ 𝑉 (𝑔𝑥2, 𝑔𝑥2, . . . , 𝑓𝑥2, 𝑡) ∗ . . .
∗ 𝑉 (𝑔𝑥𝑛, 𝑔𝑥𝑛, . . . , 𝑓𝑥𝑛, 𝑡) .

(72)

Then 𝑓 and 𝑔 have a unique common fixed point.

Proof. Since, the mappings 𝑓 and 𝑔 satisfy the E.A. property,
then there exists a sequence {𝑧𝑛} in 𝑋 satisfying

lim
𝑛󳨀→∞

𝑔𝑧𝑛 = 𝑢 = lim
𝑛󳨀→∞

𝑓𝑧𝑛 for some 𝑢 ∈ 𝑋. (73)

Since𝑔(𝑋) is closed subspace of𝑋 and lim𝑛󳨀→∞𝑔𝑧𝑛 = 𝑢, then
there exists 𝑝 ∈ 𝑋 such that 𝑔𝑝 = 𝑢.

Also, lim𝑛󳨀→∞𝑔𝑧𝑛 = 𝑔𝑝 = lim𝑛󳨀→∞𝑓𝑧𝑛.
We will prove, 𝑓𝑝 = 𝑔𝑝:
𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑓𝑧𝑛, 𝜙 (𝑡))

≥ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡) ∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡)
∗ . . . ∗ 𝑉 (𝑔𝑧𝑛, 𝑔𝑧𝑛, . . . , 𝑓𝑧𝑛, 𝑡) ,

(74)

and, taking limit as 𝑛 󳨀→ ∞, we have

𝑉(𝑓𝑝, 𝑓𝑝 . . . , 𝑔𝑝, 𝜙 (𝑡))
≥ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡) ∗ ⋅ ⋅ ⋅

∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑔𝑝, 𝑡) 𝑉 (𝑓𝑝, 𝑓𝑝 . . . , 𝑔𝑝, 𝜙 (𝑡))
≥ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡) .

(75)

Since V-fuzzy metric space is symmetric, we have
𝑉(𝑓𝑝, 𝑓𝑝, . . . , 𝑔𝑝, 𝜙 (𝑡)) ≥ 𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑔𝑝, 𝑡) , (76)

which implies 𝑓𝑝 = 𝑔𝑝 = 𝑢 (by Lemma 21).
Since pair (𝑓, 𝑔) is V-weakly commuting of type 𝑉𝑓, then

𝑉 (𝑓𝑔𝑝, 𝑔𝑓𝑝, . . . , 𝑓𝑓𝑝, 𝜙 (𝑡))
≥ 𝑉 (𝑓𝑝, 𝑔𝑝, 𝑓𝑝, . . . , 𝑓𝑝, 𝑡) = 1, (77)

which implies 𝑓𝑓𝑝 = 𝑓𝑔𝑝 = 𝑔𝑓𝑝 = 𝑔𝑔𝑝.
Hence 𝑓𝑢 = 𝑓𝑔𝑝 = 𝑔𝑓𝑝 = 𝑔𝑢.
Finally, we show that 𝑢 = 𝑔𝑝 is a common fixed point of𝑓 and 𝑔. Suppose 𝑓𝑢 ̸= 𝑢, then
𝑉 (𝑓𝑢, 𝑓𝑝, . . . , 𝑓𝑝, 𝜙 (𝑡))

≥ 𝑉 (𝑔𝑢, 𝑔𝑢, . . . , 𝑓𝑢, 𝑡) ∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡)
∗ . . . ∗ 𝑉 (𝑔𝑝, 𝑔𝑝, . . . , 𝑓𝑝, 𝑡)

≥ 𝑉 (𝑓𝑢, 𝑓𝑢, . . . , 𝑓𝑢, 𝑡) ∗ 𝑉 (𝑓𝑝, 𝑓𝑝, . . . , 𝑓𝑝, 𝑡)
∗ . . . ∗ 𝑉 (𝑓𝑝, 𝑓𝑝, 𝑓𝑝, . . . , 𝑓𝑝, 𝑡)

= 1 ∗ 1 ∗ 1 ∗ . . . ∗ 1 = 1.
𝑇ℎ𝑢𝑠, 𝑉 (𝑓𝑢, 𝑢, 𝑢 . . . 𝑢, 𝜙 (𝑡)) ≥ 1

(78)

which is a contradiction. Hence 𝑓𝑢 = g𝑢 = 𝑢.
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To prove the uniqueness, suppose that 𝑢 and V are such
that 𝑢 ̸= V, 𝑓𝑢 = 𝑔𝑢 = 𝑢, and 𝑓V = 𝑔V = V; then again using
condition (iii), we have

𝑉 (𝑢, V, . . . , V, 𝜙 (𝑡) = 𝑉 (𝑓𝑢, 𝑓V, . . . , 𝑓V, 𝜙 (𝑡))
≥ 𝑉 (𝑔𝑢, 𝑔𝑢, . . . , 𝑓𝑢, 𝑡)

∗ 𝑉 (𝑔V, 𝑔V, . . . , 𝑓V, 𝑡) . . .
∗ 𝑉 (𝑔V, 𝑔V, . . . , 𝑓V, 𝑡)

= 1 ∗ 1 ∗ 1 ∗ . . . ∗ 1 = 1.

(79)

Hence 𝑉(𝑢, V, . . . , V, 𝜙(𝑡)) ≥ 1, which gives a contradiction.
Hence 𝑢 = V. Therefore ‘𝑢’ is a unique common fixed point of𝑓 and 𝑔.
Theorem 37. Let (𝑋,𝑉, ∗) be a symmetric V-fuzzy metric
space and suppose mappings 𝑓, 𝑔 : 𝑋 󳨀→ 𝑋 are V-weakly
commuting of type 𝑉𝑓 satisfying the following conditions:

(i) 𝑓 and 𝑔 satisfy the CLRg property;
(ii) 𝑔(𝑋) is a closed subspace of 𝑋;
(iii) there exists a 𝜙 ∈ Φ such that for all 𝑥𝑖 ∈ 𝑋, 𝑖 =1, 2, . . . , 𝑛 and 𝑡 > 0,

𝑉(𝑓𝑥1, 𝑓𝑥2, . . . , 𝑓𝑥𝑛, 𝜙 (𝑡))
≥ 𝑉 (𝑔𝑥1, 𝑔𝑥1, . . . , 𝑓𝑥1, 𝑡)

∗ 𝑉 (𝑔𝑥2, 𝑔𝑥2, . . . , 𝑓𝑥2, 𝑡) ∗ . . .
∗ 𝑉 (𝑔𝑥𝑛, 𝑔𝑥𝑛, . . . , 𝑓𝑥𝑛, 𝑡) .

(80)

Then 𝑓 and 𝑔 have a unique common fixed point.

Proof. Proof follows on the same lines of Theorem 33 and by
definition of CLRg property.
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